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Abstract: Rational design of sulfur hosts for lithium-sulfur (Li-S) batteries is essential to address the
shuttle effect and accelerate reaction kinetics. Herein, the composites of bimetallic sulfide CuCo2S4

loaded on carbon nanotubes (CNTs) are prepared by hydrothermal method. By regulating the
loading of CuCo2S4 nanoparticles, it is found that when Cu2+ and CNT are prepared in a 10:1 ratio,
the CuCo2S4 nanoparticles loaded on the CNT are relatively uniformly distributed, avoiding the
occurrence of agglomeration, which improves the electrical conductivity and number of active sites.
Through a series of electrochemical performance tests, the S/CuCo2S4-1/CNT presents a discharge
specific capacity of 1021 mAh g−1 at 0.2 C after 100 cycles, showing good cycling stability. Even at
1 C, the S/CuCo2S4-1/CNT cathode delivers a discharge capacity of 627 mAh g−1 after 500 cycles.
This study offers a promising strategy for the design of bimetallic sulfide-based sulfur hosts in
Li-S batteries.

Keywords: CuCo2S4; nanoparticles; carbon nanotubes; sulfur host; lithium-sulfur batteries

1. Introduction

Lithium-sulfur (Li-S) batteries are the up-and-coming next-generation rechargeable
batteries because of the merits of being environment-friendly, their high energy density
(2600 Wh kg−1) and theoretical capacity (1675 mAh g−1) [1–3]. However, soluble lithium
polysulfides (LiPSs) are dissolved into the electrolyte during the charge–discharge process,
which induces the shuttle effect and rapid capacity decay, limiting the exploitation of high-
performance Li-S batteries [4–8]. Therefore, various solutions, including the design of sulfur
host, separator and electrolyte modification, are committed to solving the above problem.
Among them, the design and preparation of suitable sulfur carriers play an essential role in
boosting the performance of Li-S batteries.

In previous studies, various carbon materials including carbon spheres, carbon nanofibers
and carbon nanotubes (CNTs) were used as sulfur hosts in Li-S batteries by virtue of physi-
cal adsorbing LiPSs. This method presents the effect of sulfur fixation to a certain extent;
however, it still has some limitations [9–12]. Some studies reported that polar materials
including metal oxides, metal sulfides and metal phosphides, etc., could mitigate the
shuttle effect effectively by chemical adsorption and catalysis [11–14], such as SiO2 [15],
MnO2/TiO2 [16], nickel-plated [17] and CoP-CNT@C [18]. Among them, transition metal
sulfides not only interact strongly with LiPSs but also show excellent catalytic activity in the
electrochemical reaction. In addition, it can stabilize the electrochemical performance and
enhance the energy efficiency of Li-S batteries [19,20]. For example, CoS2 [21,22], NiS [23,24]
and Co3S4 [25,26] were reported to improve the electrochemical performance by a synergis-
tic role of adsorption and catalysis. Compared to monometallic sulfides, bimetallic sulfides
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possess lower band gap energy and improved electrical conductivity [27]. Simultaneously,
bimetallic sulfides can provide more reactive sites than monometallic sulfides. Therefore,
extensive research has been devoted to the development of new bimetallic sulfides catalyst.
Huang et al. prepared Co-Fe bimetallic sulfides with robust chemical adsorption and
catalytic activity, it exhibited a high reversible capacity of 1126.5 mAh g−1 at 0.2 C [28].
Lu et al. fabricated the NiCo2S4@CNTs/S for Li-S batteries. CNTs were found to promote
the electronic transportation capacity and conductivity of the cathode material effectively,
while NiCo2S4 showed strong adsorption toward the LiPSs, effectively suppressing the
diffusion of LiPSs [29]. Previous work has proved that bimetallic sulfide/carbon composite
can show a strong effect in inhibiting the shuttle effect. However, the development of
different polysulfide/carbon composites is still lacking at present, and the conductivity,
electrochemical stability, and conversion kinetics need to be further improved.

In this work, CNTs loaded with CuCo2S4 bimetallic sulfides (CuCo2S4/CNT) were
prepared and used as the sulfur host for Li-S batteries. By further regulating the loading
amount of CuCo2S4 nanoparticles on CNT materials, it is explored that the appropriate
loading amount of CuCo2S4 nanoparticles can effectively improve the kinetics of LiPSs
conversion, inducing a good electrochemical performance. The as-obtained S/CuCo2S4-
1/CNT can sustain a specific capacity of 627 mAh g−1 after 500 cycles, with a capacity
decay rate of only 0.08% per cycle.

2. Materials and Methods
Fabrication of CuCo2S4/CNT and CuCo2S4

A total of 15 mg slightly oxidized carbon nanotubes were ultrasonically dispersed
into 30 mL ethylene glycol, and the suspension was sonicated for 2 h with stirring. Then,
0.15 g Cu(CH3COO)2-H2O (A reagent) and 0.0265 g Co(CH3COO)2-4H2O (B reagent) were
dissolved in the mixture and stirred magnetically for 1 h. Afterwards, 0.117 g thiourea was
added and stirred for 40 min. The mixture was poured into a 50 mL autoclave, sealed and
reacted at 180 ◦C for 24 h. After cooling, the mixture was cleaned by centrifugation with
anhydrous ethanol four times. The product was gathered and dried under vacuum at 70 ◦C
to obtain CuCo2S4-1/CNT. Holding all other parameters constant, CuCo2S4-2/CNT was
also obtained by adding 0.3 g A reagent and 0.053 g B reagent, while CuCo2S4-0.5/CNT can
be obtained by adding 0.075 g A reagent and 0.01325 g B reagent. CuCo2S4 nanoparticles
were obtained without adding slightly oxidized carbon nanotubes and ethylene glycol
under the same fabrication conditions as CuCo2S4/CNT above.

Further details about the fabrication of the S/CuCo2S4/CNT and S/CuCo2S4 compos-
ites, preparation of Li2S6 solution, material characterization, electrochemical measurements
and symmetric cells measurement, can be obtained from Supporting S0.

3. Results and Discussion

The schematic of the synthesis process and structure of S/CuCo2S4/CNT is shown
in Figure 1. In brief, CuCo2S4/CNT is first synthesized by the hydrothermal method.
Then, S/CuCo2S4/CNT can be obtained by heating of S and CuCo2S4/CNT mixture. The
detailed process can be found in Supporting S0. The final product S/CuCo2S4/CNT was
used as a cathode in this work for Li-S batteries application. By adjusting the content of
Cu(CH3COO)2-H2O and Co(CH3COO)2-4H2O, the ratio of CuCo2S4 particles loaded on
CNTs can be regulated. The products are marked as CuCo2S4-0.5/CNT, CuCo2S4-1/CNT
and CuCo2S4-2/CNT, respectively, with the increase in contents of raw materials. As
shown in Figure 2a, when CuCo2S4 particles were synthesized by hydrothermal method,
the particle size was about 30–55 nm. However, severe particle agglomeration occurs which
reduces the specific surface area of the material. As shown in Figure S1, although the
loading of CuCo2S4 on CNT (CuCo2S4-0.5/CNT) inhibits CuCo2S4 agglomeration, the
loading is too sparse (Figure S1a), which limits the adsorption ability toward polysulfides.
While the loading of CuCo2S4 on CNTs is too dense for CuCo2S4-2/CNT (Figure S1c),
restraining the exposure of active sites. The scanning electron microscope (SEM) images
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of CuCo2S4-1/CNT (Figure 2b,c and Figure S1b) exhibits uniform loading of CuCo2S4
particles on the CNTs’ surface, which most possibly enhances the performance of Li-S
batteries. Transmission electron microscope (TEM) images of CuCo2S4-1/CNT in Figure 2d
also confirm that CNTs are closely covered by CuCo2S4 with a granular diameter of 8–15 nm.
Furthermore, it can be found from the above images that the CNTs are multi-walled. The
average diameter and lengths of CNTs are 34 nm and 2 µm, respectively. In addition, when
CNTs are exposed to air, they are inevitably oxidized. Some oxygen-containing groups, such
as epoxide (C−O−C), hydroxyl (−OH), carboxyl (−COOH), and carbonyl (C=O), may be
produced on the CNTs’ surface [30]. The presence of these oxygen-containing groups may
affect the loading of CuCo2S4, as well as the electrochemical performance of Li-S batteries.
Therefore, related tests need to be further explored in the future. The corresponding element
mapping demonstrates the uniform distribution of S, Co, Cu (CuCo2S4 particle) on CNTs
(Figure 2e–i).
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The crystal structures of CuCo2S4, CuCo2S4-0.5/CNT, CuCo2S4-1/CNT and CuCo2S4-
2/CNT materials were characterized by X-ray diffraction (XRD) (Figure 3a). The XRD
patterns of four samples exhibit five characteristic diffraction peaks at 26.4◦, 31.3◦, 38.0◦,
50.2◦ and 54.9◦, matching with (220), (311), (400), (511) and (440) planes of CuCo2S4 (JCPDS
42–1450), respectively. The Raman spectra of CuCo2S4-0.5/CNT, CuCo2S4-1/CNT and
CuCo2S4-2/CNT samples are shown in Figure 3b. The obvious peak near 1353 cm−1 can
be marked as the D peak reflecting disordered and defective carbon, while the peak at
1587 cm−1 is attributed to the G peak of carbon, relating to the presence of sp2-hybridized
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carbon. The intensity ratio of D peak to G peak of CuCo2S4-1/CNT (ID/IG, 0.69) is low-
est in the experimental materials, indicating that the graphitization degree and electric
conductivity of CuCo2S4-1/CNT are higher than that of CuCo2S4-0.5/CNT (0.81), CuCo2S4-
2/CNT (0.77) and CNT (0.85) (Figure S2) [31,32]. In addition, Figure 3c displays the
thermogravimetric analysis (TGA) plots of different composites. It could be seen that
S/CuCo2S4-1/CNT presents higher sulfur loading up to 76.3%. The specific surface area
and pore size characteristics of CuCo2S4-1/CNT, CuCo2S4-2/CNT, CuCo2S4-0.5/CNT and
CuCo2S4 were studied by N2 adsorption-desorption experiments (Figures 3d and S3a,c). It
displays typical type III isotherms with H3 type hysteresis loop, indicating the existence of
mesopores. CuCo2S4-1/CNT (152.7 m2 g−1) shows a higher surface area than CuCo2S4-
2/CNT (138.6 m2 g−1), CuCo2S4-0.5/CNT (102.5 m2 g−1) and CuCo2S4 (85.4 m2 g−1). Pore
distribution reveals that there exists a large proportion of micropores in CuCo2S4-1/CNT
compared with the other three materials (Figures 3e,f and S3b,d). This is beneficial to en-
hance the sulfur limitation by physical role. Higher surface area also facilitates the exposure
of active sites and provides a rich electrode/electrolyte interface for LiPSs conversion.
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S/CuCo2S4-1/CNT and S/CuCo2S4-2/CNT. (d) N2 adsorption/desorption isotherms of CuCo2S4

and CuCo2S4-1/CNT. Pore size distribution of (e) CuCo2S4 and (f) CuCo2S4-1/CNT.

In Li-S batteries, X-ray photoelectron spectrometry (XPS) is usually used to determine
the composition, structure and element content of the material. Therefore, in order to iden-
tify the composition and valence of the CuCo2S4-1/CNT, we conducted XPS measurement.
It can be concluded that Cu, Co, S, C, and O elements exist in CuCo2S4-1/CNT (Figure 4a).
The Co XPS spectrum (Figure 4b) shows six peaks at 794.8 eV for Co3+ 2p1/2, 779.5 eV for
Co3+ 2p3/2, 798.8 eV for Co2+ 2p1/2, 781.4 eV for Co2+ 2p3/2, 805.1 and 785.2 eV for satellite
peaks [33]. In the Cu XPS spectrum (Figure 4c), the binding energy values at 952.5 eV and
932.5 eV correspond to Cu+ 2p1/2 and Cu+ 2p3/2, respectively. While 954.0 eV and 933.5 eV
can be contributed to Cu2+ 2p1/2 and Cu2+ 2p3/2, and 943.7 eV and 963.2 eV for satellite
peaks [34]. In addition, two characteristic peaks in the S 2p XPS spectra at 163.9 eV (2p1/2)
and 162.2 eV (2p3/2) correspond to S2−species (Figure 4d) [35,36]. The lower intensity
characteristic peak at 168.8 eV suggests the presence of small amounts of sulphate or sulfite
species and the presence of thin oxide layers on the surface. The peak at 165.1 eV probably
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corresponds to an M-S bond (M = Cu or Co), where the sulfur presents in the form of
polysulfides (Sn

2−, 2 ≤ n < 8) [37]. In addition, the present type of polysulfides in different
charge–discharge states can be detected by XPS, which can provide a better understanding
of the charge–discharge mechanism of lithium-sulfur batteries. These in-depth analyses
and discussions will be carried out and published in the future.
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In order to investigate the feasibility of S/CuCo2S4/CNT composites as Li-S batter-
ies cathodes, a series of electrochemical performance tests were carried out. As shown
in Figure S4, the red lines and blue lines correspond to the standard PDF cards of sul-
fur (JCPDS 08-0247) and CuCo2S4 (JCPDS 42-1450), respectively. The XRD results of
S/CuCo2S4/CNT composites also show characteristic diffraction peaks of S and CuCo2S4,
indicating a successful sulfur loading. The final mass ratios of CuCo2S4 to CNT in
S/CuCo2S4-0.5/CNT, S/CuCo2S4-1/CNT, and S/CuCo2S4-2/CNT composites are calcu-
lated by combining XPS, EDS and inductively coupled plasma mass spectrometry (ICP-MS)
results, showing 4.92:1, 9.81:1 and 18.53:1, respectively, which are close to the theoretical
materials input ratios of 5:1, 10:1 and 20:1.

Figure 5a shows the Nyquist plots of Li-S batteries of different cathodes. The elec-
trochemical impedance spectroscopy (EIS) curves contain a semicircle and a slope line,
in line with the charge transfer resistance and the Warburg bulk impedance, respectively.
The charge-transfer resistance of S/CuCo2S4-1/CNT is smaller than other electrodes, in-
dicating it has the smallest charge-transfer resistance [38]. As shown in Figure 5b, the
cyclic voltammetry (CV) curves at 0.1 mV s−1 show two distinct reduction peaks during
discharge at 2.02 V and 2.31 V. The reduction peak at 2.31 V represents the reduction of S8
to soluble LiPSs (Li2Sn, n = 4, 6, 8). The peak at 2.02 V represents the conversion reaction
of LiPSs to Li2S2/Li2S. During charging, the oxidation peak splits into two peaks, which
are attributed to the oxidation from solid Li2S to LiPSs and eventually to S8 [39,40]. Fur-
thermore, the first three cycles of CV curves of the S/CuCo2S4-1/CNT composite are well
overlapped, reflecting excellent cycle reversibility. In addition, the first cycle CV curves of
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S/CuCo2S4-1/CNT, S/CuCo2S4-2/CNT and S/CuCo2S4-0.5/CNT cathodes at the scan rate
of 0.1 mV s−1 are shown in Figure S5. It is obvious that S/CuCo2S4-1/CNT has the largest
current response, indicating that it has superior catalytic performance. At a low current,
the charging–discharging process of Li-S battery is relatively slow, it tends to produce more
LiPSs, which dissolve in the electrolyte, causing the shuttle effect. In this way, we can verify
the limitation of the shuttle effect by different types of CuCo2S4 and CNT composites [41].
Moreover, a lot of works have also examined electrochemical performance at 0.2 C so that
we can fully compare the electrochemical data of this work with previously published
works. Therefore, we perform measurements at 0.2 C based on the above considerations.
Figure 5c shows the cycling property of different materials at 0.2 C. The S/CuCo2S4-1/CNT
cathode shows the best electrochemical performance with a first discharge capacity of
1104.5 mAh g−1 and a very low cycle decay rate. In fact, each type was prepared for three
samples. One battery of S/CuCo2S4-1/CNT presents an initial capacity of 1364.5 mAh g−1.
While the other two samples of S/CuCo2S4-1/CNT cathode show the first discharge capac-
ity of 1100.3 mAh g−1 and 1108.9 mAh g−1 at 0.2 C (Figure S6). Considering that one of the
values is abnormally high, we conservatively choose the other two similar values to report.
Therefore, the average discharge capacity with an error is 1104.6 ± 4.3 mAh g−1. After
100 cycles, it can maintain a high cycle capacity (1021 mAh g−1) and its coulomb efficiency
closes to 100%, demonstrating the excellent reversibility of the reaction. In contrast, the
S/CuCo2S4-0.5/CNT and S/CuCo2S4-2/CNT cathodes exhibited rapid capacity decay
and low cycling capacity. In addition, we also compare the S/CuCo2S4 samples without
CNT, which exhibit the lowest cycling performance. This can be attributed to the fact
that it lacks the CNT’s hollow structure and three-dimensional conducting framework.
For charge–discharge curves of different samples (Figures 5d and S7), there are two ob-
vious reductive plateaus and a slope, which are related to the reduction and oxidation
of LiPSs. The voltage profiles of the S/CuCo2S4-1/CNT cathode exhibit slower capacity
decay and smaller polarization, demonstrating it has excellent catalytic activity. The rate
performance of different electrode materials is exhibited in Figure 5e. The specific discharge
capacities of S/CuCo2S4-1/CNT at 0.2, 0.5, 1, 2 and 3 C are 1138 mAh g−1, 943 mAh g−1,
887 mAh g−1, 741 mAh g−1 and 656 mAh g−1, respectively, which is higher than the other
three electrode materials. Even when the current density reverts to 0.2 C, the capacity of
S/CuCo2S4-1/CNT can reach 1072 mAh g−1, demonstrating the efficient and reversible
use of the active sulfur. Moreover, the charge–discharge curves of S/CuCo2S4-1/CNT at
different current densities (Figure 5f) can maintain the characteristic discharge plateau of
Li-S batteries compared with S/CuCo2S4-0.5/CNT, S/CuCo2S4-2/CNT and S/CuCo2S4
(Figure S8) [42].

To further investigate the effect of S/CuCo2S4-1/CNT on the electrochemical per-
formance, we also carried out the EIS test and morphology analysis after cycling for
100 cycles. As shown in Figure 6a, the impedance diagram is composed of two semicircles
and an oblique line. The first semicircle represents the formation of the Li2S2–Li2S interface
(RSEI). It can be concluded that S/CuCo2S4-1/CNT has the lowest impedance, indicating
its superior electrochemical kinetics [43,44]. Moreover, the morphology of CuCo2S4-1/CNT
after cycling remains relatively intact. The carbon nanotubes retain their original con-
ductive skeleton structure (Figure 6b,c). Based on the above results, long-term cycling
performance at 1 C was also carried out. As exhibited in Figure 6d, the specific capacity
of S/CuCo2S4-1/CNT can maintain at 627 mAh g−1 after 500 cycles, and the capacity
decay rate is only 0.08%/cycle. In contrast, S/CuCo2S4-2/CNT, S/CuCo2S4-0.5/CNT and
S/CuCo2S4 decayed to 441, 389 and 236 mAh g−1 after 500 cycles, respectively. This can be
ascribed to the good catalytic effect of the CuCo2S4-1/CNT composite on the conversion
of LiPSs.
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In order to explore its potential mechanism in improving the electrochemical perfor-
mance of Li-S batteries, the adsorption experiments were performed firstly by immersing
the different materials in Li2S6 solution. Equal amounts of samples of CuCo2S4-1/CNT,
CuCo2S4-2/CNT, CuCo2S4-0.5/CNT and CuCo2S4 were added to the same volume of Li2S6
solution, and the mixed solutions stand for 24 h. Then, as shown in Figure 7a, the Li2S6
solution with CuCo2-1/CNT material became clear, demonstrating the significant adsorp-
tion effect of CuCo2S4-1/CNT material. Simultaneously, the ultraviolet-visible (UV-Vis)
spectrum also confirms the results (Figure 7b) [45,46]. In addition, to further investigate
the electrocatalytic performance, symmetric cells were also assembled toward different
materials. In Figure 7c, the EIS curve shows that the CuCo2S4-1/CNT electrode has the
lowest resistance, confirming its excellent electrochemical reaction kinetics. The CV curves
of the CuCo2S4-1/CNT electrode clearly show the sharpest redox peaks at −0.215/0.215 V
and −0.454/0.454 V and the smallest polarization, proving the most excellent catalyzing
behavior of the LiPSs conversion (Figure 7d). In addition, as shown in Figure S9, the
first three cycles of CV curves of the CuCo2S4-1/CNT electrode have a relatively high
degree of overlap, demonstrating relatively good reversibility [47,48]. Based on the above
electrochemical data, CNTs improve the overall conductivity of composites and promote
efficient ion/electron transport. At the same time, the highly interconnected 3D conduc-
tive network frameworks provide adequate space to buffer volume changes during the
charging–discharging cycle. In addition, the uniform loading of CuCo2S4 particles on CNTs
surface guarantee abundant active sites on CuCo2S4-1/CNT, which further ensures that the
material possesses a high loading of active sulfur. The CuCo2S4-1/CNT composite presents
strong adsorption and catalytic conversion ability for LiPSs. In conclusion, the excellent
electrochemical performance of the S/CuCo2S4-1/CNT cathode can be attributed to the
synergistic effect of CuCo2S4 and CNTs.
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4. Conclusions

In summary, bimetallic sulfide CuCo2S4 nanoparticles loaded with CNT composites
were synthesized by the hydrothermal method in this work. By modulating the different
loadings of the CuCo2S4 nanoparticles, it is found that the CuCo2S4-1/CNT composites
effectively improved the property of Li-S batteries, which can be attributed to the improved
overall electrical conductivity of the CNT, promoting efficient ion/electron transport.
Moreover, the bimetallic sulfide CuCo2S4 nanoparticles can provide rich adsorption sites
for anchoring LiPSs and improve the conversion kinetics of LiPSs. Thus, the S/CuCo2S4-
1/CNT cathode can achieve a first discharge capacity of 1104.6 ± 4.3 mAh g−1 at 0.2 C with
a coulombic efficiency close to 100%. After 100 cycles, the discharge specific capacity can
maintain 1021 mAh g−1. In addition, a reversible capacity of 627 mAh g−1 is demonstrated
at 1 C after 500 cycles. This work provides a promising strategy for the design of a bimetallic
sulfide-CNT network as a sulfur host for Li-S batteries.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12183104/s1; Figure S1: SEM images of (a) CuCo2S4-0.5/CNT,
(b) CuCo2S4-1/CNT and (c) CuCo2S4-2/CNT; Figure S2: Raman spectrum of CNT; Figure S3: (a) N2
adsorption/desorption isotherms and (b) pore size distribution of CuCo2S4-2/CNT. (c) N2 ad-
sorption/desorption isotherms and (d) pore size distribution of CuCo2S4-0.5/CNT.; Figure S4:
XRD patterns of S/CuCo2S4-1/CNT; Figure S5: The first cycle CV curves of S/CuCo2S4-1/CNT,
S/CuCo2S4-2/CNT and S/CuCo2S4-0.5/CNT cathodes at the scan rate of 0.1 mV s−1; Figure S6:
Cycling performances of S/CuCo2S4-1/CNT cathodes at 0.2 C; Figure S7: Charge-discharge curves
at 0.2 C of (a) S/CuCo2S4-2/CNT, (b) S/CuCo2S4-0.5/CNT and (c) S/CuCo2S4 cathodes; Figure S8:
Charge/discharge voltage profiles at 0.2 C, 0.5 C, 1 C, 2 C and 3 C of (a) S/CuCo2S4-2/CNT,
(b) S/CuCo2S4-0.5/CNT and (c) S/CuCo2S4 cathodes. Figure S9: CV curves of symmetric cells
with CuCo2S4-1/CNT electrodes at 6 mV s−1.
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