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Abstract

:

In this work, Cu-substituted MgAl2O4 ceramics were prepared via solid-state reaction. The crystal structure, cation distribution, and microwave dielectric properties of Mg1−xCuxAl2O4 ceramics were investigated. Cu2+ entered the MgAl2O4 lattice and formed a spinel structure. The substitution of Cu2+ ions for Mg2+ ions contributed to Al3+ ions preferential occupation of the octahedron and changed the degree of inversion. The quality factor (Qf) value, which is correlated with the degree of inversion, increased to a maximum value at x = 0.04 and then decreased. Ionic polarizability and relative density affected the dielectric constant (εr) value. The temperature coefficient of the resonant frequency (τf) value, which was dominated by the total bond energy, generally shifted to the positive direction. Satisfactory microwave dielectric properties were achieved in x = 0.04 and sintered at 1550 °C: εr = 8.28, Qf = 72,800 GHz, and τf = −59 ppm/°C. The Mg1−xCuxAl2O4 solid solution, possessing good performance, has potential for application in the field of modern telecommunication technology.
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1. Introduction


The microwave dielectric ceramics have been extensively applied in various fields, including fifth-generation wireless systems, intelligent transmission systems, and ultrahigh-speed wireless local area networks [1,2,3]. In the application of millimeter waves, there is an urgent requirement for microwave dielectric ceramics with excellent performance in the following areas: a high quality factor (Qf) to enable microwave frequency selectivity, a low dielectric constant (εr) to shorten the delay time of signal propagation, and a near-zero temperature coefficient of resonant frequency (τf) to ensure the stability of frequency against temperature changes [4,5]. However, few single-phase materials can meet these requirements simultaneously due to the mutual restrictions of the three parameters. In general, ideal εr and Qf values can be obtained by selecting material systems, whereas the near-zero τf value is tailored through two materials with opposite τf values [6,7,8,9]. However, this approach tends to deteriorate the εr and Qf values.



Previous studies have found that the τf value is related to octahedral distortion in some ceramic crystals [10,11]. Microwave dielectric ceramics with superior τf values can be obtained by adjusting the distortion of the octahedron without deteriorating the εr and Qf values [4]. Therefore, it is important to improve the microwave dielectric properties utilizing the crystal structure. In general, the spinel structural degrees of freedom, such as the cell parameters, the oxygen fractional coordinates, and degrees of inversion, can be tailored via substitution [12]. MgAl2O4 is known to have a typical cubic spinel belonging to symmetry group Fd-3m (227); the molecular formula is [Mg1−λAlλ]IV[Al2−λMgλ]VIO4, where λ value, which is related to the degree of inversion [13,14], represents the occupation of Al3+ cations at tetrahedral site.



MgAl2O4 ceramic, which generally exhibits a Qf value of ~68,900 GHz (the highest Qf value is over 200,000 [15]) and a low εr value (~8.75), is one of the candidate material for a millimeter-wave communication substrate [16]. However, it has a large negative τf value (~−75 ppm/°C). It has been reported that MgAl2O4-based composite dielectric ceramics, such as MgAl2O4-TiO2 and MgAl2O4-(Ca0.8Sr0.2)TiO3, have near-zero τf values [6,7]. However, the εr and Qf values are also deteriorated in this system. It is worth mentioning that the τf value in MgAl2O4 can be improved through the crystal structure [17,18]. Previously, in MgAl2O4 ceramics, it has been shown that the enhancement in Qf value corresponds to the cation distribution [19]. Moreover, the degree of inversion in MgAl2O4 ceramics, prepared by the solid-state reaction or molten-salt reaction routes, has also been investigated [15]. A high degree of inversion represents a high Qf value, and the preferential occupation of Al3+ could enhance the covalency of M-O bonds in a [MO4] tetrahedron of MgAl2O4 (M = Mg and Al). Consequently, the cation distribution of Al3+ in MgAl2O4 can be discussed to ameliorate the microwave dielectric properties.



In general, the ionic radius of Cu2+ ion is close to that of Mg2+ ions [4,20,21], which is beneficial for forming Mg1−xCuxAl2O4 solid solutions. Additionally, a significant Jahn–Teller effect can be observed when Cu2+ ions occupy the octahedral site in a spinel structure [22]. This can contribute to the regulation of the microstructure of MgAl2O4. In addition, CuO can also reduce the sintering temperature of ceramics [4,21]. Therefore, in this work, the Cu2+ ion was considered as a substitution of the Mg2+ ion in MgAl2O4. Mg1−xCuxAl2O4 ceramics were synthesized through a solid-state route. The phase composition, microstructure, and microwave dielectric properties were investigated in detail.




2. Experimental Procedure


Mg1−xCuxAl2O4 (x = 0, 0.04, 0.08, 0.12, 0.16, and 0.20) ceramics were synthesized via the conventional solid-state route. Analytic-grade purity MgO, CuO, and Al2O3 powders (Shanghai Macklin Biochemical Co., Ltd., Shanghai, China) with the range of particle size at 45–80 μm were used as starting materials, which were weighed and wet-mixed in deionized water using zirconia balls in a plastic container at 300 rpm for 4 h. The obtained slurries were dried and calcined in alumina crucibles at 1450 °C for 4 h. Subsequently, the calcined powders were ground into a fine form and pressed under a uniaxial pressure of 10 MPa into cylindrical disks with 12 mm diameter and 5–6 mm height. Samples were sintered at temperature levels ranging from 1450 to 1600 °C for 4 h.



To confirm the crystalline phase of the Mg1−xCuxAl2O4 ceramics, X-ray diffraction (XRD, Miniflex600, Rigaku, Tokyo, Japan), using Cu Kα radiation (λ = 1.54 Å) at room temperature, was measured in the 2θ angle range between 10° and 120° with a step of 0.01°, and counting time for 5 s per step. Based on the XRD results, the crystal structure was analyzed using the Rietveld refinement method using FullProf software (FullProf Suite May2021 64b, The FullProf Team, Grenoble, France) [23]. The microstructures and morphologies of the samples were analyzed by a scanning electron microscope (SEM, JSM-6490; JEOL, Tokyo, Japan) at an accelerating voltage of 20 kV. The Al3+ ion distributions of Mg1−xCuxAl2O4 were investigated through 27Al solid-state magic-angle spinning nuclear magnetic resonance (MAS-NMR) with a spinning frequency of 12 kHz (Avance II 600 MHz, Bruker, Fällanden, Switzerland).



Microwave dielectric properties (εr, Qf, and τf) of these samples were measured by the Hakki–Coleman dielectric resonator with a vector network analyzer (N5230A, Agilent Technologies, Santa Clara, CA, USA). The τf value was calculated based on the resonant frequencies at 25 and 85 °C:


   τ f  =    f  85   −  f  25     60 ×  f  25     ×   10  6   (    ppm  /  ° C    )   



(1)




where    f t    represents the resonant frequency at t °C.




3. Results and Discussion


Figure 1 shows the microwave dielectric properties of Mg1−xCuxAl2O4 ceramics sintered at 1450–1600 °C. Good microwave dielectric properties were obtained at x = 0.04 with sintering at 1550 °C: εr = 8.28, Qf = 72,800 GHz, and τf = −59 ppm/°C. With the sintering temperature at 1550 °C, the τf value experienced a significant increase in the negative direction to about −59 ppm/°C at 0 ≤ x ≤ 0.04; then, the rapid fall was witnessed and a steady rise was observed at 0.08 ≤ x ≤ 0.20. Figure 1b shows the εr value, which increased first up to x = 0.12 and then presented a modest downward trend when the sintering temperatures were 1450 and 1500 °C, whereas it remained virtually unchanged at 1550 and 1600 °C. In addition, it is well known that Qf values are determined by both intrinsic and extrinsic factors. Intrinsic factor is mainly caused by lattice vibration, while extrinsic factor is dominated by grain boundary, secondary phase, and densification [24,25]. With the increase in the x value, the Qf values of the samples with different sintering temperatures increased initially and then showed a steady drop. The maximum Qf value was acquired at x = 0.04 with sintering at 1550 and 1600 °C. Compared with previous studies (see Table 1) [6,15,17,18,26,27,28,29,30,31,32,33], the sintering temperature and τf value of this work can be improved. However, Qf is lower than the best reported value [15], one of the reasons may be the different experimental conditions, such as preparation method, sintering temperature and ball milling time, etc. To understand the microstructure and microwave dielectric properties of Mg1−xCuxAl2O4 ceramics, the phase composition, relative density, and cation distribution were investigated in this study.



XRD analysis is often carried out to identify phases. The XRD patterns of Mg1−xCuxAl2O4 ceramics sintered at 1550 °C are illustrated in Figure 2. All the diffraction peaks can be assigned to those for the standard MgAl2O4 (PDF # 21-1125) pattern with a space group Fd-3m (227). Meanwhile, there is no apparent peak corresponding to any additional secondary phase containing Cu or structural phase transitions observed from Figure 2, indicating the successful formation of Mg1−xCuxAl2O4 solid solutions [34].



Figure 3 displays the Rietveld refinement of the XRD patterns for Mg1−xCuxAl2O4 ceramics, and the refinement results are presented in Table 2. Both the Bragg positions models are well within the standard indexed peaks, indicating that the refinement result is acceptable. According to the refinement, the Cu2+ ions occupied the tetrahedral site, with the exception of a small amount of the octahedral site. Figure 4 shows the schematic diagram of a crystal structure from MgAl2O4 to Mg1−xCuxAl2O4. The Mg2+ and Cu2+ ions significantly occupy the 8a Wyckoff position, and the Al3+ ions mainly occupy the 16d Wyckoff position. They form a [Mg(T)/Cu(T)O4] tetrahedron and an [Al(M)O6] octahedron, respectively. In general, Al3+ ions preferentially occupy tetrahedra, which can effectively improve the Qf value (~232,301 GHz) [19,26]. However, Al3+ ions mainly occupy the octahedron, which is consistent with low Qf values (~72,800 GHz) of the Mg1−xCuxAl2O4 system. The cell parameters showed a nonlinear trend with an increase in Cu2+ ions content; that is, they first increased, then decreased, and finally increased. On the one hand, the radius of a Cu2+ ion (r = 0.73 Å) is slightly larger than that of a Mg2+ ion (r = 0.72 Å) [20], which may have led to the increase in cell parameters. On the other hand, the Cu2+ ions’ octahedral coordination has a significant Jahn–Teller effect. The Jahn–Teller distortion can enhance the polarizing effect of Cu2+ ions [22]. Therefore, the hybridization of Cu2+ ions is responsible for a decrease in average cell parameters [22]. Consequently, the two mechanisms were in competition with each other, resulting in a nonlinear variation trend of cell parameters. The cation distribution, which is a significant variation, had no obvious effect on the microwave dielectric properties.



For further analysis of the effects of the introduction of Cu2+ ions on microwave dielectric properties, the variations in the cation distribution in Al3+ were measured via the 27Al solid-state MAS-NMR measurement, which was used to evaluate the Al3+ sites in Mg1−xCuxAl2O4 ceramics. Figure 5a shows the 27Al NMR spectra of Mg1−xCuxAl2O4 ceramics sintered at 1550 °C. The spectra indicate three signals with chemical shifts at ca. 10, 17, and 71 ppm. They correspond to octahedrally coordinated aluminum (AlO6), pentahedrally coordinated aluminum (AlO5), and tetrahedrally coordinated aluminum (AlO4), respectively [35,36]. For the emergence of AlO5, a dynamic disorder occurred between the twisted tetrahedral structure and octahedral structure and froze some Al ions stuck in the pentahedral structure at high temperatures [37]. In Figure 5a, the peak intensities of AlO4 at 71 ppm gradually weakened, whereas the peaks of AlO6 at 10 ppm and AlO5 at 17 ppm first increased and then decreased with the increase in Cu2+ content. This result indicated that the redistribution of Al3+ ions in the lattice occurred by the substitution of Cu2+ for Mg2+. Moreover, the peaks transferred to low chemical shifts on account of the second-order quadrupolar-order shifts with the increase in Cu2+ content [31,38]. On the whole, the peak intensity of AlO6 is significantly larger than that of AlO4, which indicates that Al3+ ions mainly occupied octahedral sites. This was in accordance with the XRD results. The different peaks indicated the existence of an intermediate spinel structure in the system. The intermediate spinel structure can be described as [Mg1−λ2+Alλ3+]IV[Al2−λ3+Mgλ2+]VIO4, where λ is the degree of the inversion of spinel structure, corresponding to the fraction of Al3+ ions in the tetrahedral site. The value of λ ranges from 0 (normal spinel: (Mg2+)IV(Al23+)VIO4) to 1 (inverse spinel: (Al3+)IV(Al3+Mg2+)VIO4) [13,14]. It is known that the microwave dielectric properties are related to λ [14,15,39]. The value of λ can be calculated with the following formula [40]:


  λ =   2 I  (    AlO  4   )    I  (    AlO  4   )  + I  (    AlO  6   )     



(2)




where I(AlO4) and I(AlO6) are the intensities of tetrahedral and octahedral resonances, respectively. The λ values are displayed in Figure 5b. Considering the trend of λ in Figure 5b, the Al3+ cations preferentially occupied the octahedral sites. It has been reported that the preferential tetrahedron site occupation of Al3+ could enhance the Qf value of the system [19,26]. Consequently, when 0.04 < x < 0.16, the Qf values reduce with the decrease in the λ value in Mg1−xCuxAl2O4 ceramics (see Figure 5b). In addition, the entry of Cu2+ ions into the MgAl2O4 lattice can lead to disordered charge distribution, which can cause a decrease in Qf value at high Cu2+ ions content [41].



The relative density can be calculated according to measured and theoretical density. The theoretical density can be derived from XRD refinements. The results are presented in Table 2. The relative density first increased and then gradually decreased, and the maximum value, which was obtained at x = 0.04, was 95.59%. The SEM shows that the densification was consistent with the relative density (see Figure S1). It also indicates that the moderate amount of CuO can promote the sintering of MgAl2O4 ceramics, which is beneficial for obtaining uniform and dense microstructures (see Figure S1). The relationship between the εr value and the relative density is presented in Figure 6, which shows that the εr value and relative density showed the same trend when x ≤ 0.12. With the increase in Cu2+ at x > 0.12, the pores in ceramics also played an important role for the εr value. To further investigate the effect of porosity on the εr value, the porosity-corrected dielectric constant (εrc) can be calculated by a spherical-pore model [42]:


   ε r  =  ε  rc    (  1 −   3 P  (   ε  rc   − 1  )    2  ε  rc   + 1    )   



(3)




where εr and P (1 − ρrelative) are the measured εr and the porosity, respectively. The calculated results are listed in Table 3. The εrc value was higher than the εr value, which indicated that the air trapped in the pores contributed to the decrease in the dielectric constant [43]. It is worth mentioning that, with the increase in Cu2+ at x > 0.12, the relative density maintained a declining trend, while the εr value had a slight growth. In response to this difference, apart from the relative density and pores, the variation in the εr value can be evaluated by the Clausius–Mosotti equation [44]:


   ε  theo   =   3  V m  + 8 π  α  theo     3  V m  − 4 π  α  theo      



(4)




where Vm and αtheo represent the molecular volume and theoretical ionic polarizabilities, respectively. αtheo can be calculated as follows [45,46]:


   α  theo   =  (  1 − x  )  α  (  M  g  2 +    )  + x α  (  C  u  2 +    )  + 2 α  (  A  l  3 +    )  + 4 α  (   O  2 −    )   



(5)




where the αi value corresponds to the individual ionic dielectric polarizabilities. The results are listed in Table 3. The theoretical ionic polarizabilities of Mg1−xCuxAl2O4 ceramics, which increased linearly from 10.94 to 11.10, are shown in Figure 6. In general, the increase in polarizabilities led to the increase in the εr value, and the expected variation only occurred at x ≥ 0.12 [47]. This indicates that the ionic polarizabilities have a more significant impact on the εr value than that of the relative density at x > 0.12.



In order to clarify the correlation between the chemical bonds and the microwave dielectric properties of Mg1−xCuxAl2O4 ceramics at 1550 °C, the complex chemical bond theory analysis was carried out, which was contributed by Phillips, Van Vecten, and Levine (P-V-L) [48,49,50,51,52]. The detailed process of the P-V-L theory analysis is presented in the Supplementary Materials. The bond length, lattice energy, and bond energy, which are calculated through P-V-L theory, are shown in Tables S1–S4, respectively. The τf value is the combined result of the bonding strength and the crystal structure. In general, the binding force between the ions in the unit cell was stronger, the restoring force that affected the tilt of the oxygen octahedron was higher, the unit cell was less affected at high temperatures, and the τf value was closer to zero [21,53]. Figure 7 shows the τf value and the total bond energy as a function of the x value. When x ≤ 0.04 and x ≥ 0.08, the τf value shifted to zero with the increase in total bond energy, indicating that the system tended to be stable.




4. Conclusions


A single-phase Mg1−xCuxAl2O4 ceramic with a spinel structure was formulated and analyzed. The Cu2+ ions occupied the tetrahedral site, whereas the Al3+ ions preferentially occupied octahedral site, resulting in a low the Qf value. In addition, the entry of Cu2+ ions into the MgAl2O4 lattice lead to disordered charge distribution, which can cause a decrease in Qf value at high Cu2+ ions content. The Cu substitution had the high bond energy, which contributed to the temperature stability of the samples at x ≤ 0.04 and x ≥ 0.08. Then, the τf value moved toward the positive direction. Good microwave dielectric properties were achieved at x = 0.04, sintered at 1550 °C: εr = 8.28, Qf = 72,800 GHz, and τf = −59 ppm/°C. Therefore, the Qf and τf values of the Mg1−xCuxAl2O4 solid solution were improved, maintaining a low εr value. This study suggests that Mg1−xCuxAl2O4 is a promising candidate ceramic, possessing a high Qf value and a low dielectric constant, for use in modern communication systems.
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Figure 1. The microwave dielectric properties of Mg1−xCuxAl2O4 (x = 0–0.2) ceramics sintered at 1450–1600 °C: (a) Qf value, (b) εr value, and (c) τf value. 
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Figure 2. The XRD patterns of the Mg1−xCuxAl2O4 ceramics. 
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Figure 3. The XRD with Rietveld refinements: (a) x = 0, (b) x = 0.04, (c) x = 0.08, (d) x = 0.12, (e) x = 0.16, and (f) x = 0.20. 
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Figure 4. The schematic diagram of a crystal structure for MgAl2O4. 
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Figure 5. (a) 27Al NMR spectra of Mg1−xCuxAl2O4 ceramics sintered at 1550 °C; (b) the effects of the degree of inversion on Qf value at 1550 °C. 






Figure 5. (a) 27Al NMR spectra of Mg1−xCuxAl2O4 ceramics sintered at 1550 °C; (b) the effects of the degree of inversion on Qf value at 1550 °C.



[image: Nanomaterials 12 03332 g005]







[image: Nanomaterials 12 03332 g006 550] 





Figure 6. The variation between εr value at 1550 °C and theoretical ionic polarizabilities; the relative density. 
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Figure 7. The τf value and the total bond energy of Mg1−xCuxAl2O4 ceramics sintered at 1550 °C. 
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Table 1. Microwave dielectric properties and preparation condition of MgAl2O4-based and ZnAl2O4 ceramics.
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	Sample
	τf (ppm/°C)
	Qf (GHz)
	εr
	Ts (°C)
	Milling Time (h)
	Preparation Method
	Ref.





	Mg0.96Cu0.04Al2O4
	−59
	72,800
	8.28
	1550
	4
	solid state reaction
	This work



	MgAl2O4
	N/A
	82,000
	7.9
	1550–1700
	24
	solid state reaction
	[26]



	ZnAl2O4
	N/A
	106,000
	8.6
	1550–1700
	24
	solid state reaction
	[26]



	Mg(Al0.4Ga0.6)2O4
	−16
	107,000
	8.87
	1285–1535
	6
	solid state reaction
	[27]



	MgAl1.94(Mg0.5Ti0.5)0.06O4
	−61.36
	98,000
	9.1
	1425
	6
	solid state reaction
	[28]



	Mg0.25Zn0.75Al2O4
	−60
	222,600
	8.40
	1600
	24
	solid state reaction
	[29]



	0.75MgAl2O4-0.25TiO2
	−12
	105,400
	11.04
	1400–1460
	24
	solid state reaction
	[6]



	(Mg0.75Ni0.25)Al2O4
	−53.5
	130,000
	8.21
	1480–1600
	24
	solid state reaction
	[17]



	(Mg0.95Zn0.05)Al2O4
	−64~−70
	156,000
	8.1
	1480–1600
	12
	solid state reaction
	[30]



	Zn0.4Al2.4O4
	−66
	202,468
	8.2
	1500–1600
	24
	molten salt method
	[31]



	MgAl2O4
	−62.4
	201,690
	7.8
	1600
	24
	molten salt method
	[15]



	Mg0.7Al2.2O4
	−60
	201,111
	7.7
	1600
	24
	molten salt method
	[32]



	Mg0.4Al2.4O4
	−60
	232,301
	7.5
	1600
	24
	molten salt method
	[32]



	Mg0.8Co0.2Al2O4
	−60
	49,300
	8.46
	1475–1500
	12
	reaction-sintering process
	[18]



	Transparent MgAl2O4
	N/A
	52,640
	8.20
	1350
	N/A
	spark plasma sintering
	[33]







Note: N/A is not applicable.
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Table 2. The cell parameters, density, and reliable factors were obtained based on the Rietveld refinements of XRD.
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	x = 0
	x = 0.04
	x = 0.08
	x = 0.12
	x = 0.16
	x = 0.20





	a = b = c (Å)
	8.0849
	8.0864
	8.0869
	8.0838
	8.0817
	8.0828



	V (Å3)
	528.467
	528.775
	528.857
	528.259
	527.841
	528.060



	Rp (%)
	6.35
	6.51
	5.41
	4.76
	4.35
	3.99



	Rwp (%)
	8.54
	8.88
	7.19
	6.10
	5.63
	5.17



	Rexp (%)
	4.72
	4.60
	4.29
	3.94
	3.70
	3.56



	χ2
	3.27
	3.73
	2.81
	2.40
	2.32
	2.10



	ρm (g∙cm−3)
	3.379
	3.454
	3.465
	3.491
	3.484
	3.503



	ρt (g∙cm−3)
	3.577
	3.614
	3.652
	3.696
	3.738
	3.776



	ρr (%)
	94.49
	95.59
	94.90
	94.49
	93.22
	92.79







Note: The ρm, ρt, and ρr are the measured density, the measured density, and the relative density, respectively.













[image: Table] 





Table 3. Measured dielectric constant (εr) and porosity-corrected dielectric constant (εrc) of Mg1−xCuxAl2O4 ceramics sintered at 1550 °C.
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	x Value
	x = 0
	x = 0.04
	x = 0.08
	x = 0.12
	x = 0.16
	x = 0.2





	P
	0.055
	0.044
	0.051
	0.055
	0.068
	0.072



	εr
	8.14
	8.28
	8.23
	8.22
	8.26
	8.29



	εrc
	8.75
	8.76
	8.80
	8.83
	9.04
	9.12



	εtheo
	7.79
	7.92
	8.05
	8.23
	8.40
	8.54
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