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Abstract: The continuous growth of multidrug-resistant bacteria due to the overuse of antibiotics
and antibacterial agents poses a threat to human health. Silver nanoparticles, silica-based materials,
and graphene-based materials have become potential antibacterial candidates. In this study, we
developed an effective method of enhancing the antibacterial property of graphene oxide (GO) by
growing nanosilica (NS) of approximately 50 nm on the graphene oxide (GO) surface. The struc-
tures and compositions of the materials were characterized through powdered X-ray diffraction
(P-XRD), transmission electron microscopy (TEM), scanning electron microscopy coupled with en-
ergy dispersive X-ray spectroscopy (SEM-EDS), ultraviolet–visible spectroscopy (UV–VIS), dynamic
light scattering (DLS), Raman spectroscopy (RM), Fourier-transform infrared spectroscopy (FTIR),
Brunauer–Emmet–Teller (BET) surface area, and pore size determination. The silver nanoparticles
(AgNPs) with an average diameter of 26 nm were functionalized on the nanosilica (NS) surface. The
composite contained approximately 3% of silver nanoparticles. The silver nanoparticles on nanosilica
supported over graphene oxide (GO/NS/AgNPs) exhibited a 7-log reduction of Escherichia coli and a
5.2-log reduction of Bacillus subtilis within one hour of exposure. Both GO/NS and GO/NS/AgNPs
exhibited substantial antimicrobial effects against E. coli and B. subtilis

Keywords: silver nanoparticles; nanosilica; graphene oxide composites; antibacterial effect;
Escherichia coli; bacillus subtilis

1. Introduction

Multidrug-resistant bacteria have become a global health threat in the 21st century [1].
Antibiotic resistance has caused common infections to become more difficult to treat and
has led to expensive healthcare costs [1]. In order to reduce the dependency on antibi-
otic treatments which are ineffective against resistant bacterial strains, various studies
have been conducted to develop novel materials to treat and prevent the growth of these
pathogens [2–5]. Among those materials, silver nanoparticles appear to have the most
potential and be the most attractive solution due to their antibacterial properties [6,7]. How-
ever, some studies have shown that bacteria can develop resistance to silver nanoparticles
after repeated exposure [8,9]. The resistant strains produced adhesive flagellum that caused
the nanoparticles to aggregate, resulting in a reduction in the surface area and antibacterial
effect [8,9].

In previously reported studies, support templates or capping agents were often used
to improve the size, shape, and stability of nanoparticles [10–14]. It is important to control
the surface properties, morphology, and functionality for bio-medical applications [15–17].
Among the materials, silica-based and graphene materials are excellent support templates
for enhancing antimicrobial activity [18,19]. These materials are well-known in medicine
and biotechnology [19–21]. In a study from Liu et al., silver nanoparticles were loaded on to
the graphene oxide and a large silicate template, but the synthesis process required heating
which caused the graphene oxide to reduce [22]. Previous research reported that graphene
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oxide had a higher antibacterial ability than that of the reduced form [23]. Additionally, the
large mesoporous silica template was less effective than small-sized silica nanoparticles
in improving the antimicrobial property of the composite [24]. Based on different review
studies, the combination of graphene oxide, nanosilica, and silver nanoparticles was neither
synthesized nor tested for antibacterial activity [25,26]. Furthermore, the method which
we applied in this study to grow nanosilica on graphene oxide was different from other
reported methods [27–29]. In a Yang et al. study, the SiO2 was functionalized with an
amine group and then loaded on to the graphene oxide; the pH of the synthesis process was
required to be 7 for the coupling process to be successful [27]. Another study by Kou and
Gao grew the silica nanoparticles on the graphene oxide with the assistance of ammonia,
but the resulting product had to be stored in alcohol [28]. In our study, our product was
formed in a basic condition and was stored without using any solvent.

In our study, we grew the nanosilica (NS) on graphene oxide (GO) with a modi-
fied method to avoid the formation of a large silicate sandwich-like layer. The silver
nanoparticles (AgNPs) were then loaded on to the nanosilica (NS) to form the compos-
ite (GO/NS/AgNPs). The structure and composition of GO/NS and GO/NS/AgNPs
composites were characterized via P-XRD, TEM, SEM-EDS, UV–VIS, DLS, Raman spec-
troscopy, FTIR, and BET surface area measurements. The antibacterial ability of GO/NS
and GO/NS/AgNPs against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) was
examined using the spread plate method and zone inhibition test.

2. Experimental
2.1. Synthesis of Nanosilica Grown on Graphene Oxide

Graphene oxide (GO) was synthesized by following the method reported by Bhawal
et al. [30]. We modified the Liu et al. method to synthesize nanosilica (NS) on GO [31]. A
total of 50 mL of GO solution was prepared at a 2:1 ratio of GO and deionized water (DI, 18
MΩ). An amount of 500 mg of CTAB (Acros Organics, Geel, Belgium, 99%) and 20 mg of
sodium hydroxide (Sigma Aldrich, St. Louis, MO, USA, 97%) were mixed together with
the GO solution through sonication. Then, 0.5 mL of tetraethyl orthosilicate (TEOS) (Tokyo
Chemical Industry, Tokyo, Japan, 96%) was added to the above mixture and heated in a
shaking water bath overnight at 40 ◦C. The solution was refluxed in 50 mL of hydrogen
chloride and ethanol (1% v/v) for 3 h to remove the CTAB template. The collected GO/NS
was washed with ethanol and deionized water (DI, 18 MΩ).

2.2. Synthesis of Silver Nanoparticles and Silver Nanoparticles Supported over
Nanosilica/Graphene Oxide Composites

A total of 50 mL of silver nitrate (Sigma-Aldrich, Burlington, Massachusetts, 99%)
(0.001 M) was prepared and heated until boiling. Then, 5 mL of 1% w/w sodium citrate
was added slowly to the boiling solution. After the solution turned a yellow color, the
solution was cooled to room temperature (293 K) and then centrifuged at 10,000 rpm for
10 min to remove unreacted solutes. Then, 2 mL of colloidal silver nanoparticles (AgNPs)
was added to 10 mg of GO/NS. The mixture was sonicated for 15 min and then dried
at ambient temperature (293 K) to obtain silver nanoparticles supported over GO/NS
(GO/NS/AgNPs).

2.3. Characterization

The silver nanoparticles were examined via ultraviolet–visible spectroscopy (UV–VIS,
Shimadzu UV-2600). Approximately 3.5 mL of colloidal AgNPs was added to a cuvette.
The sample was then scanned from 600 nm to 300 nm.

The composite’s crystal structures were characterized by using powdered X-ray diffrac-
tion (P-XRD, Rigaku Miniflex II, Cu Kα X-ray, nickel filters). Each sample was spread flat
on a sample holder. The P-XRD of each material was scanned from 5◦ to 90◦.

The functional groups of GO, GO/NS (before and after removing CTAB), and GO/NS/
AgNPs were confirmed through Fourier-transform infrared spectroscopy (FTIR, Shimadzu
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IR-Tracer 100). A small amount of the sample was placed on the ATR attachment of FTIR,
and then each sample was scanned from 4000 cm−1 to 500 cm−1. The chemical structures
of GO/NS and GO/NS/AgNPs were also verified by using a Raman microscope and
spectrometer (Renishaw, ISC3-1233). The samples were spread flat on the sample slides.
The Raman microscope was used to locate the samples as well as adjusting the resolution.
After that, each sample was measured from 3000 cm−1 to 150 cm−1.

In TEM analysis, each sample was dispersed and sonicated in 5 mL of DI water. A few
drops of the solution were added to a Cu grid (300 mesh). The grid was dried in the oven at
80 ◦C overnight. Then, each grid was scanned via transmission electron microscopy (TEM,
JEM-2100F).

The size and dispersity of graphene, silicate nanoparticles, and silver nanoparticles
were analyzed via dynamic light scattering (DLS, Brookhaven Instrument, Nanobrook
90Plus). Before analyzing via DLS, the sample was prepared by mixing it with DI water
(1 mg/mL) and sonicating it for an hour to fully dissolve the sample. Then, the prepared
sample was filtered to avoid undissolved particles. The solutions were then added to the
quartz curvette and then scanned through DLS.

The surface structure image of GO/NS/AgNPs was obtained via scanning electron
microscopy (SEM, JEOL JSM-6060LV). The weight ratios among elements and elemental
mapping images were determined through energy-dispersive X-ray spectroscopy (EDS,
Thermo Scientific UltraDry). The nitrogen adsorption–desorption isotherm, BET surface
area, and pore size of each composite were measured by using an Accelerated Surface
Area and Porosimetry System (Micromeritics -ASAP 2020) at 77.4 K. The composites were
degassed for approximately 12 h before being analyzed with the ASAP system.

2.4. Antibacterial Activity Assay

The method by Rajapaksha et al. was applied to test the antibacterial ability of GO/NS
and GO/NS/AgNPs against E. coli and B. subtilis [32]. All tools and glassware were
sterilized by autoclaving at 120 ◦C. The sterile LB broth medium was inoculated with either
E. coli or B. subtilis overnight at 37 ◦C in a shaking incubator. A total of 10 mg of the
composite was mixed with 9 mL of 1x PBS buffer. The control only contained 9 mL of 1x
PBS buffer. An amount of 1 mL of bacterial solution was transferred to both the control
tube and the tubes that contained composites. A serial dilution method was conducted
by transferring 1 mL of stock solution from the control tubes or composite tubes to tubes
containing 9 mL of PBS solution until it reached the fifth diluent. Then, 0.1 mL of the
solution in the diluent was transferred and spread on agar plates which were incubated
overnight at 37 ◦C. The colony forming unit (CFU) was determined and calculated via CFU
scope v1.6 software. The images of colony forming unit (CFU) plates for the control and
each material are shown in the supplementary material Figures S1 and S2. The test was
repeated twice. The data were statistically analyzed by ANOVA.

The zone inhibition test against E. coli and B. subtilis followed the Kirby–Bauer disk
diffusion susceptibility test protocol. An average of 5.5 mg of each sample (GO/NS,
GO/NS/AgNPs) was loaded on to the sterile disk. The control disk only received sterile
DI water. The disks were placed on to the agar plates that were inoculated with bacteria
and streaked. The plates were incubated overnight at 37 ◦C. The zone of inhibition of
each composite disk was measured using a caliper and compared to the control disk. The
images of the disk diffusion experiment for the control and each material are depicted in
the Supplementary Material Figure S3.

3. Result and Discussion

Figure 1 shows the P-XRD spectra of GO/MS and GO/NS/AgNPs. The peaks at
10◦ and 20◦ are indicative of the (001) plane of GO [33]. The nanosilica (NS) had peaks
at 10◦ and 21◦ which corresponded with the (001) and (002) planes (JCPDS 29-0085). The
planes were consistent with other literature [33,34]. After coupling with the AgNPs, the
characteristic peaks of the AgNPs can be found at 38◦, 44◦, 64◦, and 77◦. These peaks
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corresponded with the (111), (200), (220), and (311) lattice planes of AgNPs (JCPDS 65-2871).
The results were consistent with previously reported studies [35,36]. The UV–VIS spectrum
in Figure 2 shows absorbance at 437 nm, which confirms the presence of AgNPs [35].
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Figure 1. P-XRD of GO/NS/AgNPs and GO/NS.
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Figure 3 depicts the functional groups of GO, GO/NS, and GO/NS/AgNPs. GO
showed broad peaks at 3410 cm−1 which corresponds with the O-H stretching group.
The peaks at 1627 cm−1 and 1049 cm−1 indicate the presence of C=C and C-O stretching
groups. These results were consistent with the characterization of GO reported in previous
literature [37,38]. The peak at 1049 cm−1 of GO/NS and GO/NS/AgNPs was sharper due to
the presence of Si-O-Si. This phenomenon was reported in a Nodeh et al. study [39]. Before
removing the CTAB template, the material showed bands at 2916 cm−1 and 2846 cm−1

which were contributed to by C-H stretching vibration of the methyl and methylene group
of CTAB [40]. The small band at 1473 cm−1 was attributed to the C-H bending vibration
of CTAB [40]. After removing the CTAB, those three bands (2916 cm−1, 2846 cm−1, and
1473 cm−1) disappeared. The result indicated that the reflux method completely eliminated
the CTAB.
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Figure 3. FTIR of GO, GO/NS before and after removing CTAB, and GO/NS/AgNPs.

The chemical structures of GO/NS and GO/NS/AgNPs were further analyzed using
Raman spectroscopy. Figure 4 shows the Raman spectra of GO/NS and GO/NS/AgNPs.
The G band and the D band of GO were observed at 1607 cm−1 and 1360 cm−1. In a study
of Perumbilavil et al., the G band of GO ranged from 1607 cm−1 to 1595 cm−1, while the D
band of GO ranged from 1365 cm−1 to 1355 cm−1 [41]. The G band was contributed to by
the C-C stretching. The D bands formed and sharpened after the graphite was oxidized
and caused a reduction in the sp2 carbon domain [34]. Two bands at 2943 cm−1 and
2716 cm−1 were attributed to the silicate nanoparticles. In the research of Carboni et al.,
these mesoporous silicates exhibited bands at 2945 cm−1 and 2706 cm−1 [42]. The bands of
silver nanoparticles were tiny due to their low concentration within the composite. The
peaks at 1147 cm−1 and 815 cm−1 corresponded to the C-H bending of AgNPs’ capping
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agent. The Raman spectrum in a study by Kora et al. showed the C-H groups in their
synthesized nanoparticles appeared in the range of 1165 cm−1–803 cm−1 [43].
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The SEM image (Figure 5a) depicts the micrograph of GO/NS/AgNPs. The result of
EDS (Figure 5b) shows that the composite contained approximately 3% (wt %) of AgNPs.
The ratios of AgNPs to GO and NS were 1:5 and 1:10, respectively. The elemental mapping
images across the surface of GO/NS/AgNPs are represented in Figure 6, which shows
that both Si (silica nanoparticles) (Figure 6c) and Ag (silver nanoparticles) (Figure 6d) were
homogeneously distributed. Figure 6b,c depict similar distribution patterns which were
due to the Si-O-Si bonding of the silicate nanoparticles.
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Figure 6. Elemental mapping of carbon (a), oxygen (b), silica (c), and silver (d) of GO/NS/AgNPs.

Figure 7a,b depict the TEM of silicate nanoparticles grown on graphene oxide.
Figure 7c,d show the TEM images of AgNPs dispersed on the NS at scales of 20 nm
and 10 nm, respectively. The images indicate that AgNPs were well-dispersed and exhib-
ited no aggregation. It appeared that the materials highly supported and evenly distributed
the AgNPs. The particle size distribution of GO/NS and GO/NS/AgNPs is represented in
Figure 8a,b. Figure 8a consisted of two peaks which represented the silicate nanoparticles
and graphene oxide. Silicate nanoparticles and graphene oxide had average sizes of 85
nm and 527 nm. In Figure 8b, there were three peaks that were contributed to by silver
nanoparticles, silicate nanoparticles, and graphene oxide. The first peak indicated that silver
nanoparticles had an average diameter of 26 nm. The second and third peaks represented
the silicate nanoparticles and graphene oxide with sizes of 109 nm and 731 nm, respectively.
Figure 8a,b indicated that the GO had a size range from 527 nm to 731 nm, while the
size of silicate nanoparticles ranged from 85 nm to 109 nm. The polydispersity indexes of
GO/NS and GO/NS/AgNPs were reported to be 0.218 and 0.294, respectively. Based on
ISO standard classification (ISO 22412:2017), the particles of GO/NS and GO/NS/AgNPs
were monodispersed.
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Figure 7. (a) TEM depicts NS grown on GO (scale bar of 200 nm); (b) TEM of NS grown on GO (scale
bar of 100 nm); (c) TEM depicts the distribution of AgNPs on the nanosilica (scale bar of 10 nm);
(d) TEM shows single AgNP on the nanosilica (scale bar of 5 nm).
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The accelerated surface area and porosimetry system was applied to measure the BET
surface area and the porosity of GO/NS and GO/NS/AgNPs. The data are represented
in Table 1. The BET surface area of GO/NS was higher than that of GO/NS/AgNPs.
It was possible that the AgNPs blocked the pores of GO/NS and caused a reduction in
pore volume and pore size. The data also showed that the BJH adsorption pore volume
(0.11 cm3/g) and pore size (7.77 nm) of GO/NS were higher than that of GO/NS/AgNPs.
Based on the IUPAC classification, both GO/NS and GO/NS/AgNPs are mesoporous
materials.
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Table 1. Brunauer–Emmett–Teller (BET) surface areas, Barret–Joyner–Halenda (BJH) pore volumes,
and BJH pore sizes of GO/NS and GO/NS/AgNPs.

Composite BET Surface Area
(m2/g)

BJH Adsorption
Pore Volume (cm3/g)

BJH Adsorption
Pore Size (nm)

GO/NS 62.09 0.11 7.77

GO/NS/AgNPs 25.83 0.04 7.08

Figure 9a shows the antibacterial effect over time of GO/NS and GO/NS/AgNPs
against E. coli. During the first hours, both materials achieved approximately a 7-log
reduction of E. coli. After two hours, both materials achieved an 8-log reduction. After
three hours, GO/NS’s antibacterial effect appeared to reduce and dropped back to 6-log,
while GO/NS/AgNPs maintained the 8-log reduction. Based on the ANOVA analysis, both
GO/NS and GO/NS/AgNPs were significantly different from the control (F(2,11) = 9.10,
p = 0.01). These results indicate that GO/NS and GO/NS/AgNPs significantly reduced the
concentration of E. coli. The average E. coli log reduction of GO/NS/AgNPs was higher
than that of GO/NS after 3 h.
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In Figure 9b, the log reduction of B. subtilis for GO/NS (4.3-log) was lower than that
of GO/NS/AgNPs (5.2-log) after an hour. After 3 h, the log reduction of GO/NS/AgNPs
against B. subtilis was higher than that of GO/NS. There was a significant difference in the
B. subtilis concentration between the composites and control (F(2,11) = 8.71, p = 0.02).

When the effectiveness of both materials was compared against E. coli and B. subtilis,
the results indicated that the inactivation of B. subtilis was significantly lower than the
inactivation of E. coli (F(5,23) = 8.34, p = 0.0006). Bacteria tend to form spores to help them
survive in harsh environmental conditions. It has been shown in previous studies that
the spores of B. subtilis have a high resistance to radiation, heat, and chemicals [44]. The
sturdiness of B. subtilis might suggest the difference in log reduction results between B.
subtilis and E. coli when exposed to GO/NS and GO/NS/AgNPs. This will attract further
future studies to explain the phenomenon. These results demonstrated the potential of
GO/NS and GO/NS/AgNPs in sterilizing resistant bacterial strains.

From Figure 5, the results indicate that more than 99% of E. coli and B. subtilis popu-
lations were killed by GO/NSN and GO/NSN/AgNPs within one hour. Table 2 shows
the bacterial log reduction difference between graphene oxide, graphene oxide composites,
mesoporous silica, and silver composites. GO/NS and GO/NS/AgNPs both exhibited
higher log reduction of Gram-negative and Gram-positive bacteria than other materials
within 1 h. A similar result was reported in a study by Nguyen et al. where the material
rGO-Ag achieved antibacterial effectiveness against Gram-negative and Gram-positive
bacteria after 24 h. Their material took a longer time to achieve effectiveness, possibly due
to the loss of functional groups on the surface of the graphene oxide [45]. In the Nguyen
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et al. study, it was observed that the graphene oxide lost the C=O and O-H carboxyl group
after being reduced [45].

Table 2. Bacterial log reduction comparison of different materials from various studies.

Materials Time Length
Log Reduction

(Gram-Negative
Bacteria)

Log Reduction
(Gram-Positive

Bacteria)
Reference

rGO-Ag 1 24 h 5 5 [45]

rGO-nAg 1 2–2.5 h 1.31 1 [46]

rGO 2 2–2.5 h 0.4 0.4 [46]

nAg 2–2.5 h 0.4 0.4 [46]

AgNC-MSNs 3 12 h 5.2 3.5 [47]

Ag/PVAGr 4 1 h 5 ~3 [48]

TA-GA 5 4 h Less than 0.5 4 [49]

GO 6 3 h 0.5–1 NA [50]

GO/CeO2
7 3 h 6 NA [50]

Silver coated PMMA
8 microsphere 24 h 4 4 [51]

GO/NS 1 h ~7 4.3 This work

GO/NS/AgNPs 1 h ~7 5.2 This work
1 Reduced graphene oxide–silver nanoparticles, 2 reduced graphene oxide, 3 silver nanoclusters decorated
mesoporous silica nanoparticles, 4 silver/polyvinyl alcohol/graphene, 5 tannic acid–graphene aerogel, 6 graphene
oxide, 7 graphene oxide–cerium oxide nanoparticles, and 8 poly(methylmethacrylate).

Table 3 indicates the inhibition capabilities of GO/NS and GO/NS/AgNPs against
E. coli and B. Subtilis. The inhibition effect of GO/NS/AgNPs was higher than GO/NS.
Both composites showed a stronger inhibition effect against B. Subtilis than that against E.
coli. It was demonstrated in the previous study that the silica nanoparticles significantly
boosted the antibacterial property of silver nanoparticles [46]. These results highly support
the capability of the composites in suppressing the growth of pathogens.

Table 3. Zone of inhibition diameter (mm) of GO/NS and GO/NS/AgNPs against E. coli and
B. subtilis.

Species
Zone of Inhibiton Diameter (mm)

GO/NS GO/NS/AgNPs

E. coli 70 ± 1.0 90 ± 1.0

B. subtilis 80 ± 1.0 100 ± 1.0

In a Bhargav et al. study, the inhibition zone diameters of antibiotics, including
Cefixime, Cefotaxime, Gatifloxacin, and Levofloxacin, against Gram-negative bacteria were
20.76 mm, 25.04 mm, 25.10 mm, and 22.71 mm, respectively [52]. In another study, the
amoxicillin exhibited inhibition zones of 35.50 mm and 39.40 mm against some Gram-
positive bacteria such as Streptococcus aureus and Bacillus subtilis [53]. When comparing
the results of this literature with Table 3, it showed a promising potential of GO/NS and
GO/NS/AgNPs for various future biomedical applications including dental filling, wound
treatment, and medical coating [54,55].

4. Conclusions

The novel GO/NS/AgNPs composite was successfully synthesized and compared
with the GO/NS. The GO/NS/AgNPs contained 3% of silver nanoparticles attached to the
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nanosilica grown over graphene oxide. The composites in this study showed extraordinarily
bacterial inactivation over time. Both GO/NS/AgNPs and GO/NS achieved more than
99% antibacterial efficiency against E. coli and B. subtilis. Through the zone of inhibition
studies, it is highly suggested that GO/NS/AgNPs have a high potential to be applied as
an effective antibacterial coating for medical equipment and other surfaces. The composite
may become attractive for future biocompatibility studies to explore further applications in
the medical field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12193341/s1, Figure S1: Examples of Colony Forming Unit
(CFU) plate count images of (A) The control E. coli samples from 0 h to 3 h, (B) The E. coli +GO/NS
from 0 h to 3 h, (C) The E. coli + GO/NS/AgNPs from 0 h to 3 h; Figure S2: Examples of Colony
Forming Unit (CFU) plate count images of (A) The control B. subtilis samples from 0 h to 3 h, (B) The
B. Subtilis + GO/NS from 0 h to 3 h, (C) The B. subtilis + GO/NS/AgNPs from 0 h to 3 h; Figure S3:
Examples of Kirby-Bauer disk diffusion images of (A) GO/NS and GO/NS/AgNPs against E. coli,
(B) GO/NS and GO/NS/AgNPs against B. subtilis.
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