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Abstract: Metal–organic frameworks (MOFs), a class of porous nanomaterials, have been widely used
in gas adsorption-based applications due to their high porosities and chemical tunability. To facilitate
the discovery of high-performance MOFs for different applications, a variety of machine learning
models have been developed to predict the gas adsorption capacities of MOFs. Most of the predictive
models are developed using traditional machine learning algorithms. However, the continuously
increasing sizes of MOF datasets and the complicated relationships between MOFs and their gas
adsorption capacities make deep learning a suitable candidate to handle such big data with increased
computational power and accuracy. In this study, we developed models for predicting gas adsorption
capacities of MOFs using two deep learning algorithms, multilayer perceptron (MLP) and long
short-term memory (LSTM) networks, with a hypothetical set of about 130,000 structures of MOFs
with methane and carbon dioxide adsorption data at different pressures. The models were evaluated
using 10 iterations of 10-fold cross validations and 100 holdout validations. The MLP and LSTM
models performed similarly with high prediction accuracy. The models for predicting gas adsorption
at a higher pressure outperformed the models for predicting gas adsorption at a lower pressure. The
deep learning models are more accurate than the random forest models reported in the literature,
especially for predicting gas adsorption capacities at low pressures. Our results demonstrated that
deep learning algorithms have a great potential to generate models that can accurately predict the
gas adsorption capacities of MOFs.

Keywords: metal–organic framework; gas adsorption; deep learning

1. Introduction

Nanomaterials have been widely studied in various fields, such as food science, energy,
electronics, and drugs, due to their advantageous physical, chemical, optical, and electrical
properties [1–6]. In contrast to other rigid nanoparticle carriers, metal–organic frameworks
(MOFs) have gained attention in recent years due to their well-defined structure, ultrahigh
surface area, high porosity, tunable pore size, and easy chemical functionalization. In a
MOF, metal ions or clusters of ions are linked by organic molecules to form a repeating, cage-
like hollow structure. The unique structure diversity and exceptionally large surface area
make MOFs promising candidates for many applications including intracellular delivery of
drugs, proteins, and nucleic acids; sensing; bioimaging; and energy storage [7]. In contrast
to other rigid nanoparticles, MOF nanocarriers have a high drug loading capacity and
controlled drug release properties, which contributes to the growing attention on MOFs for
pharmaceutical applications [8].

The industrial and biomedical applications using MOFs have increased over the past
few years, including catalysis, gas storage, and gas separation. By carefully selecting metal
clusters and organic linkers, researchers can synthesize MOFs to selectively adsorb specific
gases [9–11]. To find good performing materials for some specific applications, gas adsorp-
tion data are typically used to screen a diverse MOF database. Due to the large number of
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possible MOFs, experimentally it is not practical to generate all possible MOFs and measure
their adsorption capacities for a variety of gases. Therefore, computational methods, such
as grand canonical Monte Carlo (GCMC) simulation and molecular dynamics simulation,
have been used as alternative methods [12–15]. However, even with high performance
computing technologies, current computational methods, such as GCMC simulations, are
very computationally intensive. Sometimes GCMC simulations can be practically infeasible,
depending on parameters, such as the size of the MOF database, the number of gases, the
operating conditions (temperatures/pressure conditions), and the number of compositions.
Therefore, other fast and reliable computational methods are urgently needed to predict
gas adsorption capacities of MOFs.

A variety of computational methods have been developed and used for predicting
biological activities and physicochemical properties of chemicals [16–23]. For example, our
group have used machine learning as an attractive computational technique to provide
alternative methods for estimating physicochemical properties and toxicological activities
of chemicals [24–31]. Machine learning methods are also effective tools that can reveal
the underlying structure–property relationship, and hence, accurately predict gas adsorp-
tion capacities of MOFs [12,15,32,33]. For machine learning applications, a large amount
of accurate data from either experiments or computational methods is needed to build
reliable models. Since experimental data are generally restricted to a small number of
MOFs under limited experimental conditions, computational prediction seems a better
source for large quantities of data. Thus, combinations of GCMC simulations and machine
learning have been widely used to improve the efficiency of predicting gas adsorption over
various conditions [34–36]. The combination allows GCMC to focus on the most promising
materials, and machine learning could be trained to predict gas adsorption of MOFs, which
are not covered by the GCMC simulations. Machine learning can minimize the compu-
tationally intensive GCMC simulations by predicting the gas adsorption capacities from
the topology of MOFs, thereby replacing the GCMC simulations. With large numbers of
structures and limited gas adsorption data, there is a high likelihood that the incorporation
of machine learning methods could help design and develop MOFs with the desired gas
adsorption capacities.

The continuously increasing sizes of MOF datasets and the complicated relationships
between MOFs and their gas adsorption capacities make deep learning a suitable approach.
Some deep learning models have been developed to predict the gas adsorption capacities
of MOFs. For example, Lee et al. developed models using deep learning and evolutionary
algorithms to find MOFs with desired properties from an extremely diverse and large MOF
dataset containing over 100 trillion structures [37]. The deep learning models were shown
to be able to discover the high-performing MOFs with optimal working capacity [37].
Anderson et al. demonstrated that by leveraging a large amount of GCMC simulation data,
deep neural network models were trained to predict hydrogen volumetric adsorptions at
various temperatures and pressures [13]. In their later work, Anderson et al. trained deep
learning models to predict the full adsorption isotherm for molecules such as methane,
nitrogen, xenon, and krypton, using both geometric and chemical descriptors [38]. Their
results showed that deep learning models can be used to predict the adsorption of different
adsorbates at different operating conditions for new MOFs which are not included in the
training set. In another example, Ma et al. trained a deep neural network model with two
hidden layers on 13,506 MOFs to predict H2 adsorption at 100 bar and 243 K [39]. The
coefficient of determination (R2) obtained was 0.998, suggesting deep learning is a very
promising technique to study H2 adsorption properties of MOFs. Wang et al. developed
a graph convolutional neural network to screen high-performing MOFs from a large
database based on the data generated by GCMC simulation [40]. The area under the
receiver operating characteristic curve of 0.93 demonstrated the reliability and accuracy
of the developed deep learning models. In addition, the incorporation of deep learning
models reduced the time used to evaluate several hundreds of thousands of hypothetical
MOFs (hMOFs).
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In this study, we used two deep learning algorithms, multilayer perceptron (MLP)
and long short-term memory (LSTM) networks, to predict the gas adsorption capacities in
MOFs. The MOF datasets were obtained from the Northwestern hMOFs database that was
computationally designed by Wilmer et al. [41]. The MOF structures were represented by
structural descriptors (dominant pore size, max pore size, void fraction, gravimetric surface
area, and density) [41] and chemical descriptors (atom number density) [36]. First, the deep
learning models were trained on the datasets of methane and carbon dioxide adsorption
at various pressures. The models were evaluated using 10 iterations of 10-fold cross
validations and 100 holdout validations. We used the same validation methods as previous
studies [36] to directly compare our deep learning models with previously reported machine
learning models. The random forest models developed by Fanourgakis et al. [36] have
greatly improved the prediction accuracy of gas adsorptions of MOFs. Their models
significantly outperformed the previously reported models [35,42] where only structural
descriptors were used. By directly comparing our results with the results from the random
forest models, we demonstrated the potential of our deep learning models to accurately
predict the gas adsorption capacities of MOFs.

2. Materials and Methods
2.1. Data Preparation

The workflow for developing deep learning models is shown in Figure S1. In this
study, the hMOFs database developed by Wilmer and coworkers [41] was used to build
deep learning models (MLP and LSTM) for predicting gas adsorption capacities of MOFs.

In the database, 102 building blocks and 15 functional groups were geometrically
assembled using a bottom-up construction algorithm such as snapping Tinkertoy. There
are 137,953 hMOFs generated using this Tinkertoy algorithm. The detailed structures of
hMOFs could be found at https://mof.tech.northwestern.edu/ (accessed on 8 April 2021)
along with the carbon dioxide and methane adsorption capacities at T = 298 K and at
several pressures. The gas adsorption capacities of methane at 1, 5.8, 35, and 65 bar, and
of carbon dioxide at 0.05, 0.5, and 2.5 bar, for these MOFs were calculated using GCMC
simulations [43]. In addition to MOFs, a covalent organic frameworks (COFs) dataset [44]
and their methane adsorption capacities at 65 bar were also used as an independent dataset
to validate model performance.

To describe the structures of MOFs, five geometric descriptors (the dominant pore size,
the max pore size, the void fraction, the gravimetric surface area, and density) taken from
the Northwestern University database were used in this study. The detailed calculation for
structural descriptors can be found in the work of Wilmer et al. [45]. Another structural
descriptor of MOFs, accessible volume, was also calculated using Zeo++ code [46] with
a probe radius of 1.625 Å and 50,000 Monte Carlo samples per unit cell. Twenty atom
types (atoms, namely, H, C, N, O, F, Cl, Cu, Zn, Br, and Zr, and their hybridization and
connectivity types) were used to characterize the chemical environment of the pores in
MOFs. For example, C_1, C_2, C_3, and C_R were used to represent carbon with single,
double, triple, and aromatic bonds, respectively. A similar naming convention was used
for nitrogen (N_1, N_2, N_3, N_R) and oxygen (O_1, O_2, O_3, O_R). The atom number
density was defined as the number of atoms for each atom type in a unit cell of MOFs.
The atom number density was calculated by Fanourgakis et al. using the Python program
lammps_interface [36]. MOFs with unidentified atom types were removed from the datasets.
Details for the final eight datasets used in this study are provided in Table 1.

2.2. Deep Learning Algorithms

MLP is a feedforward neural network that utilizes a supervised learning technique
called backpropagation to recognize underlying relationships in data. The basic structure
of an MLP consists of an input layer, one or more hidden layers, and an output layer. Each
layer is made up of neurons and each neuron is connected to all the neurons in the next layer
by weight. The weights are randomly chosen at the beginning of a training process and

https://mof.tech.northwestern.edu/
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then are calculated from the backpropagation process to minimize errors between predicted
values from the output layers and the actual values. The input values are transformed to
the output signals by an activation function. In this study, we used the rectified linear unit
(ReLU) activation function because of its capability to quickly converge. After the MLP
model was trained with established network topology and the final sets of weights, the
model was ready to make predictions.

Table 1. Datasets used.

Gas Pressure (bar) MOFs Mean Adsorption Standard Deviation

CO2 0.05 70,433 2.2466 5.3255

CO2 0.5 70,433 37.365 35.3544

CO2 2.5 70,433 92.9512 56.5359

CH4 1 70,608 17.8184 17.7097

CH4 5.8 28,417 57.5549 33.442

CH4 35 70,605 139.1942 44.8701

CH4 65 27,151 172.11 50.1996

CH4 65 17,098 * 153.3413 37.7033
* Covalent organic frameworks (COFs). The mean adsorption is the volumetric-based adsorption in units of
cm3(STP)/cm3. STP stands for standard temperature and pressure.

To demonstrate the power of deep learning, the LSTM algorithm was also used in
this study to build models for predicting the gas adsorption capacities of MOFs. LSTM
is an advanced recurrent neural network and has been widely used for natural language
processing due to its ability to deal with sequential data [47,48]. LSTM uses a special
unit called a memory cell that controls the memorizing process. Each LSTM memory cell
contains three gates: an input gate, an output gate, and a forget gate. The input gate passes
the new information from the input to the cell, and the forget gate controls whether the
information from the previous timestamp is needed and should be passed to the cell or is
irrelevant and should be ignored. Finally, the updated information from the cell is passed
to the next timestamp through the output gate. Besides sequential data, LSTM also proves
to be powerful in processing nonsequential data. In this work, although the structural and
chemical descriptors are not in the form of sequences, they were processed as fixed-length
vectors and used to train the LSTM models.

2.3. Model Development

Since hyperparameters are tunable and have a direct impact on the model perfor-
mance, hyperparameter optimization is the first step in model development to search for
hyperparameters that could maximize the predictive accuracy of the model. To prevent
information leaking in the training models, the training dataset was randomly split into
five subsets. This random splitting was repeated five times. For each splitting, four subsets
were used to build predictive models with different sets (combinations) of hyperparameters.
The gas adsorption capacities of MOFs in the remaining subset were predicted using the
built models. The process was repeated so that each of the five subsets was used only once
as a testing dataset. The testing results yielded from the models built with the same set of
hyperparameters were averaged to measure the performance of the models constructed
using the set of hyperparameters. The set of hyperparameters that had the highest average
prediction accuracy in the testing was selected to construct a model on the training dataset.

In training LSTM models, four hyperparameters (number of neurons, number of
layers, batch size, and number of epochs) were optimized using the abovementioned
procedures. In training MLP models, three hyperparameters (number of layers, number
of neurons, and alpha values for regularization) were tuned using the same procedure.
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Tables S1 and S2 provide examples of tuning hyperparameters in LSTM and MLP models,
respectively, using a dataset containing 5000 MOFs and 5000 COFs.

2.4. Model Evaluation

To evaluate the performance of MLP and LSTM deep learning models, 10 iterations of
10-fold cross validations and 100 holdout validations (also called external validations in
some literatures) were conducted.

As shown in Figure S2, in a 10-fold cross validation, a dataset was randomly divided
into 10 groups using a fixed random seed. Nine groups were used to build MLP and LSTM
models and the remaining group was then used to evaluate the constructed models. This
process was iterated 10 times so that each of the 10 groups was used only once as the
test set. The predicted adsorption capacities of MOFs for gas from the 10 models for an
algorithm (MLP or LSTM) were compared with the values from GCMC simulations to
calculate the performance metrics for the evaluation of the models. To reach a statistically
robust estimation of model performance, the 10-fold cross validation was repeated 10 times
by randomly dividing the whole dataset into 10 groups using 10 different random seeds.

As shown in Figure S3, in a holdout validation, a dataset was randomly split into two
sets: a training set with 10,000 MOFs and a test set containing the rest of the MOFs. The
training set was used to train MLP and LSTM models, and the test set was used to evaluate
the performance of the models. The holdout validation was repeated 100 times by randomly
splitting a dataset into training sets and test sets using 100 different random seeds.

The performance of the MLP and LSTM models was measured by Pearson correlation
coefficient (r), R2, root mean square error (RMSE), and mean absolute error (MAE). The
performance metrics r2, R2, RMSE, and MAE were computed using Equations (1)–(4).

r =
n ∑n

1 yiui −∑n
1 yi ∑n

1 ui√(
n ∑n

1 yi
2 − (∑n

i yi)
2
)(

n ∑n
1 ui

2 − (∑n
i ui)

2
) (1)

R2 = 1− ∑n
1 (yi − ui)

2

∑n
1 (yi − z)2 (2)

RMSE =

√
∑n

1 (yi − ui)
2

n
(3)

MAE =
∑n

i |yi − ui|
n

(4)

where, yi is the observed gas adsorption value for the MOF i; z is the average observed gas
adsorption value of MOFs predicted; ui is the predicted gas adsorption for the MOF i; n is
the number of MOFs predicted.

Since RMSE and MAE are scale-dependent metrics, they are not suitable for comparing
the performance of models for predicting dependent variables with values of different
scales such as gas adsorption values at different pressures. Thus, scale independent metrics,
scaled RMSE (sRMSE) and scaled MAE (sMAE), were defined in Equations (5) and (6) and
used in this study.

sRMSE =
RMSE

z
(5)

sMAE =
MAE

z
(6)

3. Results and Discussion
3.1. Prediction of Methane Adsorption of MOFs

The deep learning algorithms MLP and LSTM were used to build models for predicting
adsorption capacities of methane at pressures of 1, 5.8, 35, and 65 bar. The performance of
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the models was evaluated using 10 iterations of 10-fold cross validations and 100 repeats of
holdout validations using r2, R2, sRMSE, and sMAE.

The predicted gas adsorptions of MOFs from LSTM and MLP models in the 10-fold
cross validations were compared with their actual gas adsorptions in Figures S4–S11.
Figure 1 summarizes the performance of LSTM and MLP models on four datasets of
methane adsorption capacities at pressure 1, 5.8, 35, and 65 bar from the 10 iterations of
10-fold cross validations. For comparison, the r2, sMAE, and sRMSE of the 10-fold cross
validations of random forest models on the same datasets [36] are included as blue bars in
Figure 1B–D, respectively. The models generated from the dataset of methane adsorption at
a higher pressure outperformed the models yielded from the dataset of methane adsorption
at a lower pressure, regardless of which performance metric (r2, sMAE, and sRMSE) or
deep learning algorithm (MLP and LSTM) were used. More specifically, the average R2,
r2, sMAE, and sRMSE values for the MLP models built from the dataset at 65 bar are
0.9652, 0.9661, 0.0379, and 0.05380, respectively. The corresponding metrics values for
the MLP models constructed using the dataset at 1 bar are 0.9066, 0.9126, 0.1292, and
0.2945, respectively. A similar trend was observed for the LSTM models and the previously
reported random forest models. At high pressures, the methane adsorption capacity of
MOFs was found to correlate strongly with geometrical descriptors, such as pore sizes,
void fractions, and surface area [36,45,49,50]. The adsorption capacity of activated carbon
dioxide was positively correlated with surface area and pore volume. At high pressures, the
enlarged surface area and high porosity provide more sites for gas adsorption [51]. Since
these geometric descriptors (the dominant pore size, the max pore size, the void fraction,
the gravimetric surface area, and density) were used in our study to characterize MOFs,
our model accurately predicted the methane adsorption capacities. Methane adsorption at
5.8 and 65 bar is useful for on-board vehicular natural gas storage technologies [52], and
our deep learning models can be used to help identify high methane adsorption MOFs for
such applications.

For predictions at 1 bar, r2 for MLP and LSTM are 0.9126 and 0.9126, respectively,
which are substantially better than the 0.886 reported for random forest models [36]. At
low pressures, the strength of interactions between adsorbent molecules and MOFs plays a
more important role in the adsorption capacity of MOFs. We speculate that the adsorption
capacities of MOFs at high pressures are mainly determined by the shapes of structures of
the MOFs as well as the accessible pore volumes and internal surface areas of MOFs, which
are easy to characterize for MOFs. Therefore, adsorption capacities at high pressures can be
accurately predicted using both traditional machine learning and deep learning algorithms.
However, the chemical properties, such as hydrophobic and electrostatic interactions
between gases and MOFs at the atomic level, contribute more to the adsorption capacities
of MOFs for gases at low pressures. The interactions at the atomic level between gases
and MOFs are more difficult to model. Thus, the methods that can recognize complicated
relationships, such as deep learning algorithms, could better model gas adsorption of
MOFs at low pressures. The improved prediction accuracy of our deep learning models
demonstrates that deep learning is a more suitable approach than traditional machine
learning algorithms to address complex relationships between methane adsorption and
MOF structures at low pressures. The performances of the two deep learning models were
similar for predicting methane adsorptions at all pressures.

Another challenge in predicting the adsorption capacities of MOFs using machine
learning and deep learning is the lack of experimental data for training. Experimentally
determined adsorption capacities are the best for training machine learning and deep
learning models. However, to experimentally generate adsorption data for such a large
number of MOFs is time consuming and costly, making it very practically challenging,
if not impossible. Therefore, most of the current practices use the adsorption capacities
calculated by GCMC, which is a force-field method based on Henry’s law. There has histor-
ically been a major challenge of developing accurate force-fields for describing adsorption,
especially for adsorption at low pressures based on Henry’s law. In brief, Henry’s law states
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that the adsorption capacity of a MOF is proportional to the gas pressure at a constant,
which can be determined experimentally or with a force-field-based method. Usually, at
high pressures, the effect of gas pressure overpasses the contributions from chemical and
energetic interactions between the MOF and the gas. Therefore, the adsorption capacities at
high pressures estimated from a force-field-based method are close to that determined by
experiments. However, at low pressures, chemical and energetic interactions between the
MOF and the gas are important to the adsorption capacity and are not linearly proportional
to the gas pressure. Thus, the adsorption capacities at low pressures estimated using a gen-
eral force-field method may have a large difference from that determined experimentally.
Though the deep learning models improved the prediction performance on adsorption
capacities at low pressures, we should be cautious in the utilization of the results because
the predicted values are fitted to the adsorption capacities estimated by GCMC but not to
that determined experimentally.
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Figure 1. Performance of MLP and LSTM models in the 10-fold cross validations. Pressures at which
adsorptions were predicted are marked by x-axis tick labels. Performance was measured in R2 (A); r2

(B); sMAE (C); and sRMSE (D) and depicted on the y-axes. The average performance measurement
values are given in red and green bars for LSTM and MLP models, respectively. The corresponding
standard deviations are plotted as sticks above the bars. The results of random forest models from
the same datasets reported in Fanourgakis et al.’s JACS paper [36] are plotted as the blue bars.

Since a representative low pressure for natural gas delivery in a vehicle engine is
5 bar, MOFs that have high methane adsorption capacities at a pressure of 1 to 5 bar are
strongly needed to facilitate the transport industry [53]. Our deep learning models can
help identify high-performing MOFs for methane storage at low pressures. Compared to
the models for predicting methane adsorption at high pressures, the models for predicting
methane adsorption at low pressures need to be improved in the future. Energy descriptors
have been used in recent studies [34,35,54] to improve predictions in the low-pressure
regime. For example, Fanourgakis et al. [35] used potential energy surface as descriptors
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and evaluated the model performance on 4764 computation-ready, experimental (CoRE)
MOFs. Bucior et al. [54] used sorbate–sorbent energy histograms as descriptors and tested
them on more than 50,000 experimental MOFs. Deng et al. [34] used the heat of adsorption
as the energy descriptors to screen 6013 CoRE-MOFs. Therefore, the deep learning models
for predicting the gas adsorption of MOFs at low pressures are expected to be improved
by including chemical and energetic descriptors. The accurate deep learning models for
methane adsorption at low pressures are also helpful to explore the adsorption and delivery
of biological gases, such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide
(H2S), for biomedical applications [55].

In the holdout validations, 10,000 MOFs were used to train deep learning mod-
els and the remaining MOFs (60,608, 18,417, 60,605, and 15,151 for adsorption at pres-
sure 1, 5.8, 35, and 65 bar, respectively) were used to evaluate the trained models. The
prediction results of the MLP and LSTM models on the four datasets are provided in
Supplementary Figures S12–S19. Figure 2 shows the distributions of performance metrics
r2, R2, sRMSE, and sMAE of MLP and LSTM models. As shown in the figure, the MLP
and LSTM models performed similarly. The average R2 values for predicting methane
adsorptions at 1, 5.8, 35, and 65 bar are 0.8722, 0.9441, 0.9556, and 0.9602, respectively, for
the LSTM models, and 0.8755, 0.9475, 0.9544, and 0.9592, respectively, for the MLP models.
Moreover, the models for predicting adsorption at a higher pressure had smaller ranges
of performance metrics than the models for predicting adsorption at a lower pressure,
consistent with the observations from 10-fold cross validations. The comparison between
our deep learning models and the random forest models (dashed vertical lines) reported in
the literature [36] shows that the deep learning models had higher r2 as well as lower sMAE
and sRMSE values (Figure 2B–D), especially for models for predicting methane adsorption
at low pressures.
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To examine if the deep learning models could be improved when including more
rudimentary information, such as accessible pore volumes, we calculated the accessible
pore volumes using Zeo++ (http://zeoplusplus.org/, accessed on 9 September 2022) with
the probe radius of 1.625 Å. We then developed MLP and LSTM models for predicting
methane adsorption at 1 bar by integrating the accessible pore volumes into the datasets and
using the same learning protocol. We also developed MLP and LSTM models using datasets
with the removal of atom types and the inclusion of accessible pore volumes. The results
from 100 holdout validations on the models with all 26 descriptors were summarized
in Supplementary Figures S20 and S21, and the models developed with different sets
of descriptors were compared in the Supplementary Table S3. As can be seen from the
comparison, the descriptors of atom types are important for predicting methane adsorptions
at low pressures because the models without atom types greatly underperformed, while
the inclusion of accessible volumes did not improve the deep learning models. Because
accessible volumes are correlated with surface areas, our results indicate that adding
correlated descriptors would not much improve deep learning models for predicting the
gas adsorption of MOFs.

When examining the MOFs that showed large differences between the deep learn-
ing models and GCMC-predicted adsorptions at modest pressures, we found that MOFs
with smaller accessible pores, less surface area, and greater weight density had larger dis-
agreements between the deep learning model-predicted and GCMC-calculated adsorption
capacities. For example, comparing the deep learning-predicted methane adsorption capac-
ities at 5.8 bar with the GCMC-calculated values (Supplementary Figure S16) revealed that
the 1775 MOFs with over 100% overpredictions have an average dominant pore diameter of
4.35 Å, gravimetric surface area of 969.57 m2/g, and weight density of 1.37 g/cm3, while the
4542 MOFs with less than 5% disagreements have an average dominant pore diameter of
8.76 Å, gravimetric surface area of 3267.07 m2/g, and weight density of 0.74 g/cm3. As gas
adsorption is mostly driven by dispersion at modest pressures, the MOFs with great density
usually have small pores and surface areas, which makes gas dispersion more difficult,
and adsorption capacities are determined by multiple chemical and structural features in a
complicated relationship. Therefore, predicting the adsorption capacities of such MOFs
at modest pressures is more challenging than of MOFs with low density, large pores, and
large surface areas. Though we demonstrated that the developed deep learning models are
helpful in screening a large dataset, the utilization of the deep learning prediction results
for MOFs with great density, small pores, and surface areas should be cautious.

3.2. Prediction of Carbon Dioxide Adsorption of MOFs

Deep learning models were developed using MLP and LSTM algorithms for predicting
carbon dioxide adsorption at pressures of 0.05, 0.5, and 2.5 bar. Model performance was
evaluated using 10 iterations of 10-fold cross validations and 100 repetitions of holdout
validations and measured by r2, R2, sRMSE, and sMAE.

Figures S22–S27 show the prediction results from the 10 iterations of 10-fold cross
validation for LSTM and MLP models based on the three datasets of carbon dioxide
adsorption capacities of MOFs at pressures of 0.05, 0.5, and 2.5 bar. The performance
metrics calculated from the prediction results are summarized in Figure 3. The MLP and
LSTM models performed similarly with high prediction accuracy. For predicting carbon
dioxide adsorption at 2.5 bar, the average R2, r2, sMAE, and sRMSE values are 0.9621,
0.9635, 0.0803, and 0.1164, respectively, for the MLP models, and 0.9572, 0.9591, 0.0839,
and 0.1231, respectively, for the LSTM models. The results indicate the used chemical and
structural descriptors are related to carbon dioxide adsorption capacities at high pressures.
At a high pressure, carbon dioxide adsorption is driven by physical interactions instead of
chemical interactions [56]. Therefore, geometric descriptors used in this study might be the
major contributors to the good performance of the developed deep learning models. Highly
accurate predictions of carbon dioxide adsorption at high pressures could facilitate the
design of appropriate MOFs for the precombustion of carbon capture to efficiently reduce

http://zeoplusplus.org/
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carbon dioxide emission from fossil fuels before the combustion is completed. In addition to
environmental protection, the accurate deep learning models for carbon dioxide adsorption
at relatively high pressures could also be extended to facilitate the design of MOFs to
adsorb other gases, such as Xe and Kr, which are in high demand in the medical industry.
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(D). The averaged performance metrics from the 10 iterations of 10-fold cross validations were
plotted as green and red bars for MLP and LSTM models, respectively. The corresponding standard
deviations were plotted as sticks above the bars. The reported results of random forest models from
the same datasets [36] were plotted as blue bars.

When predicting carbon dioxide adsorption at 0.05 bar, the MLP and LSTM models
achieved r2 values of 0.7816 and 0.8022, respectively, which are substantially higher than
0.752 from the random forest models reported in the literature [36]. The most studied carbon
capture and storage is the post-combustion approach, where carbon dioxide is adsorbed
from flue gas at a low pressure (including atmospheric pressure). Thus, it is particularly
promising to have accurate models for the identification of MOFs with high adsorption
capacities at low pressures. Meanwhile, compared to the models at high pressures, the deep
learning models can be significantly improved by including well-characterized descriptors.
In comparison to methane, the interactions between carbon dioxide and MOFs are more
complex due to the quadrupolar interactions in carbon dioxide molecules. Therefore, it is
more demanding for carbon dioxide adsorptions to use descriptors that are more related to
carbon dioxide adsorption.

The predictions from the 100 holdout validations were compared to the actual ad-
sorptions of the MOFs in Figures S28–S33. Figure 4 summarizes the performance of the
MLP and LSTM models in the 100 holdout validations. Similar to the methane adsorption
models, the MLP and LSTM models performed equally well in the prediction of carbon
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dioxide adsorption of MOFs, especially for predicting adsorption at high pressures, in
terms of all four metrics. For example, for predicting adsorption at 2.5 bar, the LSTM
and MLP models had equally high average R2 values of 0.9434 and 0.9494, respectively.
Furthermore, a similar trend was observed: the models for predicting carbon dioxide ad-
sorption at a higher pressure outperformed the models for predicting adsorption at a lower
pressure. When compared to the reported random forest models [36] (dashed vertical lines
in Figure 4B–D), the MLP and LSTM models had higher r2 and lower sMAE and sRMSE
values, indicating that the deep learning models outperformed the traditional machine
learning random forest models, especially for predicting carbon dioxide adsorption at low
pressures. Although the MLP and LSTM models performed better than the random forest
models [36] in the prediction of carbon dioxide adsorption at 0.05 bar, their performances
were much poorer than the corresponding MLP and LSTM models for predicting adsorp-
tions at higher pressures, with much lower average r2 and R2 values and higher sMAE
and sRMSE. Moreover, variation in model performances for predicting carbon dioxide
adsorption at a low pressure was larger than the corresponding one at a high pressure (a
wider distribution of performance metric values), consistent with the observation in the
10-fold cross-validations. Therefore, more informative descriptors are needed to improve
deep learning for the prediction of carbon dioxide adsorption at low pressures.
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Figure 4. Distributions of performance metrics R2 (A); r2 (B); sMAE (C); and sRMSE (D) in the
100 holdout validations for MLP (solid curves) and LSTM (dotted curves) models. Pressures of
carbon dioxide adsorption predictive models were color coded: green for 0.05 bar, red for 0.5 bar,
and blue for 2.5 bar. The x-axis depicts performance metrics marked by the axis label. The reported
results of random forest models [36] are shown as vertical lines.
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3.3. Model Transferability

The 27,151 MOFs and 17,098 COFs [44], as well as their methane adsorption data at
65 bar, were used to evaluate the transferability of MLP and LSTM models. MLP and LSTM
models were built on one type of nanomaterials (MOFs or COFs) and then evaluated on
the other type of nanomaterials (COFs or MOFs). The results are given in Figure 5.
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Figure 5. Transferability of MLP (A) and LSTM (B) models. The x-axis gives actual value and the
y-axis depicts predicted value. The values are the volumetric-based adsorption capacities in units
of cm3(STP)/cm3. The blue points are adsorptions of MOFs predicted by models trained on COFs,
while the red points are adsorptions of COFs predicted by models trained on MOFs.

As shown in Figure 5, the MLP and LSTM models trained on the MOFs accurately
predicted methane adsorptions of the COFs (the red points), with high r2 values of 0.9270
and 0.9514, respectively, indicating that the deep learning models generated from MOFs can
be used to predict the methane adsorption of COFs. In contrast, the MLP and LSTM models
trained on the COFs had much worse predictions on the MOFs (the blue points), resulting
in much lower r2 values of 0.5281 and 0.4365, respectively. Furthermore, the predicted
adsorption values are larger than the actual adsorption data for most of the 27,151 MOFs.

The observed higher transferability for the MLP and LSTM models trained on MOFs
than for the models trained on COFs could be associated with the larger size and wider
range of adsorption data; thus, more diverse structures of MOFs than COFs (Table 1), at
least partially.

The significantly larger predicted adsorptions compared to the actual data (the blue
points in Figure 5) could be caused by the structural differences between MOFs and COFs.
MOFs contain metal clusters, while COFs are made entirely from light elements, such as
H, B, C, N, and O. Therefore, the MLP and LSTM models trained on COFs do not have
information on heavy atoms, which are related to methane adsorption of MOFs, leading
to less accurate predictions from such models. In contrast, the MLP and LSTM models
trained on MOFs convey information on both heavy and light atoms, and thus, can be well
transferred to adsorption predictions of COFs. Among the 25 descriptors, 19 were found
to have smaller values for the COFs than that for the MOFs. For example, the average
mass density is 0.24 g/cm3 for the COFs, smaller than the 0.86 g/cm3 for MOFs. The atom
density for oxygen with double bonds is 0.09 for COFs, which is again smaller than the 5.71
for MOFs. Since MOFs and COFs have similar adsorption capacities, the model built on
COFs data with relatively smaller descriptors values would overestimate the adsorption
in MOFs.



Nanomaterials 2022, 12, 3376 13 of 17

3.4. Models Constructed Using a Mixture of MOFs and COFs

The above-described deep learning models were developed on the same type of
nanomaterials, MOFs or COFs. To examine the capability of deep learning to develop
accurate gas adsorption prediction models using multiple types of nanomaterials, we
developed and evaluated MLP and LSTM models using a mixture of 17,098 COFs and
27,151 MOFs. The model performance was evaluated using 100 holdout validations. In
a holdout validation, 5000 COFs and 5000 MOFs were randomly selected as the training
dataset to build MLP and LSTM models, and the remaining COFs and MOFs were used as
the test set to evaluate the performance of the MLP and LSTM models. This procedure was
repeated 100 times and the resulting 100 model performance measurements were used to
make a statistically robust evaluation of the MLP and LSTM models.

The methane adsorption predictions for the COFs and MOFs were compared in
Figures S34 and S35. The distributions of the performance metrics (R2, r2, sMAE, and
sRMSE) from the 100 holdout validations are shown in Figure 6. The LSTM model and
MLP models had similarly high prediction accuracies, average r2 = 0.9678, R2 = 0.9660,
sMAE = 0.0329, and sRMSE = 0.0514 for the LSTM models, and average r2 = 0.9660,
R2 = 0.9638, sMAE = 0.0350, and sRMSE = 0.0532 for the MLP models. Moreover, these MLP
and LSTM models performed better than the reported random forest model, r2 = 0.965,
demonstrating that deep learning can generate more accurate models based on mixtures of
nanomaterials for predicting methane adsorption capacities.
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The prediction accuracies of the MLP and LSTM models developed using mixtures
are close to those of the models developed using only MOFs (the blue curves in Figure 2).
For example, for predicting methane adsorption at 65 bar, the 100 holdout validations for
the LSTM and MLP models developed on MOFs yielded average r2 values of 0.9628, and
0.9624, respectively. The LSTM and MLP models built on COFs also had similarly high
performances in the 100 holdout validations with average r2 values of 0.9862 and 0.9866,
respectively. Although the structures of MOFs and COFs are different, 5000 structures of
MOFs or COFs are large enough to cover the similar structural spaces of 10,000 MOFs or
COFs. Thus, the models trained with a mixture of 5000 MOFs and 5000 COFs performed
equally as well as the models trained with 10,000 MOFs or COFs. Our results suggest that
increasing the number of MOFs or COFs to greater than 5000 would not much improve the
trained deep learning models.

4. Conclusions

In the previous work of Fanourgakis et al. [36], they introduced a new chemical
descriptor “atom type” in the machine learning algorithms to account for the chemical
characters of MOFs. They evaluated the traditional machine learning models (random for-
est) on different gases (carbon dioxide, methane) and found that using the new descriptors
could significantly improve the prediction accuracy. In our work, we took a step further
to investigate whether deep learning models could further improve the prediction of gas
adsorption capacities. We developed MLP and LSTM models to predict gas adsorption
capacities in a large number of topologically diverse MOFs and COFs. Both structural
descriptors and chemical descriptors were used to characterize the MOFs and COFs. The
performance of the deep learning models built with MLP and LSTM were evaluated using
10-fold cross validations and holdout validations. Our results confirmed that models with
both structural and chemical descriptors could accurately predict the gas adsorption capac-
ities of MOFs. We also found that deep learning models can further improve the prediction
accuracy by handling the complex relationship between gas adsorption capacities and MOF
structures, especially at low pressures. The LSTM and MLP models performed equally
well for predicting methane and carbon dioxide adsorptions at various pressures. The deep
learning models for predicting adsorption of gases at high pressures performed better than
the models for predicting adsorption at low pressures. However, when comparing to the
performance at high pressures, the performance at low pressures was still relatively low,
indicating that the use of deep learning models are not sufficient to improve predictions.
Therefore, independent descriptors more related to gas adsorption are needed to improve
deep learning models for predicting gas adsorption at low pressures. The comparison of the
MLP and LSTM models with the reported random forest models [36] demonstrated that the
deep learning models can accurately predict gas adsorption of MOFs and COFs and assist
in the designing of highly performing MOFs and COFs for gas adsorption. Furthermore,
we demonstrated the deep learning models built on MOFs can be used to predict gas
adsorption of other nanomaterials, such as COFs. Our results also indicate that accurate
deep learning models can be developed using mixtures, demonstrating the feasibility of
integrating diverse nanomaterials for deep learning.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12193376/s1. Supporting Table S1: Hyperparameter tuning
in long short-term memory (LSTM); Table S2: Hyperparameter tuning in multilayer perceptron (MLP).
Table S3: Holdout validations performance of models with and without accessible pore volumes for
predicting methane adsorption at 1 bar. Figure S1: Workflow of developing deep learning models.
Figure S2: Workflow of 10 iterations of 10-fold cross validation. Figure S3: Workflow of 100 iterations
of holdout validation. Figures S4–S11: Performance of MLP/LSTM model in 10-fold validations for
methane adsorption at 65, 35, 5.8, and 1 bar. Figures S12–S19: Performance of MLP/LSTM model in
100 repeated holdout validations methane adsorption at 65, 35, 5.8, and 1 bar. Figures S20 and S21:
Performance of MLP/LSTM model using 26 descriptors in 100 repeated holdout validations methane
adsorption at 1 bar. Figures S22–S27: Performance of MLP/LSTM model in 10-fold validations for
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carbon dioxide adsorption at 2.5, 0.5, and 0.05 bar. Figure S28–S33: Performance of MLP/LSTM
model in 100 repeated holdout validations for carbon dioxide adsorption at 2.5, 0.5, and 0.05 bar.
Figure S34 and S35: Performance of MLP/LSTM model in 100 repeated holdout validations for
methane adsorption in the mixture of MOFs and COFs at 65 bar.
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