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Abstract: Water scarcity has emerged as an intense global threat to humanity and needs prompt atten-
tion from the scientific community. Solar-driven interfacial evaporation and seawater desalination are
promising strategies to resolve the primitive water shortage issue using renewable resources. However,
the fragile solar thermal devices, complex fabricating techniques, and high cost greatly hinder extensive
solar energy utilization in remote locations. Herein, we report the facile fabrication of a cost-effective
solar-driven interfacial evaporator and seawater desalination system composed of carbon cloth (CC)-
wrapped polyurethane foam (CC@PU). The developed solar evaporator had outstanding photo-thermal
conversion efficiency (90%) with a high evaporation rate (1.71 kg m−2 h−1). The interfacial layer of
black CC induced multiple incident rays on the surface allowing the excellent solar absorption (92%)
and intensifying heat localization (67.37 ◦C) under 1 kW m−2 with spatially defined hydrophilicity to
facilitate the easy vapor escape and validate the efficacious evaporation structure using extensive
solar energy exploitation for practical application. More importantly, the long-term evaporation
experiments with minimum discrepancy under seawater conditions endowed excellent mass change
(15.24 kg m−2 in consecutive 8 h under 1 kW m−2 solar irradiations) and promoted its operational
sustainability for multi-media rejection and self-dissolving potential (3.5 g NaCl rejected from CC@PU
surface in 210 min). Hence, the low-cost and facile fabrication of CC@PU-based interfacial evapora-
tion structure showcases the potential for enhanced solar-driven interfacial heat accumulation for
freshwater production with simultaneous salt rejection.

Keywords: photothermal heat; interfacial; solar evaporation; salt-rejection; water scarcity

1. Introduction

Freshwater scarcity is recognized as a strategically important global issue that is essen-
tial to human survival, as well as economic and social progress [1,2]. Due to population
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growth, climate change, and the spread of pollution over the last few decades, many people
are suffering from freshwater shortages due to excessive natural evaporation caused by
global warming [2]. Solar energy is a promising and ample renewable energy source that
can potentially meet all the energy crises upon efficient harvesting [3,4]. Recently, solar-
thermal energy conversion is attaining extensive attention from the scientific community
for many applications, such as power generation, domestic water heating, desalination, and
other industrial processes [5,6]. Interfacial solar desalination offers a promising solution to
yield freshwater directly out of solar energy without extra energy input, peculiarly urgent
for developing countries and remote areas without basic infrastructures [7,8].

To date, significant efforts and several approaches have been invested in order to attain
high-efficiency evaporation performance by upgrading several factors i.e., (1) development
of low-cost and facile fabricating evaporation devices for maximum solar absorption ac-
companied by reduced evaporation enthalpy of water [9], (2) optimization of the structural
design to prevent salt accumulation, reducing heat losses [10], and complete exploitation
of the available heat for vapor generation [11]. Renewable solar energy is a green and
pollution-free source for the extensive utilization of desalination applications to get fresh
water [5]. Nevertheless, the seawater is occupied by a high salt concentration of approx-
imately 3.5 wt% NaCl which can ultimately accumulate on the evaporation layer and
inside water channels of evaporation structures sacrificing the thermal insulation which
results in decreased solar absorption and evaporation efficiency during the desalination
operation [1,12]. During seawater desalination, several photothermal designs are created
from the salt accumulation on the evaporator surface, which not only severely affects
the light absorption area but also inevitably blocks steam escape channels during steam
generation [3,13]. In 2020, Qin et al. reported the fabrication of a solar water desalination
system by drilling a millimeter-scale channel array in a wood substrate with enhanced
hydraulic conductivity via concentration gradient to transfer the salt back into the bulk
solution, nanofiber-based evaporators to induce salt transfer from the evaporating interface
to the water along the holes between nanofibers, and Janus structures to make salt ions
stay on the hydrophilic layer and dissolve back into source water without crystallizing on
the evaporator surface [14]. However, the excessive conduction of the heat downward via
rapid convection and the inevitable passage of a portion of light through the holes of the
evaporator decreases the thermal-conversion efficiency of the device. Similarly, in 2018,
Xu et al. reported the preparation of a carbon black-decorated polymethylmethacrylate
(PMMA@CB) hydrophobic layer to prevent the salt accumulation between PMMA@CB
and the hydrophilic water transport layer (polyacrylonitrile) [15]. Indeed, even with ad-
vanced evaporation structures with the optimization of several factors, there remain some
key challenges to further enhance the photothermal conversion efficiency of the resulting
devices [15]. More significantly, the thermal management, heat losses, substrate selection,
water transport, and salt barrier should all be tuned at the same time to establish a stable
and long-term self-desalinating solar-driven evaporation system [6].

Carbon-based nanomaterials have been reported extensively for outstanding photo-
stability and broad-band optical absorption, low cost, and environmentally friendly nature
for the preservation of surroundings [1,16]. Various carbon-based nanomaterials have been
developed successfully for efficient photothermal conversion and steam generation i.e.,
hydrophilic carbon foam, hydrogels, aerogels, carbon-nanotubes (CNT’s)-based modified
structures, and biomass-derived carbon composites [17,18]. However, challenges are still
being faced in terms of accessibility to a stable and flexible material structure, low cost,
facile fabrication, and accumulation of salt on the photothermal surface which severely
reduces its potential for practical application [19]. Carbon cloth (CC), made from organic
polymer, is a good solar light absorber and has been used in many photothermal conversion
applications. CC offers broad-band optical absorption, high tensile strength, low thermal
conductivity, flexibility, and high tensile strength with low density, providing it with opti-
mum conditions for efficient solar steam generation applications [20]. More importantly,
the low thermal conductivity of the carbon cloth enables excellent thermal localization on
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the top surface with less thermal dissipation across the fabric area assisting in the excellent
thermal accumulation on the photothermal layer during steam generation [20]. The highly
porous structure of CC facilities water transport via capillary force, which constitutes
a continuous channel for the water molecules to add up at the air–water interface. CC
also owes excellent thermal stability at high temperatures, which endorses its exceptional
potential for practical application in remote areas [21].

Herein, based on the excellent photothermal conversion potential and high thermal
stability of CC, we report the facile fabrication of a solar-driven interfacial evaporation
system composed of carbon-cloth-wrapped polyurethane foam (CC@PU) for clean wa-
ter generation and seawater desalination, as illustrated in Figure 1. The CC@PU solar
evaporator shows excellent light absorption (92%), excellent thermal management, and a
high evaporation rate (1.71 kg m−2 h−1) under one solar intensity. The incorporation of
hydrophilic PU foam with numerous open pores’ assembly endorsers a quick water supply
with simultaneous thermal restriction to the downward matrix as the thermal conductivity
of PU is even lower than CC, while the less thermal conduction of CC enables the thermal
localization on the incident side of CC with no thermal passage on other side and achieves
a surface temperature enhancement up to 67.37 ◦C under 1 kW m−2 providing it with
highly desired conditions to build a highly efficient interfacial solar evaporator. Moreover,
the solar evaporator shows excellent regenerating potential by redissolving the salt back
into bulk water through the highly porous structure with excellent stability (15.24 kg m−2

mass change of water in consecutive 8 h operation under 1 kW m−2 solar irradiance)
using seawater conditions. Furthermore, a slope-shaped glass condenser demonstrates the
practical application of facile development of solar evaporation setup. Hence, the low-cost,
facile-fabricated CC@PU-based interfacial solar evaporator shows promising potential for
practical application in remote areas and opens up tremendous opportunities in solar water
evaporation technology.
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Figure 1. Schematic illustration of interfacial photothermal heat accumulation inspired solar evaporator
derived from carbon-cloth-wrapped polyurethane foam for continuous salt-resistance and steam generation.

2. Materials and Methods
2.1. Materials

Carbon cloth (CC, W0S1009) was utilized as a photothermal layer acquired from
CeTech. Co., Ltd. Kowloon, Hong Kong. The hydrophilic Polyurethane foam (PU) substrate
was bought from Zhong Sheng Trade Co. Wuyi, Zhejiang, P.R. China. Sodium Chloride
(NaCl) was used in stimulated seawater purchased from J&K Scientific Ltd. Beijing, China.
The deionized water (DI) used in the experiment was taken from a water purification
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system (B20-WTZ, Sichuan Chunjie Technology Co., Ltd., Sichuan, China). All materials
were utilized without any further modification.

2.2. Facile Fabrication of CC@PU

Compared to other complex structures for solar evaporation systems [22,23], the de-
vised solar evaporator was composed of commercially available carbon cloth without any
modification as a washable photothermal layer and hydrophilic polyurethane substrate for
the convective flow of continuous water for better thermal management and to provide
support to the photothermal layer. The selected geometry of the carbon cloth (3 × 3 cm2)
was wrapped over the same dimensions of polyurethane foam for effective water trans-
portation and intensified heat accumulation over the liquid/air interface. Afterward, the
developed system was placed in a petri dish which was filled with stimulated seawater
(3.5 wt%, NaCl). Eventually, the facile solar evaporation design was ready to examine the
solar-driven seawater desalination as shown in Figure 2.
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Figure 2. Schematic illustration of the facile fabrication process of carbon-cloth-wrapped
polyurethane-based solar evaporator.

2.3. Controlled Solar Evaporation Experiment

The controlled solar-driven seawater evaporation investigations were carried out
using a solar simulator (model PLS-FX300HU, Beijing Perfect light Technology Co., Ltd.
Beijing, P.R. China) which is equipped with multiple controlled solar intensities. The optical
filter was utilized to obtain a 1.5 G AM spectrum. The developed CC@PU evaporation
system was functionalized in the presence of a stimulated seawater (3.5 wt%)-filled petri
dish placed over an electronic analytical balance (Mettler Toledo, ME204, Singapore) with
a resolution of 0.001 g which was kept under the spot solar irradiance (1 kW m−2 or
1 sun). The mass change of stimulated seawater was measured instantaneously, and the
data were recorded after 30 min of continuous solar irradiation to obtain the actual solar-
to-vapor conversion efficiency. The interfacial surface temperatures of both the CC@PU
photothermal layer and water body were measured using KEYSIGHT (34972A, Tekmark
Group of Companies, Kuala Lumpur, Malaysia employing two temperature sensing thermo-
couples mounted on the photothermal surface and bottom surface, respectively. A thermal
infrared image camera (FLIR E4 Pro, Wuhan Guide Sensmart Tech Co., Ltd. Wuhan, P.R.
China) was also utilized to sense the intensified solitary heat accumulation. For the purity
check of condensed water and concentration count in stimulated seawater, Inductively
Coupled Plasma-Optical Emission Spectrometry (ICP-OES, EP Optimal 8000, Perkin Elmer,
San Jose, CA, USA) was employed to match purity with the WHO drinking water standard.
The whole experimental process was carried out under ambient conditions, at a temperature
of ~25.03 ◦C and humidity of ~45%.
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2.4. Photothermal Conversion Efficiency

The photothermal conversion efficiency of the developed systems was calculated by
the following Equation (1) [24]:

η =
(Hv + Hs)× v

Qs
(1)

where η is the photothermal efficiency of the system, v is the evaporation rate (kg/m2 h)
of water, Hv is the heat of vaporization of water (~2260 kJ/kg), Hs is the sensible heat of
water, and Qs is the incidence solar light intensity (1.0 kW/m2). Where sensible heat can be
calculated by the following formula:

Hs = mc∆T (2)

In the above equation, m is the mass of evaporated water, c is the specific heat capacity
of water (4182 J/kg ◦C), and ∆T is the temperature difference between the initial (Ti) and
final (Tf) temperature of water (Tf − Ti = 67.37 ◦C − 25.03 ◦C = 42.34 ◦C).

3. Results
3.1. Microstructural and Morphological Analysis

The self-regenerating CC@PU-based interfacial solar evaporator is fabricated by a
facile bilayer structure. As a typical carbon-based composite material, CC is substantially
exploited in the fields of celestial navigation, electricity generation, fire control systems,
solar cells, the construction industry, and sports equipment owing to its exceptional features
flexibility, excellent optical absorption, corrosion resistance, ultrahigh strength properties,
and heat resistance [20]. The interfacial photothermal layer of highly solar-absorbing CC
on the top of the PU foam shows an excellent solar-thermal conversion response with the
hydrophilic network of carbon fiber (threads). The morphology and porous structure of
the CC were examined by FESEM spectroscopy. Figure 3a shows the digital photograph
of the carbon cloth, manifesting the pitch-dark surface which facilitates enhanced solar
absorption. Figure 3b shows the corresponding FESEM image of the CC, wherein multiple
smooth hydrophilic cylindrical fibers overlap with each other, developing numerous micro-
channels in the CC. Figure 3c,d shows the high-resolution image of the CC, revealing
the densely inter-weaved carbon fibers of CC (6–7 µm in diameter) which can potentially
regulate the salt-rejection by self-dissolving property and facilitates easy vapor escape.
Figure 3e shows the FESEM image of the abundant hydrophilic ending of CC, which
provides instantaneous wettability via capillary act and ensures quick water availability
from one end to the other.

The chemical composition of the CC was analyzed by performing X-ray photoelectron
(XPS) spectroscopy and the obtained pattern is revealed in Figure 3f. The XPS spectra consist
of three major peaks revealing the presence of C1s, N1s, and O1s at the corresponding
binding energy values of 283.61, 347.20, and 530.75 eV, respectively. The fitting peaks of
the C1s from the XPS spectrum are shown in Figure 3g, which exhibits the deconvolution
of the C1s spectrum into two peaks attributed to the presence of the chemical bonds C–C
(284.39 eV) and O–C=O (288.18 eV), respectively. The O1s spectrum of the CC is shown in
Figure 3h; it was resolved into two sub-peaks at 530.42 eV and 530.82 eV binding energy
values manifesting the presence of C–O/O–H and C=O chemical bonds. The peak fitting of
the N1s spectrum was done by resolving it into four sub-peaks corresponding to pyridinic,
pyrrolic, and graphitic nitrogen content at the corresponding binding energy values of 397.50,
397.81, 398.90, and 399.10 eV, respectively (Figure 3i). The pyridinic –N and graphitic–N is sp2

hybridized whereas, pyrrolic –N is sp3 hybridized. The pyridinic –N bonds with two C atoms
at the edges and contributes one p electron to the p system [25]. Pyrrolic –N refers to N atoms
that contribute two p electrons to the p system of C atoms in CC.
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3.2. Solar Absorption & Intensified Photothermal Heat

In order to develop any solar-driven desalination device, solar absorption and pho-
tothermal conversion efficiency are vital features that play a critical role in increasing
the efficiency of an evaporating device [6,13,26]. To assess the solar absorption of the
CC, ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy was performed across the
entire light range of 200–2500 nm. Surprisingly, the pitch-dark surface of the CC had 92%
solar absorption with a minimum reflection as shown the Figure 4a. The results affirm
that CC shows distinct broadband solar absorption with overlap in the solar spectrum
and efficiently captures the incident light beams within the densely overlapped carbon
fibers via light scattering and multiple internal reflections and absorption. This leads
toward enhanced solar absorption with an enhanced energy conversion potential and
paves the path for interfacial heat localization. This exceptional absorbing potential leads
to an enhancement of the incident surface temperature. For this, the two systems were
developed (CC@PU and water) and placed under simulated one-solar intensity to record
the comparative surface temperature enhancement as a function of the irradiation time by
a thermocouple sensor probe. The obtained results were dawn in the form of graphs as
shown in Figure 4b.

Upon light irradiation, the surface temperature of the CC@PU reached the equilibrium
state in short periods of time, and a rapid temperature in the top increase was observed.
After 1 h illumination, the highly absorbing CC@PU-based interfacial solar evaporator
remarkably achieved a surface temperature enhancement up to 67.37 ◦C which is much
higher than water and other previously reported solar-driven steam generators. Figure 4c
shows the surface temperature enhancement of CC@PU under multiple solar intensities
(1, 2, 3 kW m−2) and reveals an interfacial layer temperature enhancement up to (119.18 ◦C)
under three solar intensities showing excellent heat accumulation and perfect thermal insu-
lation from the downward heat conduction. This remarkable interfacial heat localization
provides its potential as a promising solar-driven evaporation structure as well as heat
accumulation applications. The real-time solitary heat accumulation was captured via IR
camera, as revealed in Figure 4d–h. The CC@PU surface achieved intensified surface tem-
perature in 10 min of solar irradiance (1 kW m−2) satisfied with actual surface temperature
spectra (67.37 ◦C). This enhanced interfacial heat accumulation might be of great interest to
future solar-driven applications especially hyperthermia-inspired disinfection, and thermal
storage applications.
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3.3. Solar Evaporation Efficiency

The distinguished solar harvesting potential is specifically ascribed to the highly
carbonaceous carbon cloth consisting of intertwined carbon fibers which efficiently captures
the incident solar light and localizes it on the top surface via multiple reflections and
absorption within the matrix, while simultaneously restricting the thermal conduction
towards lower structure for effective thermal management, which forms the basis for the
interfacial solar heating [27–29]. The hydrophilic support (PU foam) ensures efficient water
transportation with the combined hydrophilicity of the CC which facilitates quick vapor
escape. The evaporation rates of pure water, PU, and CC@PU were measured using a
solar simulator enable to provide multiple solar intensities. Figure 5a shows the schematic
illustration of the steam generation setup to measure the time-dependent mass change for
1 h for the developed three evaporation systems (pure water, PU, CC@PU) under 1 kW m−2

intensity using an advanced electronic analytical balance with a precision of 0.0001 g. The
evaporation devices were placed on the analytical balance under the beam spot of the solar
simulator (1 kW m−2) and the whole system was allowed to stabilize for half of an hour.
Afterward, all the devices were irradiated for 1 h and corresponding time-dependent mass
change was recorded via analytical balance; the obtained results are shown in Figure 5b. As
obvious from the graphs, the maximum mass change upon 1 hr radiation was obtained by the
highly absorbing interfacial CC@PU evaporation device as compared to pure water and simple
PU foam, revealing CC@PU as a promising candidate for enhanced freshwater yield in remote
areas. Moreover, the CC@PU was also irradiated by the multiple simulated solar intensities and
the corresponding mass change rate was measured, which is shown in Figure 5c.

The time-dependent mass change under 1, 2, and 3 kW m−2 is shown in Figure 4c,
showing a high mass change (3.66 kg m−2) under three solar irradiations, which is highly
attributed to the distinctive solar capturing of CC and excellent heat localized on the
top surface, the good hydrophilicity of evaporation layer, and the combined excellent
thermal management of the CC and PU which ultimately facilitated in achieving the high
mass change rate and eventually enhanced the evaporation efficiency. The corresponding
evaporation rates of the three developed evaporation systems were calculated and drawn
in the form of a bar column, as shown in Figure 5d. The maximum evaporation rate was
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calculated for the CC@PU which is up to 1.71 kg m−2 h−1 excluding dark conditions,
which is comparatively much higher than PU foam (0.64 kg m−2 h−1) and pure water
(0.43 kg m−2 h−1). This attributes the prepared interfacial CC@PU evaporation device as a
renewable-energy-derived reliable device with economic and infrastructure feasibility for
practical installment at the industrial level to eradicate the water scarcity issues.

Nanomaterials 2022, 12, x FOR PEER REVIEW 8 of 14 
 

 

m−2 intensity using an advanced electronic analytical balance with a precision of 0.0001 g. 
The evaporation devices were placed on the analytical balance under the beam spot of the 
solar simulator (1 kW m−2) and the whole system was allowed to stabilize for half of an 
hour. Afterward, all the devices were irradiated for 1 h and corresponding time-depend-
ent mass change was recorded via analytical balance; the obtained results are shown in 
Figure 5b. As obvious from the graphs, the maximum mass change upon 1 hr radiation 
was obtained by the highly absorbing interfacial CC@PU evaporation device as compared 
to pure water and simple PU foam, revealing CC@PU as a promising candidate for en-
hanced freshwater yield in remote areas. Moreover, the CC@PU was also irradiated by the 
multiple simulated solar intensities and the corresponding mass change rate was meas-
ured, which is shown in Figure 5c. 

 
Figure 5. (a) Schematic illustration of the solar steam generation setup. (b) Time-dependent mass 
change of the pure water, PU foam, and CC@PU under 1 kW m-2. (c) Time-dependent mass change 
of CC@PU under 1, 2, 3 kW m-2. (d) Evaporation rates of pure water, PU foam, and CC@PU under 
one solar illumination. 

The time-dependent mass change under 1, 2, and 3 kW m−2 is shown in Figure 4c, 
showing a high mass change (3.66 kg m−2) under three solar irradiations, which is highly 
attributed to the distinctive solar capturing of CC and excellent heat localized on the top 
surface, the good hydrophilicity of evaporation layer, and the combined excellent thermal 
management of the CC and PU which ultimately facilitated in achieving the high mass 
change rate and eventually enhanced the evaporation efficiency. The corresponding evap-
oration rates of the three developed evaporation systems were calculated and drawn in 
the form of a bar column, as shown in Figure 5d. The maximum evaporation rate was 
calculated for the CC@PU which is up to 1.71 kg m−2 h−1 excluding dark conditions, which 
is comparatively much higher than PU foam (0.64 kg m−2 h−1) and pure water (0.43 kg m−2 
h−1). This attributes the prepared interfacial CC@PU evaporation device as a renewable-
energy-derived reliable device with economic and infrastructure feasibility for practical 
installment at the industrial level to eradicate the water scarcity issues. 

  

Figure 5. (a) Schematic illustration of the solar steam generation setup. (b) Time-dependent mass
change of the pure water, PU foam, and CC@PU under 1 kW m−2. (c) Time-dependent mass change
of CC@PU under 1, 2, 3 kW m−2. (d) Evaporation rates of pure water, PU foam, and CC@PU under
one solar illumination.

3.4. Salt-Rejection Behavior

Many promising solutions are offered to cope with this issue, i.e., drilling millimeter
channels in the wooden substrate and thin film evaporating structures, which sacrifice the
photothermal area and lead to thermal leakage from the photothermal layer to the bulk
water and suppresses the performance of the device [3,30]. Therefore, the self-regenerating
potential of the as-prepared CC@PU interfacial solar evaporator was also checked against
salt rejection in minimum record time to assess its reliability under extreme (high salt
concentration) conditions, as shown in Figure 6a–h. For this, the CC@PU interfacial solar
evaporation was placed in a 3.5 wt% NaCl solution and placed under 1 kW m−2 simulated
intensity of solar simulator for several hours with an excess 3.5 g NaCl (enough to saturate
the whole structure) and was spread on the interfacial photothermal layer to inspect the
operational potential under extreme salt environment, as shown in Figure 6a.
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Figure 6. The salt-rejection experiment of CC@PU-based interfacial solar evaporation system.
(a–h) Time-dependent thermal dissolution of the 3.5 g solid NaCl by interfacial CC@PU placed on
the top surface under simulated seawater (3.5 wt% NaCl) was completely dissolved back to the simulated
water during continuous evaporation for 210 min upon continuous solar irradiation of 1 kW m−2.

Furthermore, the CC@PU interfacial evaporation device successfully dissolved the
3.5 g of solid NaCl into the underlying water upon the 210 min of constant irradiation,
showing the tremendous self-generating potential of the CC@PU solar evaporator under
smooth evaporation conditions. The hydrophilic carbon cloth efficiently localized the ther-
mal energy on the top matrix which converted the water molecules into vapors approaching
the air–water interface and were transported by downward hydrophilic support (PU). The
generated water vapors dissolved within the salt placed on the top layer and gradually
formed a concentrated brine solution. This hot brine migrated from the top surface through
the hydrophilic structure of CC@PU towards the underlying bulk water via a salinity
gradient. The accumulation of salt was prevented by the highly porous network of overall
structure which potentially promoted the super wettability for quick water transport and
vapor escape [3]. The concentration difference between the two sides pushed the salt
ions from the high to lower concentration side and eventually the migration of hot brine
effectively dissolved all salt content downward with no surface etching or deformation of
the interfacial layer manifesting the tremendous potential of the CC@PU solar evaporator
for salt rejection with no salt accumulation and interfacial surface degradation, as shown
in Figure 6b–h. Hence, from the above experiments, the prepared CC@PU device was
validated for supreme salt rejection with self-regenerating potential with extreme stability
endorsing its potential for practical applicability for seawater desalination.

3.5. Purity & Long-Term Efficacy

It is obvious that seawater contains a higher concentration of dissolved salts (3.5 wt%).
Solar-driven seawater desalination is of great importance to desalinate seawater without
electrical or mechanical energy [11]. Of note, many solar evaporators have been developed
to desalinate seawater efficiently, unfortunately, all the parameters have not been achieved
yet in a single solar evaporation structure [3]. The facile-fabricated CC@PU solar evaporator
exhibited efficient solar-to-vapor conversion efficiency and simultaneously rejects salt for
effective and long-term freshwater generation. The purity check of condensed water and
stimulated seawater (3.5 wt%) was examined via the Inductively Coupled Plasma Optical
Emission Spectroscopy (ICP-OES), as demonstrated in Figure 7a. CC@PU solar evaporator
has a high potential to efficiently purify saline water. According to ICP-OES examination,
condensed water has a lower concentration of salt ions especially Na+, K+, Ca2+, and Mg2+

which are essential to obtain standard drinking water as compared to higher concentrated
stimulated seawater. The purified water by CC@PU solar evaporator perfectly rejects the
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elevated ions concentration level and the quality of the produced fresh water perfectly
meets the standard of drinking water set by the World Health Organization (WHO) [11].
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Figure 7. Purity standard of condensed water obtained via CC@PU solar evaporator, and long-term
efficacy without any surface deterioration. (a) ICP-OES examination of stimulated seawater and
condensed water. (b) Long-term operation of CC@PU solar evaporator under 1 kW m−2 using
stimulated seawater conditions.

Figure 7b represents the long-term solar evaporation test via CC@PU solar evaporator
over a consecutive 8 hrs under 1 kW m−2 solar irradiation. Of note, the long-term evapo-
ration experiments possessed excellent mass change (15.24 kg m−2 during 8 h operation)
with minimum discrepancy under seawater conditions under 1 kW m−2 solar irradiance.
There was no obvious deterioration or surface fouling observed during long-term operation.
As illustrated in Figure 8, a smooth evaporation behavior was obtained and vapors were
collected through a slope-shaped glass condenser which consisted of two chambers for
stimulated seawater and condensed water, respectively, showing the excellent reliability of
our device. Hence, the prepared device can potentially be installed at the industrial level
for real-world applications. The detailed comparison of evaporation performances along
with existing solar evaporators is described in Table 1.
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Table 1. Represents the detailed comparison of existing solar evaporators along with our fabricated
CC@PU solar evaporator.

Sr. No Solar Driven System Mass Change
(kg m−2)

Evaporation Rate
(kg m−2 h−1) Efficiency (%) Absorption (%) Ref.

1. rGO loaded non-woven fabric ~1.6 1.37 50.4 93 [7]
2. Modified cotton fabric (MCF) ~1.55 1.49 91.72 95 [31]
3. Wood/PPy 1.2 1.014 72.5 99 [32]

4. Candle Soot deposited
Cotton fabric ~1.2 1.375 86.3 95 [33]

5. HN/NiO 1.38 1.37 85.8 92.1 [14]
6. Carbon foam 0.8 1.57 86 96.19 [34]

7. Graphene
membrane 1.4 1.37 90 99.9 [35]

8. Silk/rGO 0.8 1.48 102 94 [36]
9. rGo/Cotton 1.5 1.47 NA 95 [37]
10. Black sand 1.2 1.43 81 98.25 [38]
11. Polymer foams 1.5 1.574 90.4 94 [39]
12. CC@PU 1.80 1.71 90 92 This work

Eventually, ample improvements are required to develop an all-weather solar water
evaporation system including all parameters in a single evaporator such as solar absorption,
mechanical robustness, salt-resistance, and higher evaporation rates. Of note, smooth
vapor collection also entails low-cost condensers with excellent fogging capabilities, e.g.,
transparent glass or flexible polymer condensers. From Table 1, we see that the CC@PU
solar evaporator exhibits a wide range of solar absorption (92%), and a higher evaporation
rate (1.71 kg m−2 h−1) along with excellent solar-to-thermal conversion efficiency (90%) as
compared to other successful solar evaporators [14,34–39]. The current study promotes the
facile fabrication of solar evaporators without any complex infrastructure which requires
only commercially available cheap materials, and higher feasibility to installation in remote-
sensing areas in under-developing countries.

4. Conclusions

In conclusion, we successfully developed an interfacial photothermal heat accumulation-
inspired solar evaporator via a facile fabricating technique derived from commercially
available carbon-cloth-wrapped over a polyurethane sponge (CC@PU) for salt-resistant
and freshwater generation. The state-of-the-art investigations were carried out to validate the
enhanced photothermal conversion efficiency of carbon cloth, e.g., the pyridinic –N and graphitic
–N is sp2 hybridized, whereas pyrrolic –N is sp3 hybridized, and the pyridinic–N bonds with two
C atoms at the edges and contributing one p electron to the p system promoted enhanced solar
absorption of CC (92%). The solar evaporator delivered outstanding photo-thermal conversion
efficiency (90%) with a high evaporation rate of up to 1.71 kg m−2 h−1. The interfacial layer
of pitch-black CC achieved enormous heat localization (67.37 ◦C) under 1 kW m−2. More
importantly, the long-term evaporation experiments with minimum discrepancy under
seawater conditions (mass change of water 15.24 kg m−2 for 8 h operation under 1 kW m−2

solar irradiations) inculcated the operational sustainability for multi-media rejection and
self-dissolving efficacy (solid NaCl, 3.5 g/210 min). Finally, this facile fabrication showcased
its potential for enhanced heat accumulation structures for freshwater production with
simultaneous salt rejection for industrial applications.
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