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Abstract: The anisotropy engineering of nanoporous zinc oxide (ZnO) frameworks has been per-
formed by lattice dynamics simulation. A series of zinc oxide (ZnO) nanoporous framework structures
was designed by creating nanopores with different sizes and shapes. We examined the size effects
of varying several features of the nanoporous framework (namely, the removal of layers of atoms,
surface-area-to-volume ratio, coordination number, porosity, and density) on its mechanical proper-
ties (including bulk modulus, Young’s modulus, elastic constant, and Poisson ratio) with both lattice
dynamics simulations. We also found that the anisotropy of nanoporous framework can be drastically
tuned by changing the shape of nanopores. The maximum anisotropy (defined by Ymax/Ymin) of
the Young’s modulus value increases from 1.2 for bulk ZnO to 2.5 for hexagon-prism-shaped ZnO
nanoporous framework structures, with a density of 2.72 g/cm3, and, even more remarkably, to 89.8
for a diamond-prism-shape at a density of 1.72 g/cm3. Our findings suggest a new route for desirable
anisotropy and mechanical property engineering with nanoporous frameworks by editing the shapes
of the nanopores for the desired anisotropy.

Keywords: zinc oxide; nanoporous framework; mechanical properties; anisotropy

1. Introduction

Zinc oxide is a chemically stable and environmentally friendly multifunctional ma-
terial [1–4] with excellent physical and chemical properties such as direct wide band gap
(3.37 eV), high exciton binding energy (60 meV), high mechanical stability, and good light
stability. It is also easily etched in all acids and alkalis, which provides opportunities
for manufacturing small-sized devices [1]. ZnO nanostructures [5–7] with various mor-
phologies, such as nanocombs [8,9], nanorings [10–12], nanospirals [13], nanosprings [14],
nanoribbons [15,16], nanosheets [17–20], nanowires [21–25], and nanocages [26,27], have
been extensively studied. In our previous computational work, the structural and electronic
properties of ZnO polytypes [28] and ZnO nanostructures including nanowires [29,30],
nanotubes [29,31], and nanofilms [32,33] were investigated.

The interfaces between ZnO and other materials are also important topics. [34–38] The
structure and electronic properties of interfaces between hexagonal ZnO and cubic oxides
have been investigated in detail by a combination of transmission electron microscopy
(TEM), synchrotron radiation-based characterization techniques, and density functional
theory [39,40]. The surface morphologies and properties of ZnO films can be tuned by the
design of the interfacial layer [41]. The surface effects on the mechanical properties of ZnO
nanostructures have been investigated [42,43]. Ab initio calculations have also applied to
study the structural and electronic properties of ZnO surfaces [44–46].

Nanoporous materials have the characteristics of both nanostructures and surface/
interface, in some respects. The tuning of the shape of nanostructure or pores and interface is
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related to the modification to the symmetry of the materials. It was recently reported that the
symmetry and asymmetry of an electronic structure can be important for its thermoelectric
transport properties [47]. It would be interesting to see how the symmetry of nanopores
affect the mechanical properties of nanoporous materials. There are reports on porous
structures made of ZnO [17,19,20,48], including nanosheets [17,19,20], hierarchically porous
ZnO architectures [48], etc. The key to obtaining an overall high-performance nanoporous
material depends on its porous structure [48–54]. Inspired by cellular microstructures in
biomorphic materials [55], we designed a series of zinc oxide (ZnO) nanoporous framework
(NPF) structures by creating nanopores with different shapes and sizes in periodic wurtzite
ZnO supercells, and then we performed lattice dynamics (LD) simulation to investigate
the mechanical properties of the designed NPF structures in terms of several structural
parameters.

The anisotropic properties, namely, the strong orientation or direction-dependent
properties, are desirable for special devices. The anisotropic strain effects on the photolu-
minescence of (Zn,Mg)O/ZnO quantum wells have been reported [56]. The anisotropic
mechanical properties have also been reported for two-dimensional (2D) materials [57,58].
However, the anisotropic features of ZnO nanostructures, especially three-dimensional (3D)
nanoporous materials, are studied less. Therefore, we further analyzed the anisotropy of
3D NPF-ZnO structures with different porous structures, and then we tuned the properties
though an anisotropy engineering approach.

2. Computational Methods

The LD simulations were performed using a general utility lattice program (GULP) [59]
with a partially charged rigid ion model (PCRIM) for ZnO interatomic pair potentials [60].
It has been shown [60] that the structural parameters and mechanical properties of ZnO
with different polytypes obtained from this PCRIM model are in good agreement with ab
initio calculations and experimental results. Our LD simulations reproduced the results
for bulk polytypes well [60], and then we applied the same potentials to the simulation of
the NPF structures. The anisotropy of ZnO, defined by Ymax/Ymin, was obtained using an
open-source online application for the analysis of elastic tensors (the ELATE program) [61].

3. Results
3.1. Models of Nanoporous Framework Structures

The ground state of a ZnO crystal has a wurtzite (WZ) structure (space group P63mc)
with two zinc and two oxygen atoms per unit cell, as shown in Figure 1a. The lattice
constants and internal parameters obtained from calculations are as follows: a = b = 3.238 Å,
and u = 0.3814, respectively, which is in good agreement with the PRCIM calculation results
of Wang et al. [60]. A series of zinc oxide (ZnO) NPF structures were created by making
nanopores with different shapes and sizes in periodic WZ-ZnO supercells, as shown in
Figure 1. We used different supercell structures (i.e., 8 × 8 × 1-, 12 × 12 × 1-, 16 × 16
× 1-, 20 × 20 × 1-, and 24 × 24 × 1-unit cells) to construct three-dimensional zinc oxide
(ZnO) NPF structures. Because symmetry is important for the properties of functional
materials [47], we also considered two typical shapes of NPF structures with different
symmetries of pores, i.e., diamond-prism-shaped (D-ZnO) and hexagon-prism-shaped
(H-ZnO) porous nanomaterials. The different NPF structures constructed remained of the
same composition ratios as that of a bulk structure, namely, Zn:O = 1:1. The labels of the
NPF structures are denoted as n × n × 1D for D-ZnO and n × n × 1H for H-ZnO, where n
is the number of unit cells. The supercells in the z-direction were repeated with 1 unit cell,
resulting in a 3D prism shape. The initial NPF-ZnO structures were then relaxed to obtain
geometry-optimized stable structures.
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Figure 1. (shown in color online) Schematic illustration of the creation of nanopores in ZnO supercells
to form nanoporous framework (NPF) structures. (a) Bulk ZnO unit cell. (b) Small ZnO supercell
(with 2 × 2 × 1-unit cells). (c) Typical larger ZnO supercell (with 24 × 24 × 1-unit cells). (d) Optimized
NPF structure with small hexagon-prism-shaped nanopores in 24 × 24 × 1 supercell, namely, 24 ×
24 × 1H. (e) Optimized NPF structure with small diamond-prism-shaped nanopores in 24 × 24 × 1
supercell, labeled as 24 × 24 × 1D. (f) Optimized NPF structure, 24 × 24 × 1H, with larger nanopores.
(g) Optimized NPF structure with larger irregular nanopores (transition between H-ZnO and D-ZnO,
denoted by T-ZnO) in a 24 × 24 × 1 supercell. (h) Optimized NPF structure, 24 × 24 × 1D, with
larger nanopores. (i–k) 2 × 2 (in ab plane of supercell) illusions of (f–h), respectively. The zinc atom
is labeled with a large gray sphere and the oxygen atom is shown with a small red ball.

3.2. Bulk Moduli of Nanoporous Framework Structures

The bulk modulus is an important mechanical property and is a useful indicator of the
hardness of a material [62–66]. The bulk modulus of the bulk ZnO obtained in this work is
143.5 GPa, which is in good agreement with previous experimental values (141 GPa [67]
and 142.6 GPa [68]), as well as the previous PCRIM (143.5 GPa) [60], ReaxFF (144 GPa) [69],
and ab initio calculations (127 GPa [29], 133.7 GPa [70], 149 GPa [71], and 161 GPa [72]).
It was interesting to find that the bulk modulus is sensitive to the size and shape of the
nanopores. The trends of the bulk moduli for the NPF-ZnO structures with differently sized
and shaped nanopores shared several common features (Figure 2). Firstly, the bulk moduli
of the NPF-ZnO structures decreased with the increasing size of the pores (decreasing
density). Secondly, the decreasing trends of the bulk moduli were quite similar for the NPF-
ZnO structures of different shapes, namely, the hexagon-prism shape and diamond-prism
shape (n × n × 1H and n × n × 1D supercells). At the same density, the bulk moduli of the
D-ZnO structure (n × n × 1D) were much smaller than those of the H-ZnO (n × n × 1H)
NPF structures. which means that D-ZnO is softer than H-ZnO.
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Figure 2. (Color online). The bulk moduli of the NPF-ZnO structures (H-ZnO vs D-ZnO) in terms of
the size and shape of the nanopores as a function of the density (24 × 24 × 1 supercells are used for
comparison).

3.3. Young’s Moduli and Elastic Constants of the Nanoporous Framework Structures

The calculated Young’s moduli as a function of the sizes and shapes of the NPF-ZnO
structures are shown in Figure 3. Similar trends can be found for the Young’s modulus
as a function of the density with that of the bulk modulus. However, different from the
bulk modulus, which is a volumetric property, the Young’s modulus is direction-dependent
and very sensitive to shapes and symmetries of nanopores. As shown in Figure 3a, the
Young’s modulus in the x direction (Yx) for D-ZnO is higher than the Yx of H-ZnO, which
is different from the aforementioned case of the bulk modulus. On the other hand, the
Young’s modulus in the y direction (Yy) for D-ZnO is smaller than the Yy of H-ZnO, which
is similar to the case of the bulk modulus. Different from the cases of both the Yx and Yy,
the Young’s moduli in the z direction (Yz) are almost the same for both D-ZnO and H-ZnO.

The more detailed, but complicated, direction-dependent elastic properties can be
observed from the elastic constants of H-ZnO and D-ZnO, as shown in Figure 4. In terms
of direction-dependent elastic properties, their responses to the shapes of the nanopores
are more sensitive and complicated. For NPF-ZnO with a high mass density (small size
of pores), the elastic constants of H-ZnO and D-ZnO are quite similar. However, the
elastic constants diverge as the pore size increases (density decreases). For example, the
C11 (Figure 4a) of H-ZnO is very close to that of D-ZnO for a density of larger than
approximately 4.5 g/cm3, but the obvious softness of the C11 of H-ZnO can be observed
for a density of smaller than 4.5 g/cm3, indicating that the C11 of NPF-ZnO with hexagonal
prism pores is more sensitive to density changes (pore sizes) than that of NPF-ZnO with
diamond-shaped prism pores. For the C12, as shown in Figure 4b, it is different from the
C11. The C12 values of H-ZnO are higher than those of D-ZnO in the calculated range.
While for the C13 and C33, the values for H-ZnO and D-ZnO are quite close to each other.
The cases of C44 and C66 are similar to the case of C12, i.e., the value of H-ZnO is higher
than that of D-ZnO at the same density.
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for H-ZnO and D-ZnO as functions of the density. (a) C11, (b) C12, (c) C13, (d) C33, (e) C44, and
(f) C66.

3.4. Anisotropy of Nanoporous Framework Structures

The ability to modify anisotropy is desirable for tuning a material’s properties [56–58,73].
Therefore, another interesting finding of this work is that the anisotropy of NPF-ZnO can be
tuned in a wide range of ways by designing differently shaped nanopores. The anisotropic
mechanical properties are typical in the Young’s modulus (Y), which are strongly direction-
dependent and sensitive to the shape of the nanopores. In bulk ZnO, due to the hexagonal
symmetry of its bulk crystal structure, the Young’s moduli in the x and y directions (Yx and
Yy) are the same (isotropic), but the Young’s modulus in the z direction (Yz) is different,
and is much higher than those of Yx and Yy. The anisotropy of the Young’s modulus in
NPF-ZnO, with its hexagon-prism shape, is quite similar to the bulk ZnO, i.e., with almost
identical Young’s moduli in the x and y directions (Yx = Yy), but different from the Yz.
The anisotropy of the Young’s modulus of NPF-ZnO, with its diamond-prism shape, is
further enhanced by the obvious splitting of Yx and Yy as functions of the density. By
defining the ratio of maximum value to minimum value as the maximum value of the
anisotropy [61], we can calculate the anisotropy of the Young’s modulus of NPF-ZnO
with different pore shapes. The anisotropy of the Young’s modulus of the NPF-ZnO
structures is, therefore, presented in Figure 5 for D-ZnO and H-ZnO. The variation of
the anisotropy with the transition from D-ZnO to H-ZnO is also shown in Figure 5 for
comparison. The anisotropic value calculated by Ymax/Ymin is 1.2 for the bulk ZnO and
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the supercells without nanopores. For H-ZnO NPF structures, the maximum anisotropy
slowly increases to approximately 2.5, with a very low density (2.72 g/cm3) within the
24 × 24 × 1H supercell, while the Yx and Yy remain isotropic (ratio = 1). The anisotropy
of D-ZnO in all directions varies greatly with the decrease in density, with the maximum
value (Ymax/Ymin) reaching as high as 89.8 at a density of 1.72 g/cm3. To further explore
the anisotropy changes caused by different structures, we designed a series of transition
structures (T-ZnO) between H-ZnO and D-ZnO, as shown in Figure 5. As expected, the
anisotropic values ranging between those of H-ZnO and D-ZnO were obtained for T-ZnO.
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Figure 5. (shown in color online) The comparison of the anisotropy of the mechanical properties
between the NPF structures D-ZnO and H-ZnO, as well as that of the transition structure between
them. (a) The illustration structure changes from 24 × 24 × 1D (labeled as D-ZnO) to a typical
transition structure (labelled as T-ZnO) between 24 × 24 × 1D and 24 × 24 × 1H, and then to the end
structure, 24 × 24 × 1H (H-ZnO). (b) The maximal anisotropy (Ymax/Ymin) of the Young’s modulus
for D-ZnO, T-ZnO, and H-ZnO.

4. Discussions
Universal Features of the Characterization of the Nanoporous Framework

In the previous sections, we presented the properties of an NPF−ZnO structure as
a function of the density. However, there are several possible ways to characterize the
crystalline features of an NPF−ZnO structure, namely, by defining the (i) layers of atoms
removed, (ii) bonding ratio (CN3/CN4 ratio), (iii) surface-area-to-volume ratio (SA/V
ratio), (iv) porosity, or (v) density. How to describe the unique structural features of NPF
structures is an interesting question. We will compare the above different means (from
more atomic details to a more statistical respect) to seek the more universal features of the
characterization of NPF−ZnO structures in terms of their mechanical properties.

The layers of atoms removed refers to the number of ZnO atomic layers removed,
starting from the center of the supercell, to make a pore. The CN3/CN4 ratio is the ratio
of the three-bonded zinc atoms (the atoms in the surface region with three coordination
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numbers, denoted as CN3) to the four-bonded zinc atoms (the atoms in the bulk-like
environment with four coordination numbers, denoted as CN4) contained in the supercell’s
structure. The surface-area-to-volume ratio (denoted as “SA/V” in this work) is the amount
of surface area per unit of volume. The formula can be defined as SA/(Vt-Vv), where SA is
the total surface area of the pores, Vt is the volume of the supercell, and Vv is the volume
of the pore (void). The porosity is defined by the ratio denoted as Vv/Vt.

The bulk moduli of the NPF ZnO structures with different characterizations are shown
in Figure 6. It is interesting to see that the bulk moduli of the NPF ZnO structures diverge
for the different unit cells of n × n × 1D and nn × 1H, being characterized by (i) the layers
of atoms removed (Figure 6a,b), (ii) the bonding ratio (CN3/CN4 ratio) (Figure 6c,d), and
(iii) the surface-area-to-volume ratio (SA/V ratio) (Figure 6e,f). If the bulk moduli of the
NPF ZnO structures are compared in terms of porosity (Figure 6g,h), then the divergence is
significantly reduced. The Young’s moduli and elastic constants also follow the same trend.
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Figure 6. (shown in color online) The variation of the bulk modulus of the NPF−ZnO structure in the
n × n × 1D and n × n × 1H unit cells in terms of the different characterizations. (a,b) The removed
layers of atoms. (c,d) The bonding ratio (CN3/CN4 ratio). (e,f) The surface-area-to-volume ratio
(SA/V ratio). (g,h) The porosities, respectively. Regarding the structural models, (a,c,e,g) are the
hexagon-prism-shaped NPF−ZnO (H−ZnO) structures, and (b,d,f,h) are the diamond-prism-shaped
NPF-ZnO (D−ZnO) structures.

Surprisingly, in the case of the NPF ZnO structure being described by the density of
the cells, the mechanical properties are well converged into a unified curve for the different
sizes of the unit cells (n × n × 1D or n × n × 1H). The unified pictures, taking the bulk
modulus and Young’s modulus as examples, are shown in Figure 7. The bulk modulus of
the NPF ZnO structure, obtained from a differently sized supercell, including 8 × 8 × 1H,
12 × 12 × 1H, 16 × 16 × 1H, 20 × 20 × 1H, and 24 × 24 × 1H (with different symbols,
as shown in Figure 7a), can be well-fitted in a converged curve (shown by a line). For
D−ZnO, ranging from 8 × 8 × 1D to 24 × 24 × 1D supercells, a similar finding can be
obtained. For the Young’s moduli of H−ZnO and D−ZnO, the differently sized supercells
with different pore sizes can be well-converged into two unified curves (Yz, Yx, or Yy)
and three unified curves (if the density is used as a variance, respectively) (Figure 7c,d).
Therefore, we have clearly demonstrated that the density of a cell can be a more universal
feature for characterizing NPF−ZnO structures in terms of their mechanical properties.
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5. Conclusions

In conclusion, we systematically investigated the influence of the sizes and shapes
of nanopores on the anistropy and mechanical properties of highly ordered NPF−ZnO
structures. We discovered that sizes and shapes of nanopores are very sensitive knobs for
the mechanical properties of NPF−ZnO structures. The bulk modulus, Young’s modulus,
and elastic constants decrease monotonically with decreasing density in both H−ZnO and
D-ZnO. The responses of the direction-dependent elastic properties to the shapes of the
nanopores are more sensitive and complicated. The anisotropy of an NPF−ZnO structure
can be tuned by shaping its nanopores. We also demonstrated that the density of a cell
can be a more universal feature for characterizing NPF−ZnO structures in terms of their
mechanical properties. Our results shed light on the simulation of a nanoporous framework
with desirable anisotropy and mechanical properties.
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