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Abstract: The development of nanomaterials that mimic the activity of enzymes is a topic of inter-
est, for the decomposition of reactive oxygen species (ROS). We report the preparation of a novel
nanocomposite of MnOx needles covered with SiO2 porous material. The material was prepared
in one pot with a two-step procedure. The material was characterized by EDX, SEM, TEM, XRD,
nitrogen adsorption–desorption isotherms, and XPS. The synthesis protocol took advantage of the
atrane method, favoring the nucleation and initial growth of manganese oxide needles that remained
embedded and homogeneously dispersed in a mesoporous silica matrix. The final composite had a
high concentration of Mn (Si/Mn molar ratio of ca. 1). The nanozyme presented bimodal porosity:
intraparticle and interparticle association with the surfactant micelles and the gaps between silica
particles and MnOx needles, respectively. The porosity favored the migration of the reagent to the
surface of the catalytic MnOx. The nanozyme showed very efficient SOD and catalase activities, thus
improving other materials previously described. The kinetics were studied in detail, and the reaction
mechanisms were proposed. It was shown that silica does not play an innocent role in the case of
catalase activity, increasing the reaction rate.

Keywords: nanozyme; manganese oxides; silica; mesoporous; catalase; superoxide dismutase

1. Introduction

Enzymes are mainly protein-based biological catalysts that are responsible for control-
ling many physiological processes. All the reactions that involve enzymes occur with high
catalytic activity and high specific activity under very specific conditions [1,2]. However,
typical inorganic catalysts have the advantage that they can be used under extreme condi-
tions, such as high temperature, high pressure, and extreme pH. If natural enzymes are
exposed to these conditions, they denaturalize easily due to the incompatibility of natural
enzymes out of physiological conditions. Several factors limit the practical application
of natural enzymes for industrial uses due to high cost of preparation, low operational
stability, and difficulties in recycling and reusing [3].

Enzyme mimetic compounds are low-molecular-weight complexes that present cat-
alytic properties similar to natural enzymes, but they are sensitive to some environmental
conditions and also present less activity and selectivity than metalloenzymes [4]. Just as
natural enzymes have a protein backbone that aids in the catalytic process, enzyme mimetic
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compounds are surrounded by flexible ligands that simulate the environment of the metal
center in the metalloenzyme [4,5]. There are complexes with different metal centers, such as
Ni, Cu, Fe, Mn, Pt, and Zn, among others [4–11]. Many of these complexes have poor solu-
bility in water and can suffer hydrolysis reactions or metal dissociation and oligomerization;
to avoid these problems, a catalyst can be immobilized in mesoporous silica support to
improve its stability [12,13].

The term nanozyme refers to nanomaterials with enzymatic catalytic properties that
present many advantages, such as thermal stability, multifunctionality, ease of mass produc-
tion, stable structure, high stability, low cost, and robustness to harsh environments [14,15].
For all these reasons, nanozymes are a good candidate for substituting natural enzymes in
various applications since they can catalyze the same substrates as natural enzymes [16].
Nanozymes can be divided into two groups [3,14]: (a) enzymatic catalytic groups or en-
zymes that are anchored in nanomaterials, called nanomaterial hybrid enzymes. In this
case, the main function of the nanomaterial is to improve the stability and durability of
the anchored enzymes [17]. The enzyme can be immobilized through physical adsorption
in which the enzyme is weakly bonded to the material or covalently bonded where the
enzyme has been chemically modified [18]. (b) The nanomaterial is the one that possesses
the catalytic activity without the need for anchored enzymes on its surface. On this occasion,
the mechanism used in the catalytic process is like the natural enzyme.

Nanomaterials mimic some kinds of enzymes, such as peroxidase, oxidase, catalase,
and superoxide dismutase (SOD) [19,20]. For example, ferromagnetic nanoparticles (Fe3O4)
have been extensively studied due to their peroxidase-like activity and can catalyze sub-
strate oxidation in the presence of H2O2 [21–23]. Other nanomaterials, such as noble metal
nanoparticles, exhibit oxidase activity, and they can catalyze substrate oxidation with the
assistance of O2 [24–26]. One of the most studied materials that presents catalase and
dismutase activity is ceria (CeO2). This material can catalyze the reduction of H2O2 to
water (catalase-like activity) and also can catalyze the dismutation of ·O2

- radicals to H2O2
(superoxide-dismutase-like activity) [27–32].

On the other hand, manganese oxides (MnOx) have been recently proposed as a
nanozyme because they present several enzyme-like activities and are biocompatible and
biodegradable [33–35]. To increase the biocompatibility of these nanoparticles, they can
be covered with BSA (bovine serum albumin) [12,36]. In addition, their dispersibility and
stability can be increased by PEG (polyethylene glycol) functionalization [34]. Furthermore,
they can be loaded into a mesoporous matrix [35,37] or in polymer capsules [38], providing
a more stable alternative to the traditional encapsulation of natural enzymes. MnOx
can produce ROS spontaneously under physiological conditions [39] or can scavenge
ROS [33,40]. In order to eliminate reactive oxygen species, manganese oxides mimic
different natural enzymes, such as catalase, peroxidase, superoxide dismutase, oxidase,
and glutathione peroxidase. As MnOx can mimic different natural enzymes at the same
time, they are useful to use under high-oxidative-stress conditions [33–42]. The manganese
oxide most studied has been MnO2 [33,35,37–41], but there have been some works on the
enzyme-mimicking capability of M2O3 [36] and Mn3O4 [34,36,42].

Among the synthesis procedures of oxides, the atrane method allows balancing the
hydrolysis and condensation processes of silicon and different elements through the for-
mation of complexes containing triethanolamine-derived ligands (atrane complexes) [43].
Usually, this method leads to a high heteroelement dispersion along the silica walls, avoid-
ing undesired phase segregation phenomena. This preparative route was discovered by our
group and has been successfully applied for the isolation of a large variety of inorganically
functionalized materials based on MCM-41 silicas [44–49], hierarchical mesoporous solids
(UVM-7 type) [50–55], xerogels (UVM-11) [56], layered silicas [57], and phosphates [58].

We hypothesize that the atrane route can be a proper approach for the synthesis of a
composite with ROS-scavenging properties based on manganese oxide particles dispersed
homogeneously in a porous silica matrix to avoid the aggregation of the manganese active
domains. Although the MnOx are covered with silica, they may be accessible to the medium due
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to the porous structure that presents the coating. The resulting composite possesses catalase-like
and superoxide-dismutase-like activities. Thus, the composite can be used to catalyze the
elimination of H2O2 and can be used to catalyze the dismutation of ˙O2

- into H2O2.

2. Experimental Methods
2.1. Reagents and Materials

All the synthesis reagents were analytically pure and were used as received from
Aldrich, including MnCl2, 2,2′,2”-nitrilotriethanol or triethanolamine (N(CH2-CH2-OH)3,
hereinafter TEAH3), tetraethyl orthosilicate (TEOS), cetyltrimethylammonium bromide
(CTAB), ethanol, hydrogen peroxide, sulfuric acid, potassium permanganate, phosphate-
buffered saline (PBS), L-methionine, nitrotetrazolium blue chloride (NBT), (-)-riboflavin,
and methylviologen.

2.2. Synthesis

The synthesis strategy could be considered a “one-pot” two-step protocol (Figure 1) to
stabilize the two main components that were finally mixed to form the nanozyme, or nanocom-
posite. First, 1.4 g of MnCl2 were dissolved in 10 mL of TEAH3 and heated at 135 ◦C for 5 min
to form the Mn-atrane complexes. The resulting brown solution was cooled to 120 ◦C and 50
mg of CTAB was added while stirring. When the temperature dropped to 80 ◦C, 100 mL of
water were added and kept under stirring for 2 h at 150 rpm (Suspension 1). On the other hand,
11 mL of TEOS and 23 mL of TEAH3 were mixed and heated at 140 ◦C for 5 min to form the
silatrane complexes. The resulting solution was cooled to 120 ◦C and 4.5 g of CTAB was added
while stirring. When the temperature dropped to 80 ◦C, Suspension 1 was added, followed by
350 mL of water and then 250 mL of ethanol. The mixture was left to age for 24 h at 35 ◦C. The
resulting mesostructured brown powder was filtered off, washed with ethanol, and heated at
80 ◦C for 24 h. Finally, to open the mesoporous system, the surfactant was removed from the
synthesized solid by calcination, increasing the temperature at a rate of 3 ◦C/min until reaching
550 ◦C and maintaining this temperature for 6 h in a static-air atmosphere, obtaining a dark
brown powder.
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Figure 1. Schematic procedure of the “one-pot” two-step synthesis. The first stage involved, on the
one hand, the independent preparation of the respective atrane complexes of silicon and manganese,
as well as the hydrolysis and subsequent condensation of the Mn species (for a time of 2 h). The second
stage involved the incorporation of the silatrane complexes that hydrolyzed and condensed on the
MnOx needles, which acted as seeds on which the formation of mesoporous silica occurred.

2.3. Materials Characterization

The Mn and Si contents were determined with energy-dispersive X-ray spectroscopy
(EDX) analysis using a scanning electron microscope (Philips-SEM-XL 30). The Si/Mn
molar ratio values averaged from EDX data corresponding to ca. 25 different particles of
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each sample are summarized in Table 1. Powder X-ray diffraction (XRD) was carried out
using a Bruker D8 Advance diffractometer with a monochromatic Cu Kα source operated
at 40 kV and 40 mA. Patterns were collected in steps of 0.02◦ (2θ) over the angular range
of 1–10.0◦ (2θ) with an acquisition time of 25 s per step. Additionally, XRD patterns were
recorded over a wider angular range, 10–80◦ (2 θ), to determine the presence of segregated
crystalline phases. For TEM, the samples were dispersed in ethanol, placed onto a carbon-
coated copper microgrid, and left to dry before observation. TEM and STEM images were
acquired with a JEOL 2100F microscope operated at 200 kV. Nitrogen adsorption–desorption
isotherms were recorded with an automated Micromeritics ASAP2020 instrument. Before
the adsorption measurements, the samples were outgassed in situ in a vacuum (10−6 Torr)
at 110 ◦C for 15 h to remove adsorbed gases. X-ray photoelectron spectroscopy (XPS)
measurements were collected with a SPECS spectrometer equipped with a Phoibos 150
MCD 9 analyzer and using a nonmonochromatic Al Kα (1486.6 eV) X-ray source. Spectra
were recorded at 25 ◦C using an analyzer pass energy of 30 eV, an X-ray power of 50 W,
and under an operating pressure of 10−9 mbar. During data processing, binding energy
(BE) values were referenced to the C 1s peak settled at 284.5 eV. Samples were prepared by
sticking, without sieving, the nanozyme onto a molybdenum plate with scotch tape film,
followed by air drying.

Table 1. Selected physical and textural characteristics of the MnOx-SiO2 composite.

Mesopore Large Pore

Sample Si/Mn 1

Nominal
Si/Mn 2

Real
BET area 3

(m2/g)
Size 4

(nm)
Volume 4

(cm3/g)
Size 4

(nm)
Volume 4

(cm3/g)

Mn nanozyme 6.88 1.01 ± 0.06 405.1 2.95 0.32 26.66 1.20
1 Si/Mn nominal molar ratio. 2 Si/Mn real molar ratio determined by EDX. 3 Surface area was determined by
applying the BET model. 4 Pore sizes and volumes were determined by applying the BJH model on the adsorption
isotherm branches.

2.4. Determination of the Catalase Activity

The catalase activity was determined by a titration of water peroxide with potassium
permanganate. If the material presented catalase activity, the decomposition of water
peroxide took place.

In a typical experiment, a certain amount of the Mn nanozyme was suspended in a
solution of 1% water peroxide under stirring at 25 ◦C for 15 min. After this time, 1 mL
of the dispersion was extracted and added to 50 mL of 0.1 M sulfuric acid for titration
with 0.02 M potassium permanganate. In another experiment, 20 mg of the composite was
suspended in 10 mL of water, and 10 mL of 2% water peroxide was added to the composite
dispersion under stirring at 25 ◦C. At a given time, 1 mL of the dispersion was extracted and
added to 50 mL of 0.1 M sulfuric acid for titration with 0.02 M potassium permanganate.
Different kinetic experiments were conducted to determine the reaction mechanism, such
as changing the concentration of water peroxide or introducing methylviologen into the
reaction medium. In addition, to determine the importance of the silica in the reaction
mechanism, we conducted a study of the decomposition of water peroxide with a material
that was not covered with silica. The hydrogen peroxide elimination was calculated using
the following Equation (1):

H2O2 Elimination(%) =
[H2O2]0 − [H2O2]t

[H2O2]t
·100 (1)

2.5. Determination of the Superoxide Dismutase Activity

The superoxide dismutase activity (SOD activity) of the composite was determined
using a photoreduction method of NBT in a buffer solution (PBS, pH = 7.4). When riboflavin
is irradiated with light in the presence of methionine, it reacts with oxygen to produce
superoxide radicals. These superoxide radicals reduce nitrotetrazolium blue chloride to
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formazan, a blue-colored product with a maximum absorption at 560 nm. Therefore, if the
composite presented SOD activity, the reduction of NBT was inhibited.

In a typical procedure, a certain amount of the composite was suspended in 8 mL of
PBS containing 4.62·10−5 M of NBT, 0.01 M of methionine, and 3.56·10−6 M of riboflavin.
The absorbances at 560 nm for each sample before (Abef) and after (Aaft) being irradiated
(10 min with a UV light (50 W)) were measured using a UV-vis spectrometer (Jasco V-
770). Background absorbance was corrected by subtracting the value of the unilluminated
mixture (Abef) from the illuminated mixture (Aaft). The percentage inhibition rate was
calculated using the following Equation (2):

Inhibition Rate(%) =
Ablank −Asample

Ablank
·100 (2)

3. Results and Discussion
3.1. Synthesis Strategy

The synthesis strategy employed made use of atrane complexes as true hydrolytic
precursors [43]. In this sense, we could consider our synthesis protocol encompassed
within the atrane method. As expected, if the hydrolysis and condensation processes
of the Si and Mn atrane complexes started simultaneously, porous materials with good
dispersion of Mn along the pore walls were achieved, avoiding the segregation of the
Mn-rich oxidic domain [55]. However, in this case, our objective was to favor the formation
of MnOx domains to act as nanozymes. For this reason, we did not carry out a typical “one-
pot/one-step” synthesis and provided some advantage to manganese to favor the formation
of MnOx nanocrystals simply by initiating the hydrolysis and condensation of the Mn-
atrane complexes earlier in the absence of Si reagents. In a previous work, we determined
through FAB that the dominant Mn-atrane complexes in the reaction medium before the
addition of water were Mn(TEA)H2

+, Mn(TEA)H3Cl+, Mn(TEA)2H5
+, Mn2(TEA)2H3

+, and
Mn3(TEA)3H4

+ [55]. These complexes (or mixtures of them) containing ligands derived
from triethanolamine were our true hydrolytic precursors. Once the hydroalcoholic mixture
was added, the hydrolysis and condensation began, which induced the appearance of MnOx
nuclei and their subsequent growth. The hydrolysis of all these complexes was expected
to be initiated by the coordination positions most favorable to attack by ligands such as
H2O or OH species; these were never those of the atrane entities [43,59]. Therefore, when
triethanolamine acted, at least as a tridentate ligand, it exerted a protective effect with
respect to metal hydrolysis (slowing down the hydrolysis rate), regardless of the mono-,
bi-, or trinuclear nature of the starting complexes. After 2 h of reaction, a brown suspension
was observed that could be associated with the nucleation and growth of manganese oxide
crystals. Silatranes (also as a mixture of different complexes: Si(TEA)2H2, Si2(TEA)3H, and
Si3(TEA)4) [43,60] were then added. To avoid complete coverage of the MnOx domains
(which would mean a significant loss in catalytic activity), CTAB was added to generate
the formation of mesopores and, consequently, the accessibility of the different substrates
to the active centers of Mn was preserved. It should be noted that the addition of silatranes
and CTAB (in hydroalcoholic medium) generated a rapid turbidity in the reaction medium,
faster than that in the absence of the MnOx nanocrystal suspension. This could perhaps be
due to the role that MnOx crystals could play as seeds in the mesoporous silica’s subsequent
precipitation process. Then, the formation of the second counterpart of the composite, the
mesoporous silica, played a double role, preventing the aggregation of MnOx crystals while
maintaining their accessibility.

3.2. Nanozyme Characterization

Although we are aware that our material is really a composite with segregation
(really wanted) of Mn-rich species and others that are fundamentally siliceous, we used
EDX to assess the stoichiometry and chemical homogeneity of the final composite at the
micrometer scale (using a 1 µm3 spot area). The Si/Mn molar ratio value was determined
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from data corresponding to approx. 25 independent measurements on different particles.
By facilitating the formation of MnOx domains in the first stage during the synthesis and
also due to the greater solubility of the silica species [61], the final Mn content was relatively
high for a heterogeneous silica material [55]: Si/Mn molar ratio = 1.01 ± 0.06. The small
estimated standard deviation was consistent with the high chemical homogeneity of the
composite at the microscale.

TEM images provided a clear view of the morphology and organization of the com-
posite (Figure 2). Darker needle-shaped domains were observed that corresponded to the
MnOx crystals that were generated during the first reaction stage (in the absence of Si
reagents). These needles presented a marked anisotropy, with means lengths that oscillated
in a wide range (100 ± 60 nm) but never exceeded 200 nm. On the contrary, they showed a
reasonable homogeneity of sizes in the perpendicular axis (diameters around 10–15 nm). It
was also observed that the formation of mesoporous silica prevented the Mn oxide needles
from agglomerating. Mesoporous silica grew around the needles (which probably acted
as crystallization seeds) and had a morphology reminiscent of UVM-7 type silica [62–65]:
aggregates of mesoporous silica nanoparticles that generate a second (larger) pore system
between particles and in whose formation MnOx needles also contribute. The mesoporous
silica nanoparticles were very small, with sizes in the 10–15 nm range. This size, signifi-
cantly smaller than that observed in UVM-7 type silicas (ca. 30–40 nm), could be related to
a very fast nanoparticle nucleation process (on the seeds), consuming a large part of the
reagents and limiting their subsequent growth step. In fact, in some silica nanoparticles
an extremely low number of mesopores could be observed (in the form of lighter spots):
<6–10 mesopores per nanoparticle.
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Figure 2. TEM images of the Mn-nanozyme. Some MnOx needles are marked. In the inset, an
enlarged image is observed in which both the mesoporous nature of the Si-rich nanoparticles and
their small size can be seen.

HRTEM images (Figure 3a) confirm the crystalline nature of the dark MnOx needles,
showing ordered spots or strings that were associated with well-defined planes. The MnOx
needles did not have a monocrystalline nature. According to the HRTEM images, they
seemed to be formed by the aggregation of very small MnOx nanoparticles; in some
cases even subnanometric domains seemed to be observed. The STEM-HAADF image
(Figure 3b) shows the presence of bright domains associated with the MnOx needles.
However, a more attenuated, homogeneous, and continuous brightness was observed in
the sample as a whole. The dispersion of Si and Mn was studied through STEM-HAADF
corrected for spherical aberration (Cs). The mapping of the selected elements is included
in Figure 4. According to the brightness in the STEM-HAADF images, although Mn was
concentrated in the regions associated with the dark needles observed in TEM and HRTEM,
the entire sample, including the mesoporous silica counterpart, had significant Mn content.
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In conclusion, Mn was present in all components of the nanozyme: in the needle-shaped
MnOx domains and dispersed in the Mn-UVM-7 type silica matrix.
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Mn-nanozyme.
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Figure 4. STEM image (a) and mapping showing the Si (b) and Mn (c) distributions along the
nanozyme.

The XRD pattern of the material was consistent with electron microscopy observations.
In the high-angle XRD domain (Figure 5), we observed a set of low-intensity peaks that
could be attributed to various crystalline phases: mainly Mn2O3 and Mn3O4, although
the presence of MnSiO3 was not completely ruled out. Although there was an important
coincidence of signals for similar 2θ (◦) values, the position and relative intensity of the
observed peaks seemed to fit better with the Mn2O3 oxide (it was probably the dominant
MnOx phase). In any case and despite the high Mn content, the low intensity of the signals
was related to the small crystallite size of the entities that defined the needles observed by
TEM. On the other hand, no signal was detected in the low-angle XRD domain. Again, the
small UVM-7 type nanoparticle size of the silica-rich component, with very low numbers
of mesopores and particles, excessively limited the number of 2D-unit cells and particles
associated with the pore array and excluded the observation of the typical low-angle signal
of surfactant-assisted mesoporous silicas.
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(JCPDS file nº 00-006-0540), (b) Mn3O4 (JCPDS file nº 00-001-1127), and (c) MnSiO3 (JCPDS file nº
00-012-0181).

N2 adsorption–desorption isotherms confirmed the presence of hierarchical porosity
in the nanozyme (Figure 6a). A slight increase in the adsorption was observed at relative
pressures in the range of 0.2 ≤ P/P0 ≤ 0.4, followed by a more significant increase that
took place, especially at values of P/P0 > 0.75. No remarkable hysteresis loops were
detected, indicating the absence of cage-like pores. This suggested that there should not be
significantly different barriers between adsorption and desorption processes. The bimodal
porous character was seen more clearly in the pore size distribution curve (Figure 6b).
A low-intensity but very well-defined peak was observed with a maximum at 2.95 nm
(according to the application of the BJH model). This pore in the mesopore range was
generated by the template effect of the CTAB micelles (after their removal by calcination)
and corresponded to the typical mesoporosity in MCM-41 and UVM-7 type silicas, among
others. The second peak in the curve showed a great heterogeneity in sizes. It extended
over a wide range: between 4 and 100 nm (without ruling out the possibility of larger pores
that escaped the detection window of the technique). This textural-type porosity associated
with the voids between Mn-UVM-7 silica nanoparticles and MnOx needles implied the
existence of pores in the meso- and macroranges. As expected, in our nanozyme the large
pores were the dominants, considering the small size of the silica-based nanoparticles.
Despite the high Mn content and the nonporous nature of the MnOx needles, the nanozyme
showed a high BET area (409 m2/g) and a significant BJH pore volume (1.52 cm3/g).
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From the XRD and TEM data, it is evident that the synthesized Mn nanozyme could
contain Mn both in the MnOx needles and in the porous silica phase. Therefore, the presence
of Mn in various oxidation states was expected. Then, XPS analysis was used to determine
the different oxidation states of Mn present in our sample. For Mn 2p, there were two
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asymmetric signals associated with Mn 2p3/2 and 2p1/2 (Figure 7) [66,67]. The spectrum
was fitted with a minimum number of six peaks (Figure 7). The most intense peaks at 643.9
and 655.4 eV were assigned to Mn3+ 2p3/s and 2p1/2, respectively. This was consistent with
the presence of Mn2O3 as the main phase that made up the MnOx needles. The coexistence
of other Mn-rich phases, such as Mn3O4 and even MnSiO3 (probably at the MnOx-silica
interface), was consistent with the detection of some Mn(II) centers. Thus, the peaks
at binding energies of 641.7 and 653.2 eV were associated with Mn2+ 2p3/2 and 2p1/2,
respectively. Finally, the observation of two additional peaks at 657.1 (Mn4+ 2p3/2) and
646.3 eV (Mn4+ 2p1/2) suggested the coexistence of Mn(IV), probably incorporated into
the silica Mn-UVM-7, substituting the centers of Si(IV) probably as isolated sites [66,67].
The O1s XPS spectrum showed three typical signals at binding energies of 503.9, 533.1,
and 535.4 eV that could be assigned to oxygen atoms in MnOx, SiO2, and Si-OH species,
respectively [68].
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Figure 7. XPS Mn2p spectrum of the Mn-nanozyme. Its deconvolution allowed identifying Mn in
different oxidation states: (a) Mn3+, (b) Mn2+, and (c) Mn4+.

3.3. Multienzyme-like Activity of Mn-Nanozyme

We investigated the catalase activity of the Mn-nanozyme. As expected, the composite
exhibited catalase activity in a concentration-dependent manner (Figure 8), and more than
50% of the hydrogen peroxide was decomposed by 2 mg of composite per mL of H2O2 (1%)
in 15 min, with full decomposition observed for 4 mg/mL. This result confirmed that the
Mn-nanozyme presented catalase-like activity. However, we found it curious to observe
that, apparently, an increase in the initial hydrogen peroxide concentration did not imply a
greater degree of progress in the reaction. For this reason, we carried out a kinetic study of
the process, designing additional experiences.
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The complete kinetic study of the catalase activity of the synthesized material is
illustrated in Figure 9, which shows the consumption of hydrogen peroxide under various
experimental conditions. In all the plots, it was observed that the value of the logarithm
of the ratio x = [H2O2]/[H2O2]t=0 varied linearly with reaction time, implying first-order
kinetics with respect to peroxide. The value of the apparent rate constants (k, slope of the
lines) calculated from the least-squares regression is given in Table 2, together with the
linear correlation coefficient, initial peroxide concentration, and other relevant experimental
conditions for the five kinetic runs carried out (denoted as 1–5). Figure 9a shows the
dependence of the reaction rate on the initial concentration of hydrogen peroxide. It was
observed that the k value decreased with increasing the concentration of the reactant (see
experiments 1, 2, and 3 in Table 2). Figure 9b compares the kinetics of the Mn-nanozyme
with others carried out under the same conditions, but in the presence of methylviologen,
a molecule that is widely used as a hydroxyl radical scavenger [69]. The experiment
demonstrated that the addition of an excess of this compound had no appreciable effect
on the rate (see k values of experiments 1 (reference) and 5 in Table 2). Finally, Figure 9c
compares the peroxide disappearance rate using two catalysts, namely MnOx needles both
coated and uncoated with mesoporous silica. For the latter material, the silica coating
significantly improved the rate of the catalytic process, as assessed by the k values of
experiment 1 (coated), and 4 (uncoated) gathered in Table 2.
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Figure 9. (a). ln([H2O2]/[H2O2]0) vs. time plot for 1mg/mL of Mn-nanozyme and different H2O2

concentrations; (b). ln([H2O2]/[H2O2]0) vs. time plot for 1mg/mL of Mn-nanozyme, [H2O2]0 = 0.1 M,
and [methylviologen] = 0.2 M; (c) ln([H2O2]/[H2O2]0) vs. time plot for [H2O2]0 = 0.1 M, 1 mg/mL of
Mn-nanozyme, and 0.57 mg/mL of catalyst without silica.

Table 2. First-order constants calculated from regression lines of Figure 9.

Experiment [H2O2]T
(M) Initial

k × 102

(min−1)
R Observations

1 0.101 1.43 ± 0.02 0.998 Reference reaction

2 0.190 0.79 ± 0.01 0.992 -

3 0.332 0.50 ± 0.01 0.993 -

4 0.101 0.25 ± 0.06 0.991 Uncoated MnOx needles

5 0.101 1.50 ± 0.05 0.991 Reaction in the presence of methylviologen

The above observations could be explained on the basis of the simplified mechanism
shown in Scheme 1. The first step of the mechanism described the acid–base interaction
of hydrogen peroxide with the silica coating. This step was responsible for the difference
in reaction rates observed for those experiments using bare or silica-coated MnOx needles
(Figure 9c, experiments 1 and 4 in Table 2). Thus, if it is admitted that the reaction proceeded
through an ionic mechanism, as proposed in Scheme 1, the redox interaction between the
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Mn centers (electron deficient) and H2O2 was greatly facilitated when the peroxide was
deprotonated on the surface of the silica pores, which resulted in an increase in the ka value
for the coated material.
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Scheme 1. Proposed mechanism for the catalase activity.

It was further proposed that the Mn oxidation numbers with catalytic activity were
mainly (IV) and (II) since they were the most stable and compatible with bielectronic
transfers. Nevertheless, steps implying monoelectronic transfers between the IV and III
states of the type

−MnIV(HO2
−)→MnIII + HO2 (3)

could be proposed, which would be followed by the formation of dioxygen in the liquid
phase [70],

HO2 + H2O2 → O2 + HO + H2O (4)

and finally, OH radicals would restore the (IV) oxidation state of manganese:

−MnIII + OH→MnIV + OH− (5)

However, if the reaction were to proceed mainly along the path indicated by Equa-
tions (3)–(5), the addition of methylviologen should slow down (see experiments 1 and
5 in Table 2) or even inhibit the reaction through OH radical sequestering. However, no
appreciable variation was observed between the k values measured for experiments 1 and
5. The alternative proposed in Scheme 1, in the third step, is the formation of MnII to MnIV

centers and its reoxidation by the hydrogen peroxide itself in the basic medium provided
by the silica gel pores. The rate law associated with the mechanism in Scheme 1, under
the assumption that the SiO− and SiOH centers are in equilibrium and that the active Mn
centers reach the steady state, is given by Equation (6):

−d[H2O2]T
dt

=
2k1k3k4b[Mn][H2O2]T

(k1k3 + k2k4 + k3k4) + k3k4b[H2O2]T
, b =

K′

1 + K′
, K′ = K

[
−SiO−

]
[−SiOH]

(6)

where [H2O2]T is the analytical concentration of hydrogen peroxide determined by titration,
and the meanings of the constants are as shown in Scheme 1. If it is assumed that the
reoxidation of MnII centers is a slow step, Equation (6) simplifies to Equation (7), which is
of the first order with respect to hydrogen peroxide, as observed:

−d[H2O2]T
dt

= 2k4b[Mn][H2O2]T (7)

Furthermore, Equation (7) allows the endowment of chemical meaning to the empirical
rate coefficients collected in Table 2, as k = 2k4b.

Finally, the dependence of the rate constant on the hydrogen peroxide initial con-
centration (experiments 1–3 in Table 2) can be rationalized by the parameter b appearing
in Equation (7). It depends on the equilibrium ratio of the number of deprotonated and
protonated silanol groups. It was obvious that, with increasing the initial concentration of
peroxide, a Brönsted acid, the ratio and, thus, the kinetic constant decreased.
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We concluded that the silica coating of MnOx needles in which Mn appeared in
multiple oxidation states, accelerated hydrogen peroxide decomposition efficiently because
the silica coating facilitated proton transfer from the substrate, while the various oxidation
states of manganese inhibited the radical pathways. Obviously, the term “radical” must
include superoxide anions, which could be transformed into dioxygen at the oxide surface
through reactions of the following type: Mnm+ + O2

− → Mn(m−1)+ + O2. The proposed
reaction mechanism, consistent with the experimental data, revealed the non-innocent
character of silica from a catalytic point of view. Thus, in addition to preventing the
aggregation of the MnOx needles, allowing the access of substrates through the hierarchical
pore system, it played a key role in providing our nanozyme with catalase activity.

On the other hand, in the assay for superoxide dismutase activity, the composite was
observed to present positive SOD-like activity. This was evident due to the inhibition
of the formation of blue-colored formazan (Figure 10a). The percent inhibition of NBT
reduction was enhanced by increasing the composite concentration in the reaction medium
(Figure 10b). This suggested that the Mn-nanozyme, in a concentration-dependent manner,
could scavenge superoxide radicals, avoiding the reduction of NBT to formazan. In this
case, the reaction seemed to take place through a radical mechanism typical of a nanozyme
containing metals such as Mn (with different accessible oxidation states) and without the
participation of mesoporous silica in the reaction mechanism. In the first stage, hydrogen
peroxide would be generated through the reaction ˙O2

− + 2H+ → H2O2 thanks to the
oxidation of active manganese centers (Mnm+ → Mn(m+1)+ + e−). In the second stage,
oxygen would be generated, ˙O2

− → O2, with a consequent reduction in the Mn centers
(Mn(m+1)+ + e− →Mnm+).
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oxide dismutase assay; (b) Inhibition rate percentages of superoxide radicals against the concentration
of the Mn-Nanozyme.

The inhibition rate of the superoxide dismutase activity is usually evaluated by UV-vis
measurement of the formation of colored species, such as formazan. The major difference
between the methods is based on the way of obtaining the superoxide radicals. In some
cases, it is obtained through the photochemical reaction of riboflavin [71] (this work) or
with a mixture of xanthine and xanthine oxidase [34,40,41,72].

Although depending on the specific conditions of each experiment, it is sometimes
difficult to establish quantitative comparisons, as far as we know, we can affirm that the
results obtained with our Mn-nanozyme improve the values described in the bibliography
for similar Mn-based catalysts. In a recent article, Pardhiya et al., [71] described the
preparation and SOD activity of a nanozyme based on BSA-MnO2 nanoparticles. In this
case, the inhibition rate achieved was less than 50% for a nanozyme concentration of 300
µg/mL. The values achieved by our nanozyme are significantly better, as we reached a
degree of inhibition greater than 50% with a lower nanozyme concentration of only 5
µg/mL. In principle, our nanozyme concentration value (to reach 50% inhibition) is among
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the lowest previously described for other related Mn materials, which are in the range of
5 to 20 µg/mL [34,40,72]. However, it should be noted that, in our case, the MnOx needles
were covered by mesoporous silica nanoparticles, a component that did not participate in
SOD activity. Therefore, considering that MnOx was the only component that presented
SOD activity and assuming an average compositional formula of MnO1.33-SiO2, we can
estimate that the real concentration of the Mn-nanozyme in our case was significantly lower,
around 2.8 µg/mL.

In the case of catalase activity, comparison with other previously published works
is much more delicate because the methods used to measure catalytic activity are very
different. For example, it can be determined by monitoring the absorbance at 240 nm to
calculate the concentration of hydrogen peroxide [72], by the reaction of hydrogen peroxide
with a compound to obtain a fluorescent product [40,41,71], or even by determining the O2
produced by hydrogen peroxide decomposition [34]. The comparison is also more complex
if we consider that the mechanism proposed to explain the catalase activity in our material
was bielectronic instead of monoelectronic (as assumed or indicated for other Mn-based
nanozymes). Degrees of progress of the reaction of less than 60% after 4 h have been
described using very low concentrations of nanozyme. In any case, under our conditions,
we reached 90% decomposition in just 20 min using a nanozyme concentration of 1 mg/mL.

Recently the nanozyme definition has been questioned [73]. From a rigorous point
of view, it must be a catalyst (in low concentration concerning the substrate) and must
follow an identical or very similar mechanism to that of the natural enzyme. In our case,
both requirements for the SOD and catalase activity assays are met. In the case of catalase
activity, it could be roughly estimated that a concentration of 7.2 × 10−3 M in Mn could
decompose a solution of up to 0.3 M in H2O2. Regarding the mechanism that we proposed
for catalase activity, it was bielectronic, as in the natural enzyme. However, it differed in
how the active center was regenerated, oxidizing Mn(II) to Mn(IV). In addition, from a
formal point of view, mathematical Equation (6) could be assimilated into an equation of
the Michaelis–Menten type. For this reason, our composite was much closer to a nanozyme
than to a nanozyme-like material. On the other hand, in the case of the SOD activity assay,
the mechanism was monoelectronic, as in the natural enzyme, and the amounts of catalyst
were very low, in the range of a few µg/mL.

4. Conclusions

In this work, we described a new nanozyme that presented a very efficient SOD
activity, reaching high degrees of inhibition with very low concentrations of catalyst. At the
same time, it also showed an effective catalase activity, which translated into quick H2O2
decomposition in a few minutes. In both cases, and mainly if we refer to the amount of
MnOx (the active center), the results improved on the catalytic efficiencies of other related
nanozymes described in the literature. Our nanozyme must be considered a composite
based on a mixture of manganese oxides and mesoporous silica. The preparative strategy
could be viewed as a modification of the original atrane route (one-pot/one-step) in which
the processes of hydrolysis and condensation of the atrane complexes of Mn and Si did not
start simultaneously (a typical characteristic of the atrane pathway). In this case, the Mn
complexes enjoyed a 2 h advantage that allowed the initial formation of MnOx needles.
This strategy avoided their agglomeration through the formation of porous silica in the
form of aggregated mesoporous nanoparticles. The final nanozyme showed high chemical
and morphological homogeneity at the micrometric level. The manganese content was
relatively high, at Si/Mn = 1. The Mn was found in different oxidation states (II, III, and
IV) and was distributed in nanocrystals that formed micrometric needles, as well as in the
silica-rich phase. The synthesis method was highly reproducible, simple to perform, and
easily scalable. As previously mentioned, the material showed catalase and SOD activities.
While in the case of SOD activity the nanozyme showed a radical mechanism typical of
manganese oxide nanoparticles (with monoelectronic transfers), in the case of catalase
activity, silica played an important role by facilitating the deprotonation of H2O2 by acid–



Nanomaterials 2022, 12, 3503 14 of 17

base interactions with deprotonated silanol groups, leading to a nonradical mechanism
with bielectronic transfers involving Mn(II) and Mn(IV) centers. Moreover, this preparative
strategy (one-pot/two-step) could be extended to the syntheses of new nanozymes by
combining metal oxide particles (such as CeO2, FeOx, etc.) and mesoporous silica. The
control and modulation of the time took advantage in the hydrolysis and condensation
processes of the metals involved with respect to silicon (a very simple parameter to control)
and could be the key to the design of this new nanozyme family.
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