
 
 

 

 
Nanomaterials 2022, 12, 3457. https://doi.org/10.3390/nano12193457 www.mdpi.com/journal/nanomaterials 

Supplementary materials 

Regulation of Thermal Emission Position in Biased Graphene 
Yansong Fan †, Zhengzhuo Zhang †, Zhihong Zhu, Jianfa Zhang, Wei Xu, Fan Wu, Xiaodong Yuan, Chucai Guo * 
and Shiqiao Qin 

College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel-Optoelectronic 
Information Materials and Devices, National University of Defense Technology, Changsha 410073, China 
* Correspondence: gcc_1981@163.com; Tel.: +86-731-8700-4211 
† These authors contributed equally to this work. 

 
In supplementary, we will show the detailed derivations of nine equations of the 

body text.  
For a bias graphene on a SiO2/Si substrate, the current density (J) be written as the 

product of the electrical conductivity (σ(x)) and the electric field (dV(x)/dx)), i.e.  
( )( ) dV xJ x
dx

σ= −  (S1) 

where x is the direction along graphene (from drain to source). 
According to the micro-explanation of the electrical conductivity, σ(x) could be writ-

ten as  
( )e xσ μ η= ⋅  (S2) 

where μ is the carrier mobility, η(x) is the carrier density. 
Considering a bias graphene whose length and width are l and w, respectively, the 

current in graphene is  
( )( ) dV xI Jw ew x
dx

μ η= = − ⋅  (S3) 

When large source-drain bias is applied to graphene, there would be a significant 
potential drop along the graphene, which could lead to the change of local charge density 
ρ(x) along graphene. So the voltage potential is a function of the local charge density and 
the gate voltage Vg, and could be written as 

1( ) ( )g Dirac oxV x V V C x eρ−= − +  (S4) 

where Cox is the graphene capacitance, ρ(x) is the local carrier density, and VDirac is the 
Dirac voltage, which depends on the intrinsic doping level in graphene. The carrier den-
sity η(x) and the local carrier density ρ(x) has the relationship of ( ) ( )x xρ η= ± , where + 
refers to the holes region and – refers to the electrons region. According to Joule heating, 
the hottest place would occur at the point of highest resistance, i.e., the place of lowest 
carrier density. 

Therefore, the charge density at the region which separates electrons and holes re-
gions is lowest, resulting in the highest resistance at the region. So, the hottest place would 
occur at the point separating electron and hole regions.  

Because we ignore the recombination length of electrons and holes in graphene, so 
carriers are either electrons or holes but cannot be both. According to the Equation (4), in 
the occasion of Vd > Vs > Vg – VDirac, the carriers in graphene are always holes, and the posi-
tion of lowest carrier density is close to the source; in the occasion of Vg – VDirac > Vd > Vs, 
the carriers are electrons, and the position of lowest carrier density is close to the drain. In 
these two occasions, the position of lowest carrier density could not be changed by the 
gate voltage. 

Therefore, only in the occasion of Vd > Vg – VDirac > Vs, there are both electron-conduct-
ing regions and graphene-conducting regions on the graphene, and the charge density of 
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the position separates electrons and holes regions is lowest. The location of lowest carrier 
density could be changed by the gate voltage. For the sake of convenience, we denote the 
position which separates electrons regions and holes as x0, and it is clear that the range of 
holes regions is xd < x < x0 and the range of electrons is x0 < x < xs. 

So, for the holes regions, according to Eq (4), the carrier density could be written as  

( ( ) ( ))
( ) ( ) ox g DiracC V x V V
x x

e
η ρ

− −
= =  (S5). 

Bringing Eq (5) into Eq (3), we can obtain 
( )( ( ) ( ))ox g Dirac

dV xI w C V x V V
dx

μ= − ⋅ − −  (S6). 

Integrating Eq (6), we can obtain 

2
0 0

1 [ ( ) ( )] ( )
2 g Dirac d

IV x V V x x x x x
mC

− − = − − ≤ ≤  (S7) 

and 

1
2

0 0
2( ) ( ) ( ( ))g Dirac d

ox

IV x V V x x x x x
wCμ

= − + − − ≤ ≤  (S8). 

Similarly, for the electrons regions, we can obtain 

( ( ) ( ))
( ) ( ) ox g DiracC V x V V
x x

e
η ρ

− −
= − = −  (S9) 

( )( ( ) ( ))ox g Dirac
dV xI w C V x V V
dx

μ= ⋅ − −  (S10) 

2
0 0

1 [ ( ) ( )] ( )
2 g Dirac s

IV x V V x x x x x
mC

− − = − ≤ ≤  (S11) 

and 

1
2

0 0
2( ) ( ) ( ( ))g Dirac s

ox

IV x V V x x x x x
wCμ

= − − − ≤ ≤  (S12). 

Equations (8) and (12) could be reduced to an equation by introducing sign function. 

1
2

00
2( ) sgn( |))( |g Dirac

ox

IV x V V x x
w

x x
Cμ

= − − − −  (S13) 

Because the voltage potential of edges (xd and xs) of graphene and contacts also sat-
isfies the equation (7) and (11), i.e. 

2
0

1 [ ( ) ( )] ( )
2 d g Dirac d

IV x V V x x
mC

− − = − −  (S14) 

2
0

1 [ ( ) ( )] ( )
2 s g Dirac s

IV x V V x x
mC

− − = −  (S15). 

Combining the Eqs (14) and (15), position expression of the lowest carrier density 
could be obtained, 

2

0 2 2

( ( ) )
( ( ) ) ( ( ) )

d g
d

d g s g

V x V l
x x

V x V V x V
−

− =
− + −

(S16) 

where l = xs - xd is the length of graphene. 
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Bringing Eq (17) into Eq (14) or (13), we can obtain current expression.  

2 2[( ( ) ( )) ( ( ) ( )) ]
2

ox
s g Dirac d g Dirac

w CI V x V V V x V V
l

μ= − − + − −  (S17) 

According to Eq (4) and Eq (13), we can obtain the local charge density expression. 

1 1
2 2

0 0
21( ) ( ) ( ) | |oxC Ix sgn x x x x

e w
ρ

μ
= − − − (S18) 

According to Eq (18), we can obtain the expression of Femi level of graphene. 

0( ) ( ) | ( ) |F
f

vE x sgn x x x
e

π ρ= − 
(S19). 

Because the infrared emission intensity is related to the local Joule heating of gra-
phene, and considering the presence of the carrier density (npd) due to electron-hole pud-
dles in graphene, the expression for locally generated power p(x) could be written as 

2

2 2
0

( ) ( ) /
sgn( ) ( ) pd

Ip x IdV x dx
ew x x x nμ ρ

= =
⋅ − ⋅ +

(S20). 

For graphene emitters on SiO2/Si, most heat transfers into substrates, so the local tem-
perature is 

( )( ) sub
p x wT x T dx
gh

= +   (S21). 

where Tsub is the substrate temperature, g is the effective thermal conductivity of the sub-
strate and h is the effective thermal conductance length.  

Until now, we have explained the derivations of equations (1) to (9) of the section of 
Materials and Methods of the body text. 

 


