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Abstract: Designing photocathodes with nanostructures has been considered a promising way to
improve the photoelectrochemical (PEC) water splitting activity. Cu2Te is one of the promising
semiconducting materials for photoelectrochemical water splitting, the performance of Cu2Te pho-
tocathodes remains poor. In this work, we report the preparation of Cu2Te nanorods (NRs) and
vertical nanosheets (NSs) assembled film on Cu foil through a vapor phase epitaxy (VPE) technique.
The obtained nano architectures as photocathodes toward photoelectrochemical (PEC) performance
was tested afterwards for the first time. Optimized Cu2Te NRs and NSs photocathodes showed
significant photocurrent density up to 0.53 mA cm−2 and excellent stability under illumination.
Electrochemical impedance spectroscopy and Mott–Schottky analysis were used to analyze in more
detail the performance of Cu2Te NRs and NSs photocathodes. From these analyses, we propose that
Cu2Te NRs and NSs photocathodes are potential candidate materials for use in solar water splitting.

Keywords: copper telluride; nanorods; nanosheets; photocathodes; PEC water splitting

1. Introduction

Photoelectrochemical (PEC) water splitting has been regarded as attractive technology
because it provides sustainable and alternative source of energy [1–4]. Semiconductor elec-
trodes play a vital role for efficient solar water splitting to produce clean and renewable H2
and O2 [5,6]. Designing semiconductor photoelectrodes with suitable band edge energies
that function as energy converters, photosensitizers, and have good photostability, is of
fundamental importance. Silicon showed great promise as a photocathode material due
to its band gap and earth abundance. However, it suffers from drawbacks such as high
reflectivity, limited photovoltage, sluggish reaction kinetics, and photocorrosion in aqueous
solution [7–9]. Research from several groups has investigated photocathode materials based
on transition metal chalcogenides [10,11], phosphides [12,13], oxides [14,15], Sb2Se3 [16],
CdTe [17], and SnS [18]. However, their performance and chemical stability needs to be
improved. It is still a significant challenge in developing an ideal photocathode material
with long-term stability and high efficiency for practical applications.

Recently copper chalcogenides have gained considerable attention owing to their
wide range of phases and compositions, which allows them to tune their physical and
chemical properties for a diverse range of applications [19–24]. Among them, copper
telluride (Cu2Te), a p-type semiconductor has gained considerable interest for its potential
application in solar cells [25], memory devices [26], lithium ion batteries [27], and thermo-
electric materials [28]. In the past, studies on Cu2Te were mainly on their thermoelectric
and electrical properties. Applications of Cu2Te materials in PEC water splitting have
been seldomly explored. For example, Sangeetha et al., studied the electrocatalytic water
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reduction of Cu2−xTe by tuning Cu overvoltage. The catalyst shows a low overpotential of
347 mV at 10 mA cm−2 towards the HER [29]. On the other hand, Ghosh et al., reported
electrochemically deposited Cu7Te4 thin films to degrade organic pollutant dyes under
visible light irradiation. The Cu7Te4 thin film showed superior photoactivity to reduce
toxic Cr(VI) to Cr(III) and the effective removal of Cr(VI) up to 99.8% in 30 min [30]. More
recently, Cu7Te4 nanosheet was prepared by Wang et al., for OER activity and showed a
low overpotential of 323 mV to drive the current density of 10 mA cm−2 and a small Tafel
slope of 86 mV dec−1 [31].

Inspired by these, we report the direct synthesis of Cu2Te NRs and vertical NSs on Cu
foil via VPE. In addition, there have been no reports on the preparation of one-dimensional
(1D) and two-dimensional (2D) like Cu2Te (e.g., nanorods and vertical nanosheets) by
utilizing Cu foil as both substrate and Cu resource. The structural and morphological
properties of as-synthesized Cu2Te nanostructures were systematically assessed. The
as-prepared Cu2Te nanostructured samples were then utilized as the photocathode for
studying the PEC properties under illumination for the first time. The photocathode based
on vertical NSs exhibits excellent PEC performance compared to NRs. The enhanced
performance can be due to a large surface area and more active sites, which can provide a
high interfacial contact between the electrolytes for fast interfacial charge transfer.

2. Experimental Section
Preparation of Cu2Te Nanostructures

The 1D and 2D Cu2Te nanostructures were grown via a VPE system used in previous
studies [32,33]. Tellurium (Te) powder as chemical precursor, and Cu foil as the substrate,
were chosen for the deposition of Cu2Te nanostructures. In the Cu2Te growth process, 0.5 g
high purity (99.999%) Te source is placed in the source zone of the VPE-chamber and Cu
substrate were placed 10 cm away from the Te source in the downstream direction. Before
flowing the gas, the initial chamber was evacuated to a vacuum of 2 × 10−3 Torr using a
rotary pump. The quartz chamber was purged with N2 gas (200 sccm) and then sufficiently
flowed for 10 min to remove residual oxygen and then carrier N2 gas was maintained at
50 sccm. In all growth processes, the growth time was 30 min, the temperature of the source
zone was maintained at 700 ◦C, and the operating pressure at this time was 3.5 × 10−1 Torr.
The growth time is 30 min. For the production of different nanostructures, the growth
temperature of Cu2Te was set at 550 ◦C for nanorods and 600 ◦C for nanosheets, respectively,
and carrier N2 gas was maintained at 50 sccm. More details about the characterization
techniques and photoelectrochemical measurements are described in the Supplementary
Information (SI).

3. Results and Discussions

Cu2Te nanostructured film was synthesized via a vapor phase epitaxy (VPE) route from
the reaction of Te powder and Cu foil. Figure 1a presents the schematic of the fabrication
process of Cu2Te nanostructured film prepared on the Cu foil. From the Figure 1, it can
be seen that Te powders placed at the source zone of the quartz tube and Cu foil placed
at the downstream direction. When the growth temperature is reached, Te powders were
evaporated, carried by N2 gas will react with the Cu foil substrate at 550 ◦C and 600 ◦C to
form into Cu2Te NRs and vertical NSs films (detailed synthesis processes are provided in
the experimental section). The surface morphologies of as deposited Cu2Te nanostructured
films were studied by FESEM technique. Figure 1b,c displays the SEM images of the as-
prepared film on the surface of Cu foil at 550 ◦C, showing the deposition of numerous NRs
on the whole Cu foil. Typical NRs have length of ~1 µm as can be seen in the cross-sectional
SEM image (Figure 1d). Similarly, the SEM images (Figure 1e,f) show vertically aligned
NSs morphologies on Cu foil deposited at 600 ◦C with uniform distribution. Moreover,
the vertical Cu2Te NSs arrays with a thickness of several hundred nanometers randomly
extended can be observed from the cross-sectional SEM image in Figure 1g.
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Figure 1. Sample preparation and morphology characterization. (a) Schematic of the fabrication
process of Cu2Te nanostructured film prepared on the Cu foil. (b,c) SEM and (d) cross section image
of Cu2Te NRs and (e,f) SEM and (g) cross section image of Cu2Te NSs.

The morphologies of Cu2Te nanostructured films were further studied by high res-
olution transmission electron microscopic (HRTEM) techniques as shown in Figure 2.
The TEM images in Figure 2a,c further demonstrate the NRs and NSs morphology. The
clearly resolved lattice fringe is measured to be about 0.359 nm for both the nanostructures,
corresponding well to the (211) plane of Cu2Te.

The phase structure of as-synthesized Cu2Te NRs and NSs films, were investigated
through XRD patterns as depicted in Figure 3a. Here, several diffraction peaks were
observed for both Cu2Te NRs and NSs films, which can be assigned to orthorhombic Cu2Te
(PDF # 00-037-1027). The diffraction peaks can be indexed as (031), (211), (222), and (0118)
planes of Cu2Te. More specifically, both the films show a predominant peak at 24.7◦, which
indicates that the (211) plane is highly preferred, which is in agreement with HRTEM image.
Apart from Cu2Te peaks, the two Cu (111) and (200) peaks were seen in the diffraction
pattern, which are related to Cu foil.
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To further study the structural properties of the Cu2Te NRs and vertical NSs, Raman
spectroscopy was employed. Figure 3b displays typical Raman spectra of Cu2Te NRs
and vertical NSs. The image inset shows the optical micrograph image of studied NRs
and NSs. Upon 532 nm laser excitation, both the Raman spectrum of NRs and vertical
NSs exhibits a sharp peak positioned at 123 cm−1, which agrees with the data previously
reported for Cu2Te [34]. The observed peak has been assigned to B2g vibration mode of
Cu2Te phase [35,36]. The absence of oxidation-related peaks indicates high quality of the
synthesized Cu2Te samples.

X-ray photoelectron spectroscopy (XPS) was adopted to provide information about the
chemical bonding and elemental composition in as-grown Cu2Te NRs and NSs films. The
full survey XPS scan of Cu2Te NRs and vertical NSs with element denotation are shown
in Figure 4a. The XPS core level spectra of Cu 2p of NRs and NSs films (Figure 4b) show
two strong peaks from Cu 2p1/2 and Cu 2p3/2. As represented by Gaussian fitting, the core
level spectra of Cu 2p confirm the presence of Cu1+ and Cu2+ in both NRs and vertical NSs.
The peaks appeared at 932.4 eV (Cu 2p3/2) and 952.3 eV (Cu 2p1/2) are assigned to Cu1+.
Similarly, the peaks at 933.6 eV (Cu 2p3/2) and 953.7 eV (Cu 2p3/2) are the typical values
for Cu2+, of Cu2Te, respectively [37,38]. Additionally, two weak satellite features could
be observed at 944.1 eV and 962.4 eV, respectively, and is also attributed to Cu2+. This is
possibly attributed to the unavoidable surface oxidation under air atmosphere. The XPS
core level spectra of Te (Figure 4c) in both NRs and vertical NSs have peaks at binding
energies of 583.1 eV, corresponding to Te2− states of Cu2Te, respectively [39].
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and (c) Te 3d of Cu2Te NRs and NSs.

Furthermore, the tellurium-to-copper stoichiometric ratio of Te and Cu of approxi-
mately 1:2 is obtained for both the NRs and NSs from the XPS, suggesting grown Cu2Te is
chemically stoichiometric. The results above demonstrate the successful synthesis of Cu2Te
on a copper foil.

The PEC performances of the Cu2Te nanostructured photocathodes were acquired by
linear sweep voltammetry (LSV) measurements under dark and light conditions (100 mW
cm−2) in 0.5 M Na2SO4 electrolyte. The photocurrent-density variations for both Cu2Te
NRs and NSs photocathodes are illustrated in Figure 5a. As observed from Figure 5a, both
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the samples reveal obvious photocurrent under illumination, demonstrating the efficient
charge transfer process at semiconductor/electrolyte interfaces. Besides, the photocurrent
density increases with increasing applied potential in the negative direction, implying
the p-type conductivity and could possibly be employed as a photocathode material for
water splitting. At a bias potential of −0.5 V, the Cu2Te NRs photocathodes generate a
photocurrent density of 0.21 mA cm−2. Interestingly, the photocurrent density of Cu2Te
vertical NSs photocathodes reached the maximum value of 0.53 mA cm−2. The enhanced
photocurrent density of the vertical NSs can be ascribed to light absorption utilization via
multiple reflections of this vertical structure as well as forming intimate contact with the
Cu substrate. Moreover, this vertical NSs architecture with an open morphology, provides
more active sites, which can provide a high interfacial contact between the electrolytes
for fast interfacial charge transfer, thus improving the PEC performance. According to
the reported literature, the observed photocurrent density was quite high (Table S1). The
generated maximum photocurrent density was ~2-times higher compared to that of NRs.
However, in this study, the photocurrent value of the photocathodes is closely related to
the morphological properties of the films.
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The chronoamperometric I-t curves examining the photocurrent of the Cu2Te NRs
and vertical NSs photocathodes under chopped illuminations are shown in Figure 5b. The
photocurrent of both NRs and NSs exhibits a prompt rise under each illumination, and
quickly drops when the light is turned off, demonstrating the excellent switching behavior
and good stability of the photocathodes. Afterward, a photostability test for the Cu2Te NRs
and vertical NSs (Figure 5c) photocathodes was carried out under continuous illumination
and displayed a good stability. Both the photocathodes nearly maintained 70% retention of
initial value after 200 s suggesting the excellent stability. Finally, to give more evidence,
we also performed XRD measurements for the photocathodes after the PEC stability test.
As can be observed from Figure S1, it is worth mentioning that predominant peak at 24.7◦

appears in the XRD pattern of both Cu2Te NRs and vertical NSs photocathodes after the
stability test demonstrates its excellent structural stabilities. The above results highlight the
promising potential of the Cu2Te NSs and NRs as state-of-the art photocathodes.

The PEC performance of Cu2Te NRs and vertical NSs photocathodes was further
studied with (EIS) under light illumination. This investigation was made in order to
elucidate the charge transfer resistance at the photocathode/solution interface. Figure 6a
presents the typical Nyquist curves of Cu2Te NRs and vertical NSs photocathodes under
illumination. As seen from Figure 6a, both the Nyquist curves show a semicircle arc
at high frequency can be used to identify charge transfer resistance and a straight line
at low-frequency regions (mass transfer). The fitted equivalent circuit model for the
photocathodes is given in Figure 6b, where Rct, Rs, CPE, and WZ represents charge transfer
resistance, electrolyte resistance, constant phase element, and Warburg impedance. The
values obtained from the fitted circuit are summarized in Table S2. The charge transfer
resistance from Cu2Te NSs were found to be systematically decreased as compared with
Cu2Te NRs. These results suggest that the Cu2Te NSs could offer smoother carrier diffusion
paths and, hence, higher photoelectrochemical performances compared with the Cu2Te
NRs. The PEC behavior of the photocathodes was then examined with the log |Z| vs.
log frequency (log f) plots in Figure 6c. The vertical NSs photocathodes display minimum
|Z| compared to the NRs photocathodes indicating its higher PEC activity. Figure 6d
reveals the phase angle vs. log f plots. Here, the Cu2Te NRs photocathodes showed a high
phase angle around (−75◦), while NSs photocathodes exhibits phase angle around (−60◦).
The less-negative phase angle for the Cu2Te NSs in comparison to NRs photocathodes
further confirmed a lower resistance to charge mobility in the semiconductor and at the
electrolyte/photocathode interface. Additionally, the characteristic peak frequency shifted
to a low value for NSs photocathode, indicating it has longer carrier lifetime than in NRs
photocathode and thus a lower recombination rate.

Finally, Mott–Schottky (M-S) analysis was employed to estimate charge carrier density
(NA) and flat band potential (Vfb) of the Cu2Te NRs and NSs photocathodes. Figure 7a,b
illustrates the Mott–Schottky plots (1/C2 as a function of applied potential) measured at a
frequency of 1000 Hz. The negative slope of the plots indicated that both Cu2Te NRs and
vertical NSs are p-type semiconductors. Furthermore, the flat band potentials of Cu2Te NRs
and vertical NSs was determined to be 0.25 V and 0.28 V by extrapolating the X intercepts
in Mott–Schottky plots. Additionally, the carrier density NA was estimated from Figure 7
using the following equation [40]:

NA = (2/eεε0) (d (1/C2)/dV)−1

where e is the elemental charge, ε the dielectric constant of Cu2Te (taken as 17) [41], ε0
the permittivity of vacuum, NA is the concentration of charge carriers, and C is the space
charge layer capacitance. According to the equation and Figure 7, the NA value of the
Cu2Te NRs and NSs were determined to be 3.35 × 1018 and 4.3 × 1018 cm−3. Evidently,
the higher carrier density in the case of vertical NSs and charge transfer efficiency have
contributed to the enhanced PEC performance.
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higher carrier density in the case of vertical NSs and charge transfer efficiency have con-
tributed to the enhanced PEC performance. 

 
Figure 7. Mott–Schottky plot of (a) Cu2Te NRs and (b) vertical NSs. Figure 7. Mott–Schottky plot of (a) Cu2Te NRs and (b) vertical NSs.

4. Conclusions

In summary, we presented a synthesis of Cu2Te NRs and vertical NSs assembled film
on Cu foil as photocathodes in a water splitting PEC. The morphological and microstruc-
tural properties and chemical states of the Cu2Te were systematically discussed. It is worth
mentioning that the Cu2Te NRs and vertical NSs delivered unique photoelectrochemical
performances. Compared with NRs, vertical NSs photocathodes exhibited higher photocur-
rent density. EIS results revealed excellent performance of Cu2Te NSs photocathodes, which
can be ascribed to low charge transfer resistances across electrolyte/electrode interfaces. We
believe that the above results reported herein will open a new avenue in the development
of Cu2Te-based photocathodes for efficient PEC water splitting.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12183192/s1, Figure S1: X-ray diffraction pattern of Cu2Te
NRs and vertical NSs after stability test; Table S1: A comparisons of PEC performances of Cu2Te
photocathodes is given below; Table S2: Various parameters extracted from the equivalent circuit fit
to the EIS data for Cu2Te NRs and NSs photocathodes in 0.5M Na2SO4 electrolyte solutions [42–46].
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