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Abstract: The differences in spatially optical properties between blue and green quantum wells (QWs)
in a monolithic dual-wavelength semipolar (20-21) structure were investigated by scanning near-field
optical microscopy (SNOM). The shortest wavelength for green QWs and the longest wavelength
for blue QWs were both discovered in the region with the largest stress. It demonstrated that In
composition, compared to stress, plays a negligible role in defining the peak wavelength for blue
QWs, while for green QWs, In composition strongly affects the peak wavelength. For green QWs,
significant photoluminescence enhancement was observed in the defect-free region, which was not
found for blue QWs. Furthermore, the efficiency droop was aggravated in the defect-free region for
green QWs but reduced for blue QWs. It indicates that carrier delocalization plays a more important
role in the efficiency droop for QWs of good crystalline quality, which is experimentally pointed out
for the first time.

Keywords: semipolar LEDs; localization states; scanning near-field optical microscopy

1. Introduction

GaN-based white light-emitting diodes (LEDs) have the advantages of low power
consumption and long life and are regarded as next-generation solid-state lighting sources
(SSLs) [1]. Phosphorus-free monolithic blue/green/red multi-wavelength LEDs are one
of the most straightforward paths to achieving white LEDs with a high color rendering
index (CRI). Achieving high performance at long wavelengths, such as green and yellow
light on c-plane polar substrates, remains difficult due to the quantum confinement Stark
effect (QCSE) and the confinement of indium doping in GaN [2,3]. On the other hand,
the wavelength stability of the semipolar structure was found with increasing pump
power density. Quantum wells (QWs) in the semipolar direction have larger wavefunction
overlap and shorter carrier lifetimes. Therefore, it is worth investigating monolithic dual-
wavelength LEDs grown on semipolar structures, especially the spatial luminescence
characteristics differences of different QWs. Such high-efficiency monolithic phosphor-free
white LEDs can be used as light sources for high-speed visible-light communication (VLC),
high CRI lighting, and other applications.

Reports on dual-wavelength semipolar structures so far have mainly focused on car-
rier transport and the polarization ratio of dual-wavelength emissions by macroscopic
electroluminescence and photoluminescence (PL) techniques [4–8]. Direct observation of
spatial luminescence characteristics among dual-wavelength semipolar QWs is difficult
due to limited resolution, which is crucial to fully understanding the recombination mech-
anism in multi-wavelength QWs. In our work, dual-wavelength semipolar (20-21) LEDs
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containing blue and green QWs are grown. Defect and stress distributions in both QWs
are examined. Near-field PL properties, as a function of excitation power density, are
measured using scanning near-field optical microscopy (SNOM). The differences in spatial
luminescence characteristics, such as PL intensity, peak wavelength, the full width at half
maximum (FWHM), and efficiency droop due to the stress and defect distribution, are
described, which can provide direct insight into the different recombination mechanisms in
multi-wavelength semipolar QWs.

2. Materials and Methods

The (20-21) blue and green dual-wavelength InGaN/GaN LEDs were grown on a
(20-21) GaN template that was firstly grown on a c-plane-like sapphire sidewall of a
(22-43) patterned sapphire substrate (PSS) by metal–organic chemical vapor deposition
(MOCVD). Details of the growth of the (20-21) GaN/sapphire template can be found
elsewhere [9,10]. The QW structure consists of a 0.5 µm undoped GaN, a 1.5 µm n-type GaN
with a silicon concentration of 1 × 1019 cm−3, 2 pairs of In0.22Ga0.78N/n-GaN (2 nm/7 nm)
blue QWs, 3 pairs of In0.27Ga0.73N/GaN (3.5 nm/7 nm) green QWs, an 18 nm GaN barrier,
a 150 nm p-type Al0.15Ga0.85N electron blocking layer (EBL), a 40 nm p-type GaN layer
with a Mg concentration of 2 × 1019 cm−3, and a 10 nm p+GaN contact layer with a higher
Mg doping concentration.

Near-field PL measurements were performed at room temperature (RT) with a SNOM
apparatus (NTEGRA, NT-MDT, Moscow, Russia) operating in illumination mode. PL
was excited directly into QWs by a 405 nm continuous wave (CW) laser diode (Power
Technology, Alexander, AR, USA) through an aluminum-coated optical fiber probe with
an aperture of 100 nm diameter. The PL signal was collected from the polished backside
of the sapphire substrate by a 100× inverted objective. After passing a 413 nm long-pass
filter, the PL signal was directed to a photomultiplier tube (PMT) for PL mapping. PL
spectra were recorded by a diffraction grating spectrometer (HORIBA-iHR550, Jobin Yvon,
Kyoto, Japan) with an optical resolution of 0.02 nm. The excitation-dependent near-field PL
measurements at different positions were performed from 0.037 to 1.49 MW/cm2, and the
injected carrier density was estimated from 2.54 × 1015 to 1.02 × 1017 cm−3 [11].

Micro-Raman spectroscopy measurements were performed at RT using a grating
Raman spectrometer (LabRAM HR Evolution, HORIBA Jobin Yvon, Paris, France) with a
532 nm solid-state laser diode as the excitation source. The Raman spectra were measured
from the GaN top surface with 700 nm spatial resolution using a 50× objective to focus and
collect the scattered laser light. Laser power at the sample was about 50 mW. In order to
obtain the Raman mapping, the sample was scanned underneath the laser beam using a
motorized XY stage with a scanning resolution of 500 nm. The temperature-dependent
macroscopic PL measurements were carried out to evaluate the internal quantum efficiency
(IQE) of blue and green QWs. The sample was placed in a closed-cycle mechanical cryogenic
system (Optistat Dry BL4, Oxford Instrument, Oxford, UK) with a temperature range from
4 to 300 K and excited with a 405 nm CW laser diode at the excitation power density of
2.23 W/cm2.

3. Results and Discussion

AFM image and near-field PL mapping (using spectra integrated intensity) over a
20 × 20 µm2 area are shown in Figure 1a,b, respectively. The PL excitation density was
about 2.6 MW/cm2. In the AFM image, ridge-like structures were observable, which has
previously been reported for (20-21) InGaN. Additionally, it has been pointed out that the
surface undulations originate from (10-11) and (10-10) microfacets [12]. Figure 1c exhibits
the cross-sectional profiles of topography and PL intensity extracted from the white dashed
lines in Figure 1a,b; the (10-10) and (10-11) microfacets were separated by a dashed line
in each period of undulation. The QW emission intensity shows a strong correlation with
the topography. The strongest PL intensity is always found at the highest point of the
ridge structures. The difference between the bright and dim regions is about 54.5% of the
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maximum emission amplitude. The surface undulation was very small, and the average
angle of microfacets with respect to [10–14] was calculated to be only 0.2◦. Therefore, the
excitation power was uniform across the sample. The change in PL intensity does not
exactly follow the surface undulation pattern, such as regions marked by red dot circle. The
spatial difference of the light extraction efficiency (LEE) from the sapphire side, calculated
by the Monte-Carlo ray-tracing method, is only about 10%, which is insufficient to explain
the variation in PL intensity (see Figure S1).
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Figure 1. (a) AFM image of the p-type GaN surface and (b) near-field PL mapping of the (20-21) dual-
wavelength LED acquired over a 20 × 20 µm2 area; (c) surface morphology profiles and PL intensity
extracted from the white dashed lines in (a,b).

Figure 2a displays the near-field PL mapping over one period of surface undulation
under 1.49 MW/cm2. Figure 2b shows the cross-sectional profiles extracted at y = 3.8 µm.
The total widths of the Ga-polar GaN (regions A and B) and N-polar GaN (region C) were
measured as 4.1 and 1.3 µm, respectively. The ratio of the wing widths indicates that
the Ga-polar GaN grows approximately twice as fast as the N-polar GaN. Such a growth
rate difference is sensitive to growth temperature and is attributed to the differences in
adsorption and desorption rates and/or relative chemical stability. The average PL intensity
of the B region is 1.2 and 1.6 times higher than that of the A and C regions, respectively. The
PL intensity mapping indirectly reflects the distribution of the nonradiative recombination
centers (NRCs). Figure 2c presents a schematic of (20-21) GaN growth from the sapphire
(0001) sidewall. Threading dislocations (TDs) (region A) were generated in the Ga-polar
GaN in the initial stage of the growth due to the lattice mismatch between GaN and
sapphire and were propagated to the GaN surface along the [10–10] direction. When the
growth mode changed from three-dimension (3D) nucleation to 2D lateral growth, the TDs
were bent and merged and eventually stopped from extending upward [13], which resulted
in an almost defect-free region B. In region C, stacking faults (SFs) tend to be generated in
N-polar GaN. This is often the case with heteroepitaxial semi- or nonpolar GaN growth
using PSS or sidewall lateral epitaxy overgrowth [14,15]. Since the etched sidewalls are
not exact c-plane sapphire sidewalls in PSS, growth errors can lead to the formation of SFs
on adjacent sapphire sidewalls [16,17]. Ga adatoms’ diffusion on the exposed c-plane of
GaN acts as a source of SF generation [18]. Under nitrogen-rich conditions, Ga adatoms are
easily trapped at zincblende fcc sites rather than wurtzite hcp sites, leading to the formation
of SF in N-polar GaN [19]. The heteroepitaxial growth mechanism and defect distribution
of (20-21) GaN have been well described in the literature [9,17,20]. SFs and TDs are related
to NRC [13,21]; therefore, the emission intensity of regions A and C with SF and TD is
lower than that of defect-free region B.

Near-field PL spectra were measured at different positions along the [10–14] direction
during one period of PL intensity variation, from x = 0.8 to 6 µm, as shown in Figure 3a.
The peak wavelength distributions of the green and blue QWs are shown in Figure 3b.
The maximum variations of the PL peak wavelength for green and blue QWs were about
5 and 2 nm, which were much smaller than that observed in the (0001) QW (normally
10–20 nm) [22]. It is clear that the (20-21) QWs have a more uniform potential distribution
than the (0001) QW. Similar to intensity, the PL peak wavelength shows ridge distribution
along the [10–14] direction. Opposite trends along the [10–14] direction were observed
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in green and blue QWs. Region B possesses the shortest wavelength for green QWs and
the longest wavelength for blue QWs. Figure 3c,d present the excitation power density-
dependent peak wavelength of green and blue QWs at different spatial locations of A,
B, and C, marked in the inset of Figure 3c. As the injected carrier density increases, the
peak wavelength of green QWs at all positions (from x = 0.8 to 6 µm) shows blueshifts
of 10.5, 12.4, and 11.1 nm in regions A, B and C, respectively. The blue QWs exhibit less
blueshift (<1 nm) than green QWs, as shown in Figure 3d. Such blueshift was attributed to
the screening of the QCSE by photogenerated excitons and/or carriers [23]. Compared to
green QWs, the QCSE in blue QWs is weaker due to smaller internal electric fields induced
by lower concentrations of indium [24].
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Figure 2. (a) An 8 × 8 µm2 near-field PL mapping; (b) cross-sectional profiles of the near-field
PL intensity extracted at y = 3.8 µm in (a); (c) schematic of (20-21) GaN growth from sapphire
(0001) sidewall.
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Figure 3. (a) Near-field PL spectra collected from different positions in Figure 2a, from x = 0.8 µm to
x = 6 µm; (b) the peak wavelength of green and blue QWs; excitation-dependent peak wavelength
of (c) green and (d) blue QWs. The inset of Figure 3c shows the corresponding locations of the
measurement points in the PL mapping.

To investigate the origin of PL peak wavelength distributions of blue and green QWs,
micro-Raman measurement was performed on the (20-21) LED. Since the phonon frequency
of the EH

2 Raman peak is sensitive to biaxial stress along the c-plane of GaN, the EH
2 phonon

mode of GaN can be used indirectly to evaluate the stress states of the GaN layer [25].
Figure 4a shows the Raman intensity mapping of the p-GaN layer. The intensity mapping
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replicated the surface undulations with a period of ~5.4 µm. Stronger Raman intensity
was always found in region B compared to regions A and C. Figure 4b displays a Raman
spectrum extracted from Figure 4a. A peak at 569 cm−1 is attributed to the EH

2 mode of
GaN [26]. Figure 4c shows the GaN EH

2 peak position variation along the white dashed
lines in Figure 4a. The phonon frequency of the GaN EH

2 Raman peak increases from
569.0 cm−1 at position 2 µm to 569.2 cm−1 at position 6 µm. In addition, the EH

2 phonon
frequency is 568 cm−1 for unstrained bulk GaN, and the increased compressive stress in
the GaN layer can lead to high-frequency shifts in the GaN EH

2 mode [27]. Hence, Raman
peaks shift to a higher wavenumber from regions A and C to region B; this indicates larger
compressive stress in region B. Since the largest compressive stress was observed in region
B, the increased QCSE should be responsible for the longest blue emission wavelength.
Such stress reduces In incorporation efficiency and shortens the emission wavelength of
green QWs [28]. The largest wavelength shift of green QWs thus also appears in the highest
stressed region B due to the largest QCSE [29]. The origin of the highest compressive stress
in region B can be attributed to its smallest stress relaxation. During epitaxial growth, stress
can be relieved by generating dislocations [30,31]. Higher SF and TD densities in regions A
and C may result in higher stress relaxation and smaller residual stress than in region B. We
also characterized the FWHM of the Raman peaks and found that the difference between
different regions is less than 0.1 cm−1; hence, it is not shown here.
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The near-field PL peak intensity and the green-to-blue intensity ratio are shown in
Figure 5a. The PL intensities of blue and green QWs have been normalized to their QW
number (2 for blue and 3 for green) for a fair comparison. In region B, green QWs show a
significantly enhanced peak PL intensity due to fewer defects than regions A and C, while
it is not obvious in blue QWs. Due to higher In incorporation efficiency in regions A and C,
more localization states induced by In-rich sites were generated than in region B. These
localization states can prevent carriers and/or excitons from being trapped by TDs and
SFs, thereby reducing nonradiative recombination. Therefore, there was no obvious PL
enhancement in region B for blue QWs. In green QWs, new TDs as NRCs are introduced
due to higher In content than in blue QWs, resulting in more NRCs, which can be supported
by their lower IQE for green QWs (5.2%) than blue QWs (30.1%) (see Figure S2). Moreover,
carrier diffusion length in green QWs is longer than that in blue QWs [22], resulting in
localization states in green emissions associated with NRCs [32]. Consequently, the PL
intensity of green QWs is significantly reduced in regions A and C, thus leading to the
smallest G/B ratio. The spatial PL results in blue and green QWs also verify the role of the
carrier localization states around defects and are strongly affected by the crystalline quality.
The PL intensity difference of blue and green QWs in Figure 5a is not consistent with their
IQE difference. This is due to the fact that the blue QW numbers exceed those of green
QWs and the excitation source is closer to the top green QWs, resulting in a higher carrier
density being injected into green QWs rather than blue QWs.

Figure 5b depicts the PL FWHM of blue and green QWs at different positions. The
minimum FWHM of green QWs and the maximum FWHM of blue QWs both appear in
region B. It is well known that both defect density and QCSE affect the FWHM. In blue
QWs, the strongest QSCE in region B leads to the largest FWHM [29]. In green QWs, the
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lowest defect density in region B results in the smallest FWHM [33,34]. The poorer crystal
quality and larger QCSE in green QWs should be responsible for its overall larger FWHM
than blue QWs. These results also demonstrate that green QWs are more sensitive to defects
than blue QWs.
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Figure 5. (a) The peak PL intensity of green and blue QWs and their peak PL intensity ratios; (b) the
FWHM of green and blue QWs at different positions.

Excitation-dependent near-field PL measurement was carried out at different positions,
and PL external quantum efficiency (EQE) was calculated by

EQE = k
IPL
PPL

(1)

where IPL and PPL are the PL intensity integrated over the photon energy emitted from
QWs and the power of the excitation source, respectively. k is a constant affected by the
collection efficiency of the 100× inverted objective, the measurement parameters of PL,
light extraction, and absorption efficiency by QWs and does not depend on either excitation
power density or measurement position [35–37].

Figure 6a,b show the normalized EQE measured from 5 different locations of regions
A, B, and C. EQEs of blue and green QWs were separated, calculated, and normalized to
the maximum value of all curves. The efficiency droop is calculated as the percentage of
efficiency reduction at the injected carrier density used (1.02 × 1017 cm−3) with respect
to its peak efficiency. For green QWs, the efficiency droop is 24.1% in region A, 26.8% in
region B, and 22.5% in region C, respectively. Region B has the highest peak efficiency
and the largest efficiency droop, which reveals the relevance of defects for droop. It has
been reported that carrier leakage at high-level excitation is quantitatively very similar for
different defect densities, but high defect densities can suppress the peak efficiency due
to much nonradiative recombination at low excitation, thus leading to a relatively small
droop [38]. Therefore, regions A and C, with high defect densities, have low peak efficiency
and a relatively reduced droop. The efficiency droop at high excitation can be assigned to
Auger recombination and carrier leakage [39,40].
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The efficiency droops for blue QWs are 29.5%, 18.4%, and 29.1% in regions A, B, and
C, respectively. However, unlike the green QWs, the blue QWs in region B exhibit a smaller
efficiency droop than those in regions A and C, indicating a different mechanism. Enhanced
QCSE in region B would aggravate efficiency droop, which is contrary to our results and
is ruled out [41]. At low excitation, the carriers are strongly confined in the localization
states, leading to enhanced radiative recombination. When increasing excitation density,
the available localization states are saturated gradually and the carrier delocalization will
be enhanced, which will enhance the defect-related nonradiative recombination [42–44].
Therefore, blue QWs in regions A and C show a comparable quantum efficiency with
that in region B at low excitation (<0.3 MW/cm2) due to its high carrier localization. At
high excitation (>0.6 MW/cm2), blue QWs in regions A and C show a faster reduction
in quantum efficiency, owing to the delocalization of carriers and high defect density.
The difference in the spatial-resolved efficiency droops between blue and green QWs
demonstrates that carrier delocalization plays a more important role in efficiency droops
for QWs with good crystalline quality.

The EQE of green QWs in regions A and C increased at a higher rate than blue
QWs in the initial excitation. One reason could be that green QWs are more sensitive to
defects. We fitted the EQE curves of blue and green QWs in regions A and C using the ABC
model [45]. The nonradiative and Auger coefficients for green QWs were: A = 5.5 × 105 s−1,
C = 4 × 10−28 cm−3s−1 (region A); A = 4.5 × 105 s−1, C = 2 × 10−28 cm−3s−1 (region C).
The coefficients for blue QWs were: A = 3.5×105 s−1, C = 5 × 10−28 cm−3s−1 (region A);
A = 4 × 105 s−1, C = 4.7 × 10−28 cm−3s−1 (region C). At low excitation, defect-related
nonradiative recombination is the main recombination mechanism, and thus, a larger
nonradiative coefficient is observed in regions A and C for green QWs.

4. Conclusions

In summary, we used SNOM to study the difference in spatial luminescence character-
istics between blue and green QWs in monolithic semipolar (20-21) LEDs and analyzed
their correlation with defect and stress distributions. The peak wavelengths of blue and
green QWs present a ridged distribution with the opposite trend. It is suggested that for
short-wavelength blue semipolar QWs, the peak wavelength is more easily affected by
the stress instead of the In composition. The smallest PL intensity ratio of green to blue
light is displayed in the defective region, indicating that green QWs is more sensitive to
defects than blue QWs due to higher defect densities and longer recombination lifetimes.
Additionally, for green QWs, the efficiency droops in the defective regions, which are
due to the suppression of peak efficiency by defects, are reduced compared with those
in the defect-free area. In contrast, for blue QWs, the efficiency droops in the defective
regions are more severe due to density-activated defect recombination by carrier delocal-
ization. This experimentally points out that carrier delocalization plays a more important
role in the efficiency droop for QWs with good crystalline quality. It helps researchers
to address the EQE droop and “green gap” more clearly, thus facilitating the application
of high-efficiency white LEDs in solid-state lighting, visible-light communication, and
micro-display technologies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12193386/s1. Figure S1. (a) Simulated LEE map from
sapphire side and corresponding depth profile of stripe structure (marked in dark solid line); (b) cross-
sectional LEE distribution along the dark dashed line in (a); Figure S2. The temperature dependence
of the integrated PL intensity for estimating IQE. The integrated PL intensity has been normalized to
1.0 at 4 K.
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