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Abstract: In this paper, we report a multiscale investigation of the compositional, morphological,
structural, electrical, and optical emission properties of 2H-MoS2 obtained by sulfurization at 800 ◦C
of very thin MoO3 films (with thickness ranging from ~2.8 nm to ~4.2 nm) on a SiO2/Si substrate.
XPS analyses confirmed that the sulfurization was very effective in the reduction of the oxide to MoS2,

with only a small percentage of residual MoO3 present in the final film. High-resolution TEM/STEM
analyses revealed the formation of few (i.e., 2–3 layers) of MoS2 nearly aligned with the SiO2 surface
in the case of the thinnest (~2.8 nm) MoO3 film, whereas multilayers of MoS2 partially standing
up with respect to the substrate were observed for the ~4.2 nm one. Such different configurations
indicate the prevalence of different mechanisms (i.e., vapour-solid surface reaction or S diffusion
within the film) as a function of the thickness. The uniform thickness distribution of the few-layer
and multilayer MoS2 was confirmed by Raman mapping. Furthermore, the correlative plot of the
characteristic A1g-E2g Raman modes revealed a compressive strain (ε ≈ −0.78 ± 0.18%) and the
coexistence of n- and p-type doped areas in the few-layer MoS2 on SiO2, where the p-type doping is
probably due to the presence of residual MoO3. Nanoscale resolution current mapping by C-AFM
showed local inhomogeneities in the conductivity of the few-layer MoS2, which are well correlated to
the lateral changes in the strain detected by Raman. Finally, characteristic spectroscopic signatures
of the defects/disorder in MoS2 films produced by sulfurization were identified by a comparative
analysis of Raman and photoluminescence (PL) spectra with CVD grown MoS2 flakes.

Keywords: MoS2; sulfurization; XPS; Raman; TEM; C-AFM; photoluminescence

1. Introduction

Transition metal dichalcogenides (TMDs) are a wide family of layered van der Waals
(vdW) materials with the general chemical formula MX2, M being a transition metal
(Ti, Zr, Hf, V, Nb, Ta, Mo, W, Re, Pd, or Pt) and X a chalcogen atom (S, Se, or Te) [1]. Most
of them exhibit metallic or semiconducting phases. In particular, semiconducting TMDs
have been the object of increasing scientific interest in the last decade, due to their huge
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potential for applications in several fields, including electronics, optoelectronics, spintron-
ics, valleytronics, chemical/environmental sensing, energy generation, and catalysis [2–10].
Molybdenum disulfide (MoS2) is the most investigated among TMDs, due to the natural
abundance and good chemical/mechanical stability of its 2H semiconductor phase under
ambient conditions. The bandgap tunability as a function of the thickness, with a transition
from an indirect bandgap of ~1.2 eV for bulk or few-layer MoS2 to a direct bandgap of
~1.8 eV for monolayer MoS2 [11,12], makes this material appealing for optoelectronic and
electronic applications. In fact, the first robust 2D transistor with a large on/off ratio
and good field-effect mobility was demonstrated using monolayer 2H-MoS2 flakes as the
semiconducting channel [13,14]. This material and other TMDs are currently considered a
potential replacement of Si for the next generation of complementary metal oxide semicon-
ductor (CMOS) devices allowing the continuation of Moore’s law [15]. Furthermore, they
can represent the basis for new concept (More-than-Moore) devices [16,17].

Due to this wide application potential, scalable and reproducible growth methods for
thin films of TMDs are strongly required for their future implementation in manufacturing
lines. In this context, research on MoS2 wafer-scale growth and device integration is
relatively more mature than for other 2D TMDs.

Top-down synthesis approaches used to separate MoS2 from bulk crystals, such as
mechanical exfoliation [18,19], gold-assisted exfoliation [20–24], and liquid exfoliation [25],
are not suitable to ensure the reproducibility and thickness control on a wafer scale required
for high-end electronic applications. For this reason, bottom-up approaches as Chemical
Vapour Deposition (CVD) [26,27], Pulsed Laser Deposition (PLD) [28], Molecular Beam
Epitaxy (MBE) [29], and Atomic Layer Deposition (ALD) [30] represent the most promising
methods to obtain a reproducible thin film of TMDs on a large area.

In particular, CVD using vapours from S and MoO3 powders has been widely explored
by several research groups, since it is a cost-effective method to produce MoS2 domains
with good crystalline quality on different substrates [31–33]. Although monolayer flakes
with a triangular or hexagonal shape and lateral extension from tens to hundreds of
micrometres have been obtained under optimized CVD conditions [34], achieving coverage
and thickness uniformity on the wafer scale still represents a huge challenge, due to the
difficulty of controlling all the parameters involved in the process (including the substrate
temperature, the evaporation rates of the S and Mo precursors, the pressure in the chamber,
and the carrier gas flow rate) [35–39].

As an alternative to the single-step CVD approach, sulfurization of a Mo (or Mo-oxide)
film pre-deposited on a substrate (e.g., by evaporation or sputtering) allows superior control
of MoS2 coverage and uniformity by controlling the initial film thickness [40–43]. Different
to CVD (where the Mo–S bonds are mostly formed by vapour phase reaction and the MoS2
lands on the substrate), the sulfurization process is a heterogeneous vapour-solid reaction
between the S vapour and the pre-deposited film [44]. The conversion of MoOx to MoS2 by
sulfurization has been demonstrated to occur in a wide temperature range, from 500 ◦C to
1000 ◦C, although the best quality films are typically obtained at temperatures > 750 ◦C [44].
Besides the vapour-solid surface reaction, the initial Mo or MoOx film thickness also plays
an important role in the process. In fact, with increasing its thickness, the diffusion of S in
the film represents the limiting mechanism for the formation of MoS2 layers and determines
their alignment with respect to the substrate [45,46]. In particular, at typical sulfurization
temperatures of 750–800 ◦C, single or few-layers of MoS2 horizontally aligned to the
substrate plane are obtained for very thin (<3 nm) Mo films, whereas vertically aligned
growth occurs for thicker Mo films [47]. This is due to the favoured sulphur diffusion
along the vdW gaps between the vertically oriented MoS2 layers [45,47,48]. Besides the
initial Mo (or Mo-oxide) thickness, other key factors controlling MoS2 formation include
the substrate heating rate, pressure, and local S concentration on the sample surface [49–51].
Furthermore, the underlying substrate can play an important role in MoS2 formation during
sulfurization of pre-deposited MoO3. In fact, while a higher temperature may enhance the
sulfurization degree, on the other hand, it can also result in increased MoO3 evaporation
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and diffusion of Mo atoms on the substrate surface. This latter phenomenon strongly
depends on the adhesion energy and surface diffusivity of Mo atoms on the substrate.

The main disadvantage of the continuous MoS2 films produced by the sulfurization ap-
proach is their nanocrystalline structure (with 20–30 nm grain-size) [44], typically resulting
in poorer carrier mobility, if compared to the large and isolated monocrystalline MoS2 flakes
obtained by the CVD approach. However, the high uniformity and its good compatibility
with the fabrication methods used in the semiconductor industry makes this approach ap-
pealing for some applications, e.g., MoS2/semiconductor heterojunctions [52] or hydrogen
evolution applications [53]. Hence, a detailed characterisation of structural/compositional,
vibrational, optical, and electrical properties of MoS2 films produced by Mo sulfurization
remains highly desirable.

In this paper, few or multilayer MoS2 on a SiO2/Si substrate have been produced by
sulfurization at 800 ◦C of very thin MoO3 films, from ~2.8 nm to ~4.2 nm (i.e., the critical
range for the transition from horizontally to vertically aligned layers). The compositional,
morphological, structural, electrical, and optical emission properties of the grown films
have been extensively investigated by the combination of several characterisation tech-
niques with macro to nanoscale spatial resolution. This correlative analysis provides deep
insight into the potentialities and limitations of this material system for applications.

2. Materials and Methods

The thin molybdenum-oxide films on SiO2 (900 nm)/Si substrates were obtained by
DC magnetron sputtering from a Mo-target (using a Quorum Q300-TD system), followed
by natural oxidation in air. The sulfurization process, schematically illustrated in Figure 1,
was carried out in a two-heating zones furnace (TSH12/38/500, Elite Thermal Systems
Ltd., Market Harborough, UK), with the first zone (at a temperature of 150 ◦C) hosting a
crucible with 300 mg sulphur (purity 99.9%, product 28260.234, VWR Chemicals, Radnor,
PA, USA), and the second zone (at a temperature of 800 ◦C) hosting the MoO3/SiO2/Si
sample. Starting from a base pressure of 4 × 10−6 bar, the Ar carrier gas (purity 5.0, Messer,
Budapest, Hungary) with a flux of 100 sccm transported the S vapours from the first to the
second zone. The duration of the sulfurization process was 60 min.
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Figure 1. Schematic illustration of the sulfurization process of the thin MoO3 films on the SiO2/Si
substrates.

Morphological analyses on the as-deposited MoO3 films and after the sulfurization
process were carried out by Tapping mode Atomic Force Microscopy using a DI3100 system
by Bruker (Santa Barbara, CA, USA) with Nanoscope V electronics. The compositional
properties of the as-deposited metal films and MoS2 formation after the sulfurization
process were evaluated by X-ray photoelectron spectroscopy (XPS) using Escalab Xi+
equipment by Thermo Fisher (Waltham, MA, USA), with a monochromatic Al Kα X-ray
source (energy = 1486.6 eV). The spectra were collected at a take-off angle of 90◦ relative
to the sample surface and pass energy of 20 eV. The instrument resolution was 0.45 eV
(FWHM of the Ag 3d5/2 peak). The spectra were aligned using C1s (285 eV) as reference.
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High-resolution transmission electron microscopy (HR-TEM), high angle annular dark-
field scanning transmission electron microscopy (HAADF-STEM), and energy dispersion
spectroscopy (EDS) analyses of the MoS2 thin films were carried out with an aberration-
corrected Titan Themis 200 microscope by Thermo Fisher (Waltham, MA USA). To this aim,
cross-sectioned samples were prepared by a focused ion beam (FIB). Raman spectroscopy
and mapping of MoS2 vibrational peaks were carried out by WiTec Alpha equipment by
WiTec (Ulm, Germany), using laser excitation at 532 nm, 1.5 mW power, and 100× objective.
Photoluminescence spectra (PL) were collected using a Horiba (Palaiseau, France) system
with a laser source of 532 nm. To confirm the uniformity of the MoS2 thin layer across
the substrate, the Raman and PL analyses have been performed at different positions
on the sample. Finally, nanoscale resolution current mapping of MoS2 on SiO2 was per-
formed by conductive Atomic Force Microscopy (C-AFM) with a DI3100 system by Bruker
(Santa Barbara, CA, USA), using Pt-coated Si tips with ~5 nm curvature radius.

3. Results and Discussion

Figure 2a shows a typical AFM morphology of as-deposited MoO3 on the SiO2/Si
substrate using the lowest sputtering time (30 s). This analysis indicates a very low root
mean square (RMS) surface roughness of 0.35 nm. Similar roughness values have been
measured for MoO3 film thicknesses deposited at higher sputtering times. The thickness of
the as-deposited films was also evaluated by AFM step height measurements performed
on intentionally scratched regions of the films. Figure 2b,c show the morphologies and
corresponding line profiles for films deposited with two different sputtering times (30 s
and 45 s), resulting in ~2.8 nm and ~4.2 nm thickness, respectively.
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respect to SiO2 on scratched regions.

XPS compositional analyses performed on the thinnest deposited films revealed that
they are predominantly composed of MoO3, with a small (<1%) MoO2 contribution. Re-
cently, Vangelista et al. [44] also reported the complete oxidation (ascribed to air exposure
after the deposition) of evaporated Mo films with similar thickness, used for subsequent
MoS2 growth by sulfurization. The same authors [44] explained the conversion of MoO3 to
MoS2 upon exposure to sulphur according to the following chemical reaction:

2 MoO3(s) + 7 S(g)→ 2 MoS2(s) + 3 SO2(g), (1)

which is the result of two intermediate steps:

MoO3 +(x/2) S→MoO3−x + (x/2) SO2 (2)

MoO3−x + [(7 − x)/2] S→MoS2 + [(3 − x)/2] SO2 (3)
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i.e., the S-induced reduction of the MoO3 to a sub-stoichiometric oxide MoO3−x (2), fol-
lowed by its conversion to MoS2 (3), with the formation of gaseous SO2 as a by-product.

After the sulfurization process at 800 ◦C, XPS analyses were performed to evaluate the
successful conversion of MoO3 to MoS2. Figure 3a reports an overview spectrum, allowing
the quantification of the percentage of elemental concentrations on the sample surface. In
particular, molybdenum and sulphur percentages of 3.26% and 6.82%, respectively, were
evaluated (besides the large Si and O background), which were close to the stoichiometric
[Mo]/[S] ratio for MoS2. More detailed information on the Mo and S bonding was deduced
from the Mo3d3/2, Mo3d5/2, and S2s core levels in Figure 3b, and the S2p1/2 and S2p3/2
core levels in Figure 3c. Two doublets were found in the Mo 3d spectrum, and both doublets
were fitted with a peak separation of 3.1 eV [44,54,55]. In particular, the deconvolution
of the Mo3d peaks shows the predominance of the Mo4+ component, associated with
2H-MoS2, accompanied by a smaller Mo6+ contribution, associated with the presence of
residual MoO3. The two S2p1/2 and S2p3/2 peaks [44,54,55] in Figure 3c confirm that
sulphur is mainly in the form of sulphide, with a small S-O component.

Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 16 
 

 

2 MoO3(s) + 7 S(g) → 2 MoS2(s) + 3 SO2(g), (1)

which is the result of two intermediate steps: 

MoO3 +(x/2) S → MoO3-x + (x/2) SO2 (2)

MoO3-x + [(7 − x)/2] S → MoS2 + [(3 − x)/2] SO2 (3)

i.e., the S-induced reduction of the MoO3 to a sub-stoichiometric oxide MoO3−x (2), 
followed by its conversion to MoS2 (3), with the formation of gaseous SO2 as a by-product. 

After the sulfurization process at 800 °C, XPS analyses were performed to evaluate 
the successful conversion of MoO3 to MoS2. Figure 3a reports an overview spectrum, al-
lowing the quantification of the percentage of elemental concentrations on the sample sur-
face. In particular, molybdenum and sulphur percentages of 3.26% and 6.82%, respec-
tively, were evaluated (besides the large Si and O background), which were close to the 
stoichiometric [Mo]/[S] ratio for MoS2. More detailed information on the Mo and S bond-
ing was deduced from the Mo3d3/2, Mo3d5/2, and S2s core levels in Figure 3b, and the S2p1/2 

and S2p3/2 core levels in Figure 3c. Two doublets were found in the Mo 3d spectrum, and 
both doublets were fitted with a peak separation of 3.1 eV [44,54,55]. In particular, the 
deconvolution of the Mo3d peaks shows the predominance of the Mo4+ component, asso-
ciated with 2H-MoS2, accompanied by a smaller Mo6+ contribution, associated with the 
presence of residual MoO3. The two S2p1/2 and S2p3/2 peaks [44,54,55] in Figure 3c confirm 
that sulphur is mainly in the form of sulphide, with a small S-O component. 

 
Figure 3. (a) Survey XPS spectrum of MoS2 on SiO2 produced by sulfurization of the 2.8 nm MoO3

film, with the indication of the evaluated surface elemental composition. (b) XPS spectra of the Mo 3d
and S 2s core levels, with the deconvolution of the Mo4+ contribution (related to MoS2) and the Mo6+

contribution (related to residual MoO3). (c) S 2p core levels spectra, indicating the predominance of
the sulphide contribution, with a small S-O component.



Nanomaterials 2022, 12, 182 6 of 15

The structural properties of the MoS2 films were also investigated at nanoscale by
transmission electron microscopy on cross-sectioned samples. Figure 4a,b show represen-
tative HR-TEM and HAADF-STEM analyses on the few-layers MoS2 sample obtained by
sulfurization of the ~2.8 nm MoO3 film. The diffraction contrast in the HR-TEM image
Figure 4a demonstrates the presence of two or three crystalline layers embedded between
the amorphous SiO2 substrate and amorphous carbon (a–c) protective film. These layers
are predominantly oriented parallel to the substrate, with nanometric scale corrugations.
Furthermore, an interlayer spacing of ~0.6 nm is directly evaluated from the HRTEM image
of a 3L-MoS2 reported in the insert of Figure 4a. The number of MoS2 layers and their
nearly parallel orientation with respect to the substrate is confirmed by the HAADF-STEM
image in Figure 4b collected on the same sample. On the other hand, a more irregular
configuration of the layers can be observed from the HRTEM (Figure 4c) and HAADF-
STEM (Figure 4d) analyses performed on the MoS2 multilayer produced by sulfurization of
~4.2 nm film. In fact, in the analysed specimen volume, horizontally oriented MoS2 layers
co-exist with layers standing up with respect to the SiO2 surface. This observation is fully
consistent with previous reports showing a transition from horizontal to vertically oriented
growth for film thickness larger than 3 nm [47].
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Figure 4. Cross sectional HR-TEM (a) and HAADF-STEM (b) images of few-layers MoS2 obtained
by sulfurization of the ~2.8 nm MoO3 film on the SiO2 substrate. MoS2 is composed by nearly
horizontally aligned 2–3 layers. The interlayer spacing in a 3-layers region is evaluated from the
HR-TEM in the insert of panel (a). Cross sectional HR-TEM (c) and HAADF-STEM (d) of multilayers
MoS2 obtained by sulfurization of the ~4.2 nm MoO3 film.

The layers number uniformity of the grown MoS2 films was also investigated on micro-
meter scale areas and with high statistics by Raman spectroscopy. Figure 5 shows two
typical Raman spectra of the few-layers (i.e., 2 L–3 L) MoS2 (black line) and of the multilayer
MoS2 (red line) grown on SiO2 by the sulfurization process. The two characteristic in-plane
(E2g) and out-of-plane (A1g) vibrational modes of MoS2 are clearly identified, and the
typical redshift of the E2g peak and blue shift of the A1g with increasing the number
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of layers [19] is observed. In particular, the difference ∆ω = ωA1g −ωE2g between the
wavenumbers of these two main modes is commonly taken as a way to evaluate the number
of MoS2 layers, with larger ∆ω values generally associated with a thicker MoS2.
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Figure 5. (a) Representative Raman spectra of the few-layers (FL) MoS2 (black-line) and multilayer
(ML) MoS2 samples obtained by sulfurization of the 2.8 and 4.2 nm MoO3 films on SiO2. Colour
maps of the A1g-E2g wavenumber difference ∆ω obtained from arrays of Raman spectra collected on
10 µm × 10 µm scan areas on the FL-MoS2 (b) and on the ML-MoS2 (c) samples. Histogram of ∆ω
values showing a distribution with a peak atω ≈ 21.8 ± 0.6 cm−1 for the FL-MoS2 sample associated
to 2 L–3 L MoS2 (d) andω ≈ 24.8 ± 0.4 cm−1 for the ML-MoS2 sample, corresponding to >4 L MoS2

thickness (e).
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The colour maps in Figure 5b,c illustrate the spatial distribution of the ∆ω values
obtained from arrays of 50 × 50 Raman spectra collected on 10 µm × 10 µm scan areas.
Figure 5d,e show the histograms of the ∆ω values reported in the two maps, with the
indication of the corresponding number of MoS2 layers according to the calibration reported
in Ref. [19]. The two distributions are quite uniform and exhibit a ω ≈ 21.8 ± 0.6 cm−1

for the few-layer MoS2 sample andω ≈ 24.8 ± 0.4 cm−1 for the multilayer MoS2 sample.
These ∆ω values are associated with a 2 L–3 L MoS2 thickness for the first sample, in very
good agreement with TEM analyses in Figure 4, and to >4 L MoS2 for the second one.

In the following, we will concentrate our attention on the 2 L–3 L MoS2 sample, since
the horizontal configuration of the layers makes it more suitable for electronic applications,
similarly to 2H-MoS2 samples produced by CVD or by exfoliation from bulk molybdenite.

The doping type and the biaxial strain (ε) of the thin MoS2 film were also evaluated
from the Raman maps by a correlative plot of A1g versus E2g peaks positions, as recently
discussed in Ref. [23]. Figure 6a shows as blue circles theωA1g andωE2g values extracted
from all the Raman spectra in the array of Figure 5. The red line in Figure 6a represents
the idealωA1g vs. ωE2g dependence (i.e., the strain line) for a purely strained 3L-MoS2 film.
This relation is obtained from the combination of the following two expressions:

ωE2g = ω0
E2g − 2γE2g

ω0
E2gε (4)

ωA1g = ω0
A1g − 2γA1g

ω0
A1gε (5)

Here, γE2g
= 0.39 and γA1g

= 0.09 are the Grüneisen parameters for the two vibra-
tional modes of 3L-MoS2, estimated from the literature values of the peaks shift rates as a
function of strain percentage (−3 cm−1/% and −0.7 cm−1/% for the E2g and A1g peaks,
respectively) [56]. ωE0

2g
and ωA0

1g
represent the E2g and A1g frequencies for an ideally

unstrained and undoped 3L-MoS2. Here, the literature values for a suspended 3L-MoS2
membrane (ω0

E2g = 382.9 cm−1 and ω0
A1g = 406.4 cm−1) [56], not affected by the inter-

action with the substrate, were taken as the best approximation for these ideal values.
This reference point is reported as a red square in Figure 6a, while the two arrows with
opposite directions along the strain line indicate the tensile (red-shift) and compressive
strain (blue-shift), respectively. Furthermore, the black dashed lines serve as guides to
estimate the strain values. The distribution of the experimental points (blue circles) in the
plot of Figure 6a clearly indicates that the thin MoS2 film on SiO2 is compressively strained.
Figure 6b shows the 2D map of the compressive strain, calculated from the map of ωE2g
values by applying Equation (4). Furthermore, the corresponding histogram of the ε values
is reported in Figure 6c, from which an average strain value ε ≈ −0.78%± 0.18% can be
deduced.

The strain line separates the n-type and p-type doping regions in the ωA1g − ωE2g
diagram in Figure 6a. Noteworthy, the experimental points in Figure 6a are partially
located in the n-type region and partially in the p-type one. Unintentional n-type doping
is typically reported for MoS2 films produced by different synthesis methods (such as
mechanical exfoliation or CVD) and it is commonly ascribed to native defects present
in the material [57–60]. Here, the observed p-type doping in some regions of the MoS2
film produced by sulfurization can be associated with the presence of residual MoO3, as
deduced by XPS. In fact, several studies demonstrated how intentionally introducing MoO3
in pristine (n-type) MoS2, e.g., by O2 plasma treatments, results in p-type doping of the
material [61,62].
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directions along the strain line indicate the tensile (red-shift) and compressive strain (blue-shift),
respectively. (b) Map and (c) corresponding histogram of the compressive strain on a 10 µm × 10 µm
area.

The MoS2 thin layers produced by MoO3 thin films sulfurization exhibit large re-
sistivity values in the range of 10–100 Ω·cm [63]. This can be ascribed, in part, to the
nanocrystalline structure of the films, i.e., the large density of grain boundaries, which are
known to introduce resistive contributions in the current path [64]. On the other hand,
the local changes in the compressive strain distribution, as well in the carrier density,
deduced by Raman mapping is expected to have an effect on the electrical properties of the
few-layers of MoS2. To get direct information on the homogeneity of conductivity in this
film, local current mapping has been carried out by C-AFM, as schematically depicted in
Figure 7a. In this configuration, the current locally injected from the AFM metal tip flows
in the MoS2 film and is finally collected from the macroscopic front contact. Due to the
nanoscale size of the tip contact, the dominant contributions to the measured resistance
are represented by the local tip/MoS2 contact resistance and the spreading resistance in
the MoS2 region underneath the tip. Figure 7b shows the contact-mode morphological
image on the sample surface, from which an RMS roughness ≈ 0.5 nm slightly higher than
the one of the as-deposited MoO3 film (Figure 2a) was deduced. Figure 7c,d report the
corresponding C-AFM current map and the histogram of the measured current values.
The current map clearly shows submicrometer lateral variations of the conductivity, which
are only partially correlated to the morphology, while the histogram shows a Gaussian
distribution of these values, resembling the shape of the strain distribution in Figure 7d.
From this comparison, we can speculate that these mesoscopic-scale inhomogeneities can
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be partially ascribed to the lateral changes in the strain and carrier density detected by
Raman.
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In the last section of this paper, Raman and photoluminescence spectra acquired on the
few-layers MoS2 samples produced by sulfurization have been compared with reference
spectra acquired on CVD-grown MoS2 samples with a similar thickness.

Figure 8 shows a typical Raman spectrum of 3L-MoS2 on SiO2 produced by MoO3
sulfurization, compared with a spectrum of a 3L-MoS2 sample grown by CVD on SiO2 [65],
reported as reference. Some remarkable differences can be clearly observed between MoS2
layers prepared using the two different approaches. In fact, besides a lower E2g/A1g
intensity ratio, the two vibrational peaks exhibit a more pronounced asymmetric shape
in the 3L-MoS2 produced by sulfurization as compared to the CVD-grown one. The
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deconvolution analysis of the Raman spectra with four Gaussian contributions, associated
with the main E2g and A1g modes and the disorder activated LO(M) and ZO(M) modes [66],
is also presented in Figure 8. These LO(M) and ZO(M) components are very small in the
Raman spectra of CVD 3L-MoS2, whereas their weight is higher in the 3L-MoS2 produced
by sulfurization. In this latter case, they can be ascribed both to the nanocrystalline nature
of the film, as well as to the presence of residual MoO3, as deduced from the XPS analyses.
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Figure 8. Raman spectrum for 3L-MoS2 produced by sulfurization (red), compared with a reference
spectrum for CVD grown 3L-MoS2 (blue). Data for CVD 3L-MoS2 were adapted with permission
from [65], copyright Elsevier 2020.

Figure 9 shows the comparison between a PL spectrum measured on the 3L-MoS2
produced by sulfurization with a reference spectrum for CVD grown 3L-MoS2, taken from
Ref. [65]. For both spectra, acquired using a 532 nm wavelength laser source, the main
emission peak at an energy of 1.86 eV can be observed. However, significant differences in
spectral features can be clearly identified from a detailed deconvolution analysis.

The PL spectrum of CVD MoS2 can be fitted by three Gaussian peaks, associated with
the two exciton contributions (A0 at 1.86 ± 0.01 eV and B at 1.99 ± 0.01 eV, due to the spin-
orbit splitting of the valence band) and the trionic contribution (XT at 1.78 ± 0.01 eV) [65].
On the other hand, the deconvolution analysis of the spectrum for the sulfurization grown
sample allowed us to identify a fourth component XD at 1.75 ± 0.01 eV, besides the trion
(XT at 1.78 ± 0.01 eV) and exciton peaks (A0 at 1.86 ± 0.01 eV and B at 1.95 ± 0.01 eV).
Noteworthy, the presence of this XD contribution is accompanied by a strong decrease in
the spectral weight of the exciton peak B, as compared to the case of the CVD sample, as
well as its FWHM reduction. The occurrence of a similar feature XD, associated with point
defects in the MoS2 lattice, has been recently reported by Chow et al. [67] for the PL spectra
of MoS2 flakes subjected to soft Ar-plasma irradiation, and it was also accompanied by a
decrease in the exciton peak B with respect to unirradiated flakes. Hence, the observed XD
contribution for our samples produced by sulfurization was ascribed to a higher density of
point defects with respect to CVD grown samples.
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Figure 9. Photoluminescence (PL) spectra for 3L-MoS2 produced by sulfurization, compared with a
reference spectrum for CVD grown 3L-MoS2. The deconvolution analysis indicated the presence of
the excitonic contributions A0, B, and of the trionic contribution XT (grey lines) for the CVD grown
sample. In addition, the defect-related peak XD (orange line) is identified in the sulfurization grown
sample. Data for CVD 3L-MoS2 were adapted with permission from [65], copyright Elsevier 2020.

4. Conclusions

In conclusion, we reported a detailed analysis of the compositional, morphological,
structural, electrical, and optical emission properties of few or multilayer MoS2 on a
SiO2/Si substrate produced by sulfurization of very thin MoO3 films at 800 ◦C. Both
Raman mapping and TEM/STEM analyses showed the formation of 2–3 layers of MoS2
nearly aligned with the SiO2 surface after sulfurization of the thinnest MoO3 film, whereas
multilayers of MoS2 (partially standing up) were observed for the thicker MoO3 film. The
strain distribution in the few-layer MoS2 on SiO2 was evaluated by the correlative plot of
the characteristic A1g-E2g Raman modes, showing the occurrence of a compressive strain
ε ≈ −0.78 ± 0.18%. Furthermore, the co-existence of submicrometer areas with n- and
p-type doping is detected, with the p-type doping probably due to the presence of residual
MoO3, as revealed by XPS analyses. Nanoscale resolution current mapping by C-AFM
showed conductivity inhomogeneities in the few-layer MoS2, which are well correlated to
the lateral changes in the strain detected by Raman. Finally, the characteristics spectroscopic
signatures of the defects/disorder were identified by comparing Raman and PL spectra of
sulfurization grown MoS2 with reference analyses of CVD-grown single crystalline MoS2.

The demonstrated MoS2 growth method is quite versatile and can be extended to
different substrates, besides SiO2. In particular, the adoption of crystalline substrates (such
as sapphire, GaN, and 4H-SiC) with the hexagonal basal plane and good lattice matching
with MoS2 is expected to enhance the domain size and electronic quality of the grown
films. Furthermore, the homogeneous large area few-layer MoS2 can be transferred to



Nanomaterials 2022, 12, 182 13 of 15

arbitrary substrates (including flexible ones) [68] and find applications in different fields of
microelectronics, flexible electronics, and sensing.
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