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Abstract: Endohedral metallofullerenes (EMFs) are one type of intriguing metal/carbon hybrid
molecule with the molecule configuration of sphere cavity-encapsulating metal ions/metal clusters
due to their unique physicochemical properties and corresponding application in the fields of bio-
logical materials, single molecule magnet materials and energy conversion materials. Although the
EMF family is growing, and versatile EMFs have been successfully synthesized and confirmed using
crystal structures, some expected EMF members have not been observed using the conventional
fullerene separation and purify strategy. These missing EMFs raise an interesting scientific issue
as to whether this is due to the difficulty in separating them from the in situ formed carbon soot.
Herein, we successfully captured a long-sought dysprosium-based EMF bearing a C2v(5)-C80 cage
(Dy@C2v(5)-C80) in the form of Dy@C2v(5)-C80(CH2Ph)(Ph = −C6H5) from carbon soot containing
versatile EMFs using simple benzyl radical functionalization and unambiguously confirmed the
molecule structure using single crystal X-ray diffraction characterization. Meanwhile, the crystal struc-
ture of Dy@C2v(5)-C80(CH2Ph) showed that a single benzyl group was grafted onto the (5,6,6)-carbon,
suggesting the open-shell electronic configuration of Dy@C2v(5)-C80. The theoretical calculations
unveiled that the benzyl radical addition enables the modulation of the electronic configuration of
Dy@C2v(5)-C80 and the corresponding stabilization of Dy@C2v(5)-C80 in conventional organic sol-
vents. This facile stabilization strategy via benzyl radical addition exhibits the considerable capability
to capture these missing EMFs, with the benefit of enriching the endohedral fullerene family.

Keywords: endohedral metallofullerenes; missing fullerene; Dy@C2v(5)-C80; crystal structure; benzyl radical

1. Introduction

Endohedral metallofullerenes (EMFs) featuring versatile metallic ions/metallic clus-
ters encapsulated in a spherical cavity have been attracting considerable interest due to
the fact that they not only act as a metal/carbon hybrid molecule model to explore the
structure-properties relationship but also provide a series of novel nanomaterials which can
be applied in the fields of catalysts, biomaterials and energy conversion devices [1–3]. For
instance, the non-IPR Sc3N@D3(6140)-C68 was reported to possess superior hydrogen evo-
lution reaction (HER) performance with an onset potential of −38 mV vs. RHE due to fused
pentagon rings, representing a new and promising HER catalytic motif [4]. Furthermore,
the most conventional EMF, such as Sc3N@C80, was used as ionic dopant by accepting
transfer electrons from spiro-OMeTAD, leading to drastically improved conductivity and
a lower Fermi level of the hole transfer layer (HTL) to minimize the Schottky barrier. As
a result, the perovskite solar cells based on Sc3N@C8/spiro-OMeTAD HTL exhibit an
energy conversion efficiency of 20.77% (with the champion cell exhibiting 21.09%) and
improved device stability [5]. With regards to fullerene derivatives, they have been applied
as electron transport layers within perovskite solar cells or organic solar cells [6,7], enabling

Nanomaterials 2022, 12, 3291. https://doi.org/10.3390/nano12193291 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12193291
https://doi.org/10.3390/nano12193291
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-7111-1782
https://doi.org/10.3390/nano12193291
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12193291?type=check_update&version=1


Nanomaterials 2022, 12, 3291 2 of 10

improved device performance and suggesting the enormous prospect of EMF-derivatives
in the field of energy conversion devices. Another EMF, such as Gd3N@C80 modified
by oligoethylene glycol groups, exhibits enhanced magnetic resonance imaging contrast
properties [2]. Since the first EMF, such as La@C82 reported in 1991 [8], the EMF family has
been growing and was expanded to carbide clusterfullerenes [9,10], trimetallic nitrogen
clusterfullerenes [11], sulfur/oxygen metallic clusterfullerenes [12,13] and so on. However,
according to theoretical predications regarding possible EMFs, only a few of them are
being observed or confirmed using NMR or single crystal characterization. For example,
EMFs with a C80 cage obeying the isolated pentagon rule (IPR) were proposed to have
seven types of isomeric structure including D5d, D2, C2v(3), D3, C2v(5), D5h and Ih based on
theoretical predictions, while the observed or confirmed species were only C2v(3), C2v(5),
D5h and Ih using experimental approaches. The stable formation of EMFs was attributed to
the synergistic influence of the transferred charge number from the endohedral metallic
ions/clusters to the outer fullerene cages as well as the matched energy levels between the
inner metals/clusters and outer fullerene cages [14]. For example, Ih-C80 can be stabilized
by accepting six electrons from the encapsulating metal ions/metallic clusters including
M3N clusters (M = Sc, Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu) and M2TiC clusters
(M = Sc, Y, Tb, Dy, Lu) [15]. When anomalous five-electron transfer occurs on M2@Ih-C80
(M = Y2, Gd2, Tb2, Dy2, Ho2, Er2, Tb2 and TbGd) [16,17], a benzyl radical was verified to
be the efficient approach to stabilize the missing M2@Ih-C80 using bromide benzyl in mild
experimental conditions [18].

With regards to EMFs with a C2v(3)-C80 cage, the two-electron transfer from the endohe-
dral divalent metal ions to the C2v(3)-C80 cage enable the stabilization of M2+@C2v(3)-C80

2−

(M = Sm, Yb) [19,20]. However, with the trivalent rare earth metal ions encapsulated within
the C2v(3)-C80 cage along with the three-electron transfer, the corresponding M3+@C2v(3)-C80

3−

is difficult to stabilize and obtain only if chemical modification is adopted to stabilize
them [21,22]. The first and only case of missing M3+@C2v(3)-C80

3− is La3+@C2v(3)-C80
3−

reported by Nagase et al., showing that the dichlorobenzene radical formed in situ from
the 1, 2, 4-trichlorobenzene solution under thermal conditions enables the stabilization of
La3+@C2v(3)-C80

3− in the form of La@C80(C6H3Cl2). The theoretical calculations revealed
that La@C2v(3)-C80 is an open-shell electron configuration and has high reactivity result-
ing from its small ionization potential (Ip) and electron affinity (Ea), which is efficiently
stabilized by the addition of the dichlorobenzene radical [23]. In addition, EMFs with a
C2v(5)-C80 carbon cage can be stabilized by accepting four electrons from the endohedral
carbide clusters (Sc2C2, Er2C2) or oxygen clusters (Sc2O, Lu2O) [24–27]. Considering the
missing La3+@ C2v(3)-C80

3−, it was stabilized with three-electron transfer and entrapped
in the form of La@C2v(3)-C80(C6H3Cl2) using facile radical addition. Therefore, whether
the long-sought monometallic M3+@C2v(5)-C80

3− (M = Sc, Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho,
Er, Tm, Lu) can be stabilized and entrapped using facial chemical functionalization is an
interesting issue. To address the issue mentioned above, we performed a study searching
for the missing M3+@C2v(5)-C80

3− (M = rare earth metals) EMFs using the facile benzyl
radical stabilization strategy.

Herein, we adopted the freshly prepared dysprosium (Dy)-based raw soot as the
research target and successfully captured the missing Dy@C80 in the existing form of
Dy@C80(C7H7). More importantly, the molecular structure of Dy@C80 was unambiguously
confirmed using single crystal X-ray diffraction characterization, showing that the C80 cage
is a C2v(5) symmetry and the addition site is on a pentagon–hexagon–hexagon junction
([5,6,6]-junction) carbon atom. Dy@C2v(5)-C80 is the first reported case of a monometallic
EMF isomer composed of trivalent M3+ (M = rare earth metals) and a C2v(5)-C80 carbon
cage. The theoretical calculations indicated that the benzyl radical addition clearly alters
the energy level and enlarges the bandgap, leading to the stabilization of Dy@C2v(5)-C80.
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2. Experiment
2.1. Characterization Techniques

Soot containing Dy-EMFs was produced using a modified Krätschmer–Huffman DC-
arc discharge method, and after the radical addition, the extracted EMF derivatives were
isolated and purified using high performance liquid chromatography (HPLC, LC-9104,
Japan Analytical Industry, Akishima, Japan)). Regarding the Dy@C80(CH2Ph), the cor-
responding purification was performed using a multistep HPLC separation procedure
with toluene as the eluent. The pure Dy@C80(CH2Ph) was further verified using analyt-
ical HPLC and matrix-assisted laser desorption ionization time-of-flight mass spectrum
(MALDI-TOF MS) with 1,1,4,4-tetraphenyl-1,3-butadiene as a matrix (Biflex III, Bruker Dal-
tonics Inc., Germany). Absorption spectrum of Dy@C80(CH2Ph) in toluene was recorded
on a UV−vis−NIR 3600 spectrometer (Shimadzu, Kyoto, Japan) using a quartz cell of
1 mm thickness. Electrochemical studies of Dy@C80(CH2Ph) were performed in o-DCB
(anhydrous, 99%, Aldrich, St. Louis, MI, USA). The supporting electrolyte was TBAPF6
(electrochemical grade, Fluka) which was dried under reduced pressure at 340 K for 24 h
and stored in glovebox. Cyclic voltammogram experiments were performed using a
CHI660D electrochemical workstation (CHI Instrument, Austin, TX, USA) at room tem-
perature. A standard three-electrode arrangement including a platinum disc as working
electrode, a platinum wire as counter electrode and a silver wire as a reference electrode
was used. In a control experiment, ferrocene (Fc) was added as the external standard, and
all potentials were referred to as Fc/Fc+ couple.

2.2. The Capturing and Separation of Dy@C80(CH2Ph)

The composite rods of graphite and Dy2O3 (molar ratio of Dy:C = 1:15) were evap-
orated using DC-arc discharge method under a 180 mbar He atmosphere and 110A
DC, delivering the raw soot containing a series of Dy-EMFs. Before entrapping the
missing Dy@C80 derivative, the collected freshly prepared carbon soot was treated with
N,N-Dimethylformamide (DMF) due to its reduction properties, enabling the missing
EMFs to dissolve in solution through transferring electrons as per the same strategy applied
in M2@Ih-C80 (M = Y, Gd, Tb, Dy, Ho, Er, Dy, Tb, Gd), as previously reported [16,17]. In
detail, the raw soot obtained from arc discharge procedure was dispersed in DMF and
purged using nitrogen for 20 min, and then the mixture solution was heated to 150 ◦C for
20 h under nitrogen atmosphere. Then, the solution temperature was decreased to 110 ◦C,
and benzyl bromide was injected into the mixture solution via syringe to avoid the entrance
of air. The radical addition reaction occurred, and the corresponding reaction process lasted
20 h under 110 ◦C. When the reaction finished, the reaction solution was cooled to room
temperature, and the insoluble solid mixture was filtrated using reduced pressure. The
obtained DMF solution containing pristine and functionalized EMFs was dried to remove
DMF solvent using a rotary evaporator, and the residual black solid was washed with
methanol. Finally, the solid was dissolved in toluene for further isolation using multistep
HPLC procedure.

2.3. Crystal Growth and Measurements

The black crystals of Dy@C80(CH2Ph) suitable for single crystal X-ray diffraction mea-
surements were obtained using the slow volatilization of toluene/CS2 solution containing
Dy@C80(CH2Ph) and decapyrrylcorannulene (DPC) as host for about two weeks [28]. The
black crystals were subjected to the Shanghai Synchrotron Radiation Facility (beamline
station BL17B at 100 K) for crystal data collection. The crystal structure was refined using
all data (based on F2) utilizing SHELXL 2015 within OLEX2. The corresponding crystal
data can be obtained free of charge from The Cambridge Crystallographic Data Centre
(CCDC numbers: 2195196).
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3. Results and Discussion
3.1. Stabilization, Separation and Purification of Dy@C80 Derivative

Soot containing Dy-EMFs was produced using the DC-arc discharge method under an
He atmosphere, which thereafter was dispersed in acetone and subjected to MALDI-TOF
mass spectrometry for the initial confirmation of empty fullerene and EMFs. Surprisingly, a
mass spectrum peak at m/z = 1124.28 was observed and was assigned as Dy@C80, indicating
that the long-sought Dy@C80 had been hidden in the carbon soot (Figure S1). However,
the pure Dy@C80 and corresponding structure confirmation have never been reported.
The missing Dy@C80 is similar to M2@Ih-C80 (M = Y, Gd, Tb, Dy, Ho, Er, Dy, Tb, Gd)
as it is difficult to stabilize in conventional organic solvents [16,17]; therefore, whether
the benzyl radical addition to Dy@C80 enables the efficient trapping and stabilization of
Dy@C80 in the form of Dy@C80(CH2Ph) is in question. It is noteworthy that the critical
step to entrap the missing Dy@C80 is the ionization of Dy@C80 using DMF reduction as
showed in Scheme 1 similar to M2@Ih-C80, as discussed above [16,17]. More importantly,
in contrast to the pristine EMFs with regular retention time in HPLC profiles, the benzyl
radical EMFs greatly shorten their retention time in HPLC profiles. Therefore, the first
important separation step to Dy@C80(CH2Ph) was to determine its retention time location
in an HPLC profile for fraction collection and further purification, which was verified using
MALDI-TOF MS. The collected fraction A, through the HPLC isolation process in Figure 1a,
was characterized using MALDI-TOF MS. This showed that the typical molecular ion
peak of Dy@C80(CH2Ph) at m/z = 1124.28 was clearly observed the same as the pristine
Dy@C80, which was attributed to the dissociated benzyl group under laser irradiation
(Figure S2). Apart from the Dy@C80 derivative, two other intensive molecular ion peaks at
1148.38 and 1286.30 assigned to Dy@C82 and Dy2@C80 derivatives, respectively, indicate the
requirement of further HPLC isolation to exclude these two EMF derivatives. After a four-
step HPLC separation procedure, we successfully obtained the pure Dy@C80 derivative
which was further verified using analytical HPLC (Figure S3) and MALDI-TOF mass
spectroscopy (Figure 2).

3.2. Molecular Structure Confirmation of Dy@C80(CH2Ph)

HPLC analysis and mass spectroscopy characterization only provide an ambiguous
structure in which the carbon cage symmetry, metallic ion location and addition site re-
gioselectivity are not yet clear. Therefore, the single crystal structure of Dy@C80(CH2Ph)
is critical for unveiling its precise molecule structure and corresponding physiochemical
properties. Fortunately, black crystals suitable for the single crystal measurements were
obtained using the slow volatilization of toluene/CS2 solution containing Dy@C80(CH2Ph)
and DPC as hosts. The crystal structure of Dy@C80(CH2Ph) was unambiguously con-
firmed using single crystal X-ray diffraction measurements, showing that this crystal is
composed of two DPC molecules and one Dy@C80(CH2Ph), and the detailed crystal data
are summarized in Table S1.
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Figure 1. Isolation and purification of Dy@C80(CH2Ph) via four-step HPLC process. (a) Collected
fraction A contained Dy@C80(CH2Ph) and labelled as the red region. Conditions: Buckyprep col-
umn (ø 10 × 250 mm), a flow rate of 4 mL/min, injection volume of 4 mL, toluene as eluent at
40 ◦C. (b) Recycling HPLC profile of fraction A for fraction A-2. Conditions: Buckyprep column
(ø 20 × 250 mm), a flow rate of 8 mL/min, injection volume of 8 mL, toluene as eluent at 40 ◦C.
(c) Recycling HPLC profile of fraction A-2 for A-2-2. Conditions: Buckyprep column (10 × 250 mm),
a flow rate of 4 mL/min, injection volume of 4 mL, toluene as eluent at 40 ◦C. (d) HPLC profile of
fraction A-2-2 for consequence A-2-2-2. Conditions: Buckyprep-M column (10 × 250 mm), a flow rate
of 4 mL/min, injection volume of 4 mL, toluene as eluent at 40 ◦C.
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Figure 2. MALDI-TOF MS of the fraction A-2-2-2 with 1,1,4,4-tetraphenyl-1,3-butadiene as matrix.
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The relative orientation of the Dy@C80(CH2Ph) and two DPC molecules is shown in
Figure 3a, in which the two DPC molecules present a V-shape geometry with the dihedral
angle of 65.5◦. In contrast to the pristine Sc3N@Ih-C80·2DPC complex with a dihedral
angle of 1.49◦, the enlarged dihedral angle of Dy@C80(CH2Ph) was perhaps attributable
to the steric hindrance of the grafted benzyl group. Furthermore, the crystal structure of
Dy@C80(CH2Ph) shows that one benzyl group was grafted onto the fullerene cage with the
addition site of the [5,6,6]-carbon (Figure 3b,d). The detailed analysis of the carbon cage
indicates that the symmetry of C80 is C2v(5), which is the first case of an EMF composed of
a trivalent rare earth metal ion and C2v(5)-C80 carbon cage.
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clarity. Gray: C; blue: N; fuchsia: Dy.

Regarding the endohedral Dy3+ ion, there are four position disorders in the C2v(5)-C80
cage with the occupancy ratio of Dy1 0.79, Dy2 0.10, Dy3 0.06 and Dy4 0.05, respectively
(as seen in Figure S4 and Table S1). The major occupancy Dy1 is located underneath
the [6,6]-bond (the bond shared by two hexagonal rings) with the shortest distances of
2.250(13) Å (Dy1-C30) and 2.236(13) Å (Dy1-C29) between Dy1 and the adjacent carbon
atoms (Figure 3c), respectively, and indicates the strong interaction between the endohedral
metal ion and the outer C2v(5)-C80. Conventionally, the encapsulated metal ion is located at
the symmetric plane or the symmetric center of the EMF cages [29], and the main occupancy
of endohedral Dy1 clearly deviated from the normal position of pristine Dy@C2v(5)-C80
after the benzyl functionalization, indicating the remarkable electron configuration change
in Dy@C2v(5)-C80(CH2Ph) (Figure S5).

To reveal the absorption and electrochemical properties of Dy@C2v(5)-C80(CH2Ph),
the corresponding UV-vis-NIR absorption and cyclic voltammetry measurements were
performed, as shown in Figure 4a. The absorption spectrum of Dy@C2v(5)-C80(CH2Ph) in
toluene exhibits six obvious absorption peaks at 489, 536, 643, 769, 908 and 1064 nm. The
absorption onset at 1123 nm suggests that the calculated optical bandgap (∆Egap, optical)
of Dy@C2v(5)-C80(CH2Ph) is 1.10 eV. Compared with the absorption profile of C2v(5)-C80
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embedding Sc2C2, Sc2O, Er2C2 and Lu2O clusters with four-electron transfer to the outer
carbon cage, Dy@C2v(5)-C80(CH2Ph) exhibits a remarkable absorption difference which is
attributed to the three-electron transfer and benzyl radical addition. The electrochemical
characterization of Dy@C2v(5)-C80(CH2Ph) was obtained using cyclic voltammograms with
tetrabutylammonium hexafluorophosphate (TBAPF6) as the electrolyte in o-dichlorobenzene
(o-DCB). The redox potentials of Dy@C2v(5)-C80(CH2Ph) show three reversible reduction
peaks and two irreversible oxide peaks. The corresponding differential pulse voltammetry
(DPV) in Figure 4b shows that the first reduction potential and first oxide potential are
−0.88 V and 0.17 V, respectively, delivering a narrow bandgap of 1.05 eV. To understand the
redox change before and after the benzyl radical addition of Dy@C2v(5)-C80, the analogous
monometallic EMFs, such as La@C2v-C82 and La@C2v-C82-benzyl adduct, were applied
to analogize the variation tendency of electrochemical properties. After the benzyl rad-
ical modification, the first oxide and reduction potentials of La@C2v-C82 at 0.07 V and
−0.42 V positively shift about 0.10~0.63 V to 0.15~0.25 V for the first oxide potential and
−1.05~−0.68 V for the first reduction potential. According to this change tendency, the first
oxide potential of Dy@C2v(5)-C80 is perhaps close to zero potential, even approaching the
negative value, which is possibly responsible for the instability of the Dy@C2v(5)-C80.
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Figure 4. (a) UV-Vis-NIR absorption spectrum of Dy@C2v(5)-C80(CH2Ph). (b) Cyclic voltammograms
of Dy@C2v(5)-C80(CH2Ph) in o-DCB solution with ferrocene (Fc) as the standard under different scan
regions. Scan rate: 100 mV/s, TBAPF6 as supporting electrolyte. The half-wave potentials (E1/2) of
each redox step are marked with a solid dot to aid comparison.

The theoretical calculations of Dy@C2v(5)-C80 and Dy@C2v(5)-C80(CH2Ph) were per-
formed, as shown in Figure 5. The highest occupied molecular orbital (HOMO) energy level
and lowest unoccupied molecular orbital (LUMO) energy level calculated are: −5.27 eV
and -4.16 eV, respectively, for Dy@C2v(5)-C80; and −5.10 eV and −3.29 eV, respectively, for
Dy@C2v(5)-C80(CH2Ph). The corresponding bandgap for Dy@C2v(5)-C80 and Dy@C2v(5)-
C80(CH2Ph) are 1.11 eV and 1.86 eV, respectively. The change tendency of LUMO, HOMO
energy levels and bandgap for Dy@C2v(5)-C80 and Dy@C2v(5)-C80(CH2Ph) indicate that
the benzyl radical addition enlarges the bandgap from 1.11 eV to 1.86 eV and elevates the
LUMO energy level to about 0.87 eV which is beneficial for the stabilization of the missing
Dy@C2v-C80.
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Figure 5. The electronic configuration (HOMO and LUMO energy levels) of (a) Dy@C2v(5)-C80 and
(b) Dy@C2v(5)-C80(CH2Ph) using density functional theory.

4. Conclusions

The long-sought Dy@C2v-C80 was successfully trapped in the form of Dy@C2v(5)-C80(CH2Ph)
using a facile reduction and radical addition strategy. After a four-step HPLC isola-
tion procedure, the pure Dy@C2v(5)-C80(CH2Ph) was obtained and unambiguously con-
firmed using single crystal X-ray diffraction measurements. The crystal structure of
Dy@C2v(5)-C80(CH2Ph) shows that one benzyl group was grafted onto the [5,6,6]-carbon
atom, suggesting that the Dy@C2v(5)-C80 is an open-shell electron configuration and a three-
electron transfer configuration of Dy3+@C2v(5)-C80

3−. More importantly, the carbon cage
symmetry was unveiled to be a rare C2v(5)-C80 which is the first case of an EMF composed
of a monometal rare earth ion encapsulated within a C80 cage. Meanwhile, the encapsulated
Dy3+ ion of Dy@C2v(5)-C80(CH2Ph) is located underneath the [6,6]-bond and is deviated
from the symmetry plan of C2v(5)-C80, indicating the remarkable electron configuration
change after the benzyl radical addition. A cyclic voltammogram of Dy@C2v(5)-C80(CH2Ph)
shows that the narrow bandgap of 1.10 eV is responsible for the instability of Dy@C2v(5)-C80.
The theoretical calculations showed that benzyl radical addition to Dy@C2v(5)-C80 enlarges
the bandgap from 1.11 eV to 1.86 eV and the clearly elevated LUMO energy level to about
0.87 eV, which synergistically stabilizes the missing Dy@C2v(5)-C80. Therefore, the benzyl
radical strategy was verified as an efficient chemical method to trap some long-sought
EMFs proposed by theoretical predications, and there may be benefits to exploring the
novel EMFs hidden within raw soot.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12193291/s1, Figure S1. MALDI-TOF mass spectrum of
raw soot containing Dy@C80; Figure S2. MALDI-TOF mass spectrum of fraction A with the matrix
of 1,1,4,4-tetraphenyl-1,3-butadiene; Figure S3. HPLC chromatograms of purified Dy@C80(CH2Ph).
Condition: Buckyprep column (ø 4.6 mm × 250 mm), UV-detector (320 nm), toluene as eluent
with the flow rate of 1.0 mL/min; Figure S4. The disordered positions of dysprosium sites in
Dy@C2v(5)-C80(CH2Ph). Gray: C; Fuchsia: Dy; Figure S5. Relative orientation between endohedral
Dy ion and C2v(5)-C80 carbon cage of Dy@C2v(5)-C80(CH2Ph). Gray: C; Fuchsia: Dy; Table S1. Crystal
data of Dy@C2v(5)-C80(CH2Ph); Table S2. The occupancy of disordered metal ions encapsulated
within Dy@C2v(5)-C80(CH2Ph); Table S3. Redox Potentials (V vs. Fc+/Fc) and Electrochemical Gaps
(∆Egap, EC) of Dy@C2v(5)-C80(CH2Ph).
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