
Citation: Sideri, I.K.; Charalambidis,

G.; Coutsolelos, A.G.; Arenal, R.;

Tagmatarchis, N. Pyridine vs.

Imidazole Axial Ligation on

Cobaloxime Grafted Graphene:

Hydrogen Evolution Reaction

Insights. Nanomaterials 2022, 12, 3077.

https://doi.org/10.3390/

nano12173077

Academic Editors: Genqiang Zhang,

Inmaculada Velo-Gala, Eliana

Sousa Da Silva, María de los

Ángeles Fontecha Cámara, María

Victoria López Ramón and María Del

Pilar Fernández-Poyatos

Received: 14 August 2022

Accepted: 31 August 2022

Published: 5 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Pyridine vs. Imidazole Axial Ligation on Cobaloxime Grafted
Graphene: Hydrogen Evolution Reaction Insights
Ioanna K. Sideri 1, Georgios Charalambidis 2 , Athanassios G. Coutsolelos 2 , Raul Arenal 3,4,5

and Nikos Tagmatarchis 1,*

1 Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 116 35 Athens, Greece
2 Chemistry Department, Laboratory of BioInorganic Chemistry, University of Crete, 710 03 Heraklion, Greece
3 Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
4 Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-U. de Zaragoza, 50009 Zaragoza, Spain
5 ARAID Foundation, 50018 Zaragoza, Spain
* Correspondence: tagmatar@eie.gr

Abstract: While cobaloximes have been protagonists in the molecular (photo)catalytic hydrogen
evolution reaction field, researchers originally shed light on the catalytically active metallic center.
However, the specific chemical environment of cobalt, including equatorial and axial ligation, has
also a strong impact on the catalytic reaction. In this article, we aim to demonstrate how pyridine vs.
imidazole axial ligation of a cobaloxime complex covalently grafted on graphene affects the hydrogen
evolution reaction performance in realistic acidic conditions. While pyridine axial ligation mirrors a
drastically superior electrocatalytic performance, imidazole exhibits a remarkable long-term stability.

Keywords: cobaloxime; axial ligation; graphene; electrocatalysis; hydrogen evolution reaction

1. Introduction

Mimicking nature has always been an attractive alternative to tackle unresolved scien-
tific challenges. Inspired by vitamin B12 and in a quest to imitate the activity of hydrogenase
enzymes (metalloproteins, which bidirectionally catalyze the interconversion between H2
and a pair of protons and electrons) [1], cobaloximes were conceptualized [2]. Akin to hy-
drogenase, their intrinsic extraordinary characteristics derive from their redox-active metal
center (Co) and the closely lying polar oximes, coordinated in a square planar geometry.
Compared to hydrogenase, a suitable electron supplement was the only missing piece,
which enabled them to dominate in the molecular electrocatalytic H2 production research
field [2,3]. However, certain limitations, such as their insufficient aqueous solubility and
long-term instability, impede their usage in realistic conditions, i.e., aqueous media.

Artero and coworkers were the first to overcome this setback and perform an electro-
catalytic H2 evolution reaction (HER) by grafting cobaloxime on the surface of a carbon
nanotube (CNT) electrode, ensuring in this way high stability and oxygen tolerance [4–6].
Yet, due to the electrochemical fabrication of cobaloxime on CNTs already deposited on
a gas-diffusion layer (GDL) electrode, the analytical and spectroscopic techniques avail-
able for the complete characterization of the final electrocatalyst were limited. Therefore,
useful insights on the structural aspect, on the cobaloxime loading and on the true ac-
tive species in HER, were suppressed albeit important. Indeed, it was demonstrated that
the chemical structure and specifically the outer coordination sphere of the cobaloxime
catalytic center plays an important role in the electrocatalytic H2 evolution performance
of a polymer/cobaloxime-modified CNT electrocatalyst, that mimics the function of a
protein matrix [7]. Earlier, the effect of differently-substituted pyridinic cobalt axial ligands
to the H2 evolution catalytic activity of the complex was also studied, on a molecular
level [8]. Interestingly, electron donating pyridine ligands result in enhanced catalytic
currents. The influence of the cobalt axial ligand is also significant in photochemical
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hydrogen production [9], where the performance is linked to the strength of the Co-N
ligation; weaker axial ligation results in rapid initial hydrogen evolution catalysis but low
stability. On the contrary, stronger axial ligation induces a lower initial rate, but an elevated
long-term stability.

Of course, the studies on a molecular level refer to homogeneous catalytic hydrogen
production, performed in either non-aqueous conditions or neutral pH aqueous buffer.
But how about the influence of the cobaloxime axial ligation on the electrocatalytic HER
performance in a realistic set-up? Herein, we aspire to take this research field one step
further by attempting to answer this query. To do so, we envisioned a rationally designed
heterogeneous electrocatalytic system, compatible with practical aqueous acidic conditions,
in order to study the HER performance of two twin electrocatalysts with the sole difference
being their axial ligation to the cobaloxime complex. Covalent functionalization of graphene
was selected as an ideal route to ensure the required stability for cobaloxime under such
conditions, while pyridine and imidazole functionalities were selected as the axial ligands,
based on their versatility, occurrence and different electron-donating ability. Indeed, the
two different conjugate π systems that shape the outer coordination sphere of Co alter the
HER performance of the catalyst, resulting in an overall elevated performance for pyridine
axial ligation, but in better stability and endurance for imidazole axial ligation.

2. Materials and Methods
2.1. Instrumentation

1H and 13C NMR spectra were acquired on a Varian 600 or 300 MHz (150.9 or 75.5 MHz,
respectively, for 13C) NMR spectrometer at ambient temperature and were internally
referenced to residual solvent signals. Data for 1H NMR are reported as follows: chemical
shift (δ ppm), multiplicity (s = singlet, br s = broad singlet, d = doublet, dt = doublet
of triplets, dd = doublet of doublet, t = triplet, m = multiplet), coupling constant and
integration. Data for 13C NMR are reported in terms of chemical shift (δ ppm).

Tip sonication was performed with a Bandelin Sonoplus Ultrasonic Homogenizer HD
3200 equipped with a flat head probe (VS70T), running at 35% of the maximum power
(250 W). Microwave synthesis was performed with a CEM Discover microwave reactor
equipped with infrared pyrometer and pressure control system. During the synthesis, the
microwave system was operated in a dynamic mode, where the power was automatically
adjusted to maintain the set temperature.

Mid-infrared spectra in the region 500–4500 cm−1 were acquired on a Fourier transform
IR spectrometer (Equinox 55 from Bruker Optics) equipped with a single reflection dia-
mond ATR accessory (DuraSamp1IR II by SensIR Technologies). Typically, 100 scans were
acquired at 2 cm−1 resolution.

Micro-Raman spectroscopy scattering measurements were performed at room temper-
ature in the backscattering geometry using a RENISHAW in Via Raman spectrometer,
equipped with a CCD camera and a Leica microscope. A 1200 lines mm−1 grating was used
for all measurements, providing a spectral resolution of ±1 cm−1. As an excitation source,
the Ar+ laser 514 nm with less than 2.65 mW laser power was used. Measurements were
taken with 10 s of exposure times at varying numbers of accumulations. The laser spot
was focused on the sample surface using a long working distance 50× objective. Raman
spectra were collected after map image acquisition was conducted on various (3–5) areas of
the sample and recorded with Peltier cooled CCD camera. The intensity ratio ID/IG was
obtained by taking the peak intensities following any baseline corrections. For the mapping
recordings, 5–10 areas of 121 acquisition points each were scanned for every sample and we
present here a representative one close to the total average with respect to the intensity ratio
ID/IG. The data were collected and analyzed with Renishaw Wire and Origin software.

Thermogravimetric analysis was performed using a TGA Q500 V20.2 Build 27 instrument
by TA in an inert atmosphere of nitrogen (purity > 99.999%). In a typical experiment, 2 mg
of the material was placed in the platinum pan and the temperature was equilibrated at
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40 ◦C. Subsequently, the temperature was increased to 900 ◦C with a rate of 10 ◦C/min and
the mass changes were recorded as a function of temperature.

UV-Vis absorption spectra were recorded on a PerkinElmer (Lambda 19) UV-Vis-NIR
spectrophotometer.

High-resolution scanning transmission electron microscopy (HRSTEM) and electron energy
loss spectroscopy (EELS) analyses were performed in a probe-corrected FEI Titan-Low-Base
60−300 operating at 80 kV (equipped with a X-FEG® gun and Cs-probe corrector (CESCOR
from CEOS GmbH)). EELS studies were performed using the spectrum-image/-line modes.
The powders were dispersed in ethanol and the suspensions were ultrasonicated and
dropped onto copper carbon holey grids.

X-ray photoelectron spectroscopy (XPS) measurements were acquired using a Kratos
Axis Supra spectrometer equipped with a monochromated Al Kα X-ray source using an
analyzer pass energy of 160 eV for survey spectra and 20 eV for the core level spectra.
Spectra were recorded by setting the instrument to the hybrid lens mode and the slot
mode providing approximately a 700 × 300 µm2 analysis area using charge neutralization.
Regions were calibrated using the reference value BE (C1s sp2) = 284.5 eV. All XPS spectra
were analyzed using CASA XPS software. The XPS peaks were fitted to GL(70) Voigt
lineshape (a combination of 70% Gaussian and 30% Lorentzian character), after performing
a Shirley background subtraction.

Hydrogen evolution reaction (HER) measurements were carried out using an Autolab
PGSTAT128N potentiostat/galvanostat and were carried out at room temperature in a
standard three-compartment electrochemical cell by using a graphite rod as a counter-
electrode, an RDE with glassy carbon disk (geometric surface area: 0.196 cm2) as a working
electrode, and Hg/HgSO4 (0.5 M K2SO4) as reference electrode. LSV measurements
for HER were carried out at room temperature in N2-saturated aqueous 0.5 M H2SO4.
The catalyst ink was prepared by dispersing 4.0 mg of the catalytic powder in an 1 mL
mixture of deionized water, isopropanol, and 5% Nafion (v/v/v = 4:1:0.02) and sonicated
for 30 min prior use. Before casting the electrocatalytic ink on the electrode’s surface,
the working electrode was polished with 6, 3, and 1 µm diamond pastes, rinsed with
deionized water, and sonicated in double-distilled water. Afterward, 8.5 µL aliquots
of the electrocatalyst were casted on the electrode surface and were left to dry at room
temperature. EIS measurements were conducted from 105 to 10−1 Hz with an AC amplitude
of 0.01 V. The EIS measurements (Nyquist plots) were recorded at the low overpotential
(kinetic) region.

Cyclic, differential pulse and squarewave voltammograms were recorded on an Autolab
PGSTAT128 N potentiostat/galvanostat equipped with a dual mode bipotentiostat (BA
module) electrochemical analyzer using a three-electrode system. A platinum button elec-
trode was used as the working electrode. A platinum cloth served as the counter electrode
and a platinum wire was used as the reference electrode. Ferrocene/ferrocenium redox
couple was used as an internal standard. All solutions were purged prior to electrochemical
and spectral measurements using nitrogen gas.

2.2. Experimental

All solvents and reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA)
and used without further purification unless stated otherwise. Anhydrous dichloromethane
was prepared by distillation over CaH2. 1H and 13 C-NMR spectra of all synthesized (and
previously unreported) compounds are provided as Supplementary Material (Figures S1–S10).



Nanomaterials 2022, 12, 3077 4 of 18

2.2.1. Synthetic Procedures
(4-(Pyridin-4-yl-carbamoyl)phenyl)carbamate (2)
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of 4-aminopyridine (0.31 g, 3.3 mmol) and triethylamine (0.5 mL, 3.6 mmol) in 10 mL of
freshly distilled anhydrous DCM at 0 ◦C. The color of the solution turned immediately
bright yellow upon acid chloride addition and HCl(g) release was observed. The reaction
mixture was allowed to warm to room temperature (r. t.) slowly and stirred overnight
under N2. The progress of the reaction was monitored by thin layer chromatography
(TLC) analysis in ethyl acetate (EtOAc). After completion upon TLC analysis, the reaction
was quenched with brine (10 mL) and the aqueous layer was extracted with ethyl acetate
(3 × 5 mL), chloroform (2 × 5 mL), dried over sodium sulfate, filtered and concentrated in
vacuo. Compound 2 was purified by column chromatography in EtOAc and isolated as an
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To a stirring suspension of 2 (0.49 g, 1.6 mmol) in chloroform (14.5 mL) in 0 ◦C,
trifluoroacetic acid (3.6 g, 31.4 mmol) was dropwise added. The reaction was allowed to
warm to r.t. and was left stirring overnight. The progress of the reaction was monitored by
TLC (90/10 CHCl3/MeOH). Upon completion, the reaction was quenched with H2O and
saturated aqueous solution of Na2CO3 was then added until pH~8. A white precipitate
was formed and the aqueous layer was thoroughly extracted with CHCl3 (3 × 10 mL)
and EtOAc (3 × 10 mL) dried over sodium sulfate, filtered and concentrated in vacuo.
Compound 3 was isolated as a white solid without further purification (0.3 g, 1.4 mmol,
89%). 1H NMR (300 MHz, DMSO-d6) δ 10.10 (s, 1 H), 8.41 (d, J = 5.1 Hz, 2 H), 7.75 (m, 4 H),
6.61 (d, J = 8.5 Hz, 2 H), 5.90 (s, 2 H); 13C (75.5 MHz, DMSO-d6) δ 166.04, 152.77, 150.12,
146.57, 129.77, 120.10, 113.76 and 112.56.
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N-(3-(1H-Imidazol-1-yl)propyl)-4-aminobenzamide (5)
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(0.45 g, 1.6 mmol) in ethanol (30 mL), 10% Pd/C (0.045 g) catalyst was added. The flask was
carefully degassed in vacuo and then N2 flushed. This procedure was repeated three times.
The flask was then evacuated, flushed with H2, put under balloon pressure of H2 and left
stirring for 3 h. The progress of the reaction was monitored by TLC (90/10 CHCl3/MeOH).
Upon completion, the reaction mixture was filtered through celite to remove the catalyst
and the residue was washed with ethanol. The filtrate was then concentrated in vacuo
to yield compound 5 as an off-white solid (0.39 g, 1.6 mmol, 100%). 1H NMR (600 MHz,
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The general synthesis of cobaloxime complexes, is adapted from previously reported
procedures [13]. Briefly, to a stirring suspension of Co(dmgH)2Cl2 [13] (0.2 g, 0.55 mmol)
in MeOH (35 mL), Et3N (0.056 g, 0.55 mmol) was added. The dark green suspension
immediately turned brown upon Et3N addition and was left stirring for 15 min in r.t. The
pyridine or imidazole adduct was then added (0.46 mmol) dispersed in MeOH (15 mL). The
solution was left stirring at r.t. for 3 h. In the case of pyridine adduct, solid precipitated after
15 min and upon completion of the 3 h period, complex 6 (pyridine/Co(III)) was collected
by filtration, washed with ice cold MeOH (1 mL) and dried. Cobaloxime adduct 6 was
collected as a brown solid (0.21 g, 0.39 mmol, 89%). 1H NMR (600 MHz, DMSO-d6) δ 18.43
(s, 2 H), 10.41 (s, 1 H), 7.77 (d, J = 5.8 Hz, 2H), 7.71 (d, J = 5.8 Hz, 2H), 7.66 (d, J = 8.1 Hz,
2H), 6.57 (d, J = 8.2 Hz, 2H), 5.98 (s, 2 H), 2.32 (s, 12 H); 13C (150.9 MHz, DMSO-d6) δ
166.43, 153.52, 152.70, 150.12, 149.52, 130.34, 119.23, 115.79, 112.82 and 12.85. In the case
of imidazole adduct, after the 3 h period, the reaction mixture was concentrated in vacuo
to yield a brown oil. Repeated recrystallization from MeOH afforded pure compound
7 (imidazole/Co(III)) as a brown solid (0.13 mg, 0.24 mmol, 52%). 1H NMR (300 MHz,
DMSO-d6) δ 18.63 (s, 2 H), 7.96 (s, 1 H), 7.53 (d, J = 7.6 Hz, 2 H), 7.38 (s, 1 H), 7.21 (s, 1 H),
6.53 (d, J = 7.4 Hz, 2 H), 6.42 (s, 1 H), 5.61 (s, 2 H), 3.97 (s, 2 H), 2.97 (s, 2 H), 2.32 (s, 12 H),
1.74 (s, 2 H); 13C (75.5 MHz, DMSO-d6) δ 166.37, 151.62, 151.45, 137.55, 128.69, 126.66, 121.96,
112.47, 45.53, 35.67, 30.49 and 12.46.
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2.2.2. Synthetic Procedures
Graphene Exfoliation [14]

Chlorosulfonic acid-assisted exfoliation of graphite to produce few-layered graphene
was realized based on previously reported protocols [14]. A mixture of 0.2 g graphite
flakes (>75%, >150 mesh) in 100 mL chlorosulfonic acid was sonicated for 8 h, during
temperature fluctuated from 30 ◦C to 52 ◦C. The resulting black homogenous dispersion
was quenched carefully (highly exothermic reaction) with distilled water. The mixture
was filtered through a PTFE membrane filter (pore size 0.2 µm) and washed with water,
methanol and dichloromethane. The filter cake was re-dispersed in N-methyl-2-pyrrolidone
(NMP) (100 mL) with the aid of bath sonication to give a black suspension. Then, the
mixture was tip-sonicated (10% power of 150 W, 20 kHz) for 30 min while temperature was
kept below 30 ◦C with the aid of a water-ice bath and the black suspension formed was
left at ease overnight. Afterwards, the 2/3 of the black supernatant was collected, filtered
through a PTFE membrane filter (pore size 0.2 µm) and washed with water, methanol
and dichloromethane. Please note that extreme care should be taken when working with
chlorosulfonic acid, since it reacts violently with humidity and water releasing hydrogen
chloride gas. A well-ventilated hood is mandatory.

Preparation of Pyr-Graphene and Imi-Graphene [15]
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Diazonium salt reaction on graphene was realized by an optimized protocol based on
our previously reported procedure [15]. In detail, exfoliated graphene (0.015 g), pyridine (3)
(0.150 g, 0.7 mmol) or imidazole (5) (0.171 g, 0.7 mmol) derivative respectively and o-DCB
(1 mL) were added in a 10 mL microwave vessel under N2 and bath-sonicated for 10 min.
Then, MeCN (100 µL) was added, followed by quick addition of isoamyl nitrite (0.429 mL,
3.2 mmol). The vial was sealed with a septum cap and the reaction mixture was microwave
(MW) irradiated with 50 Watt for 1 h at 150 oC. After cooling down to room temperature,
the reaction mixture was diluted with DMF, filtered over a PTFE membrane filter (pore size
0.2 µm) and sonicated. Then, the precipitate was washed repeatedly with large amounts of
DMF and CHCl3 and MeOH until complete removal of any organic impurities not grafted
on the graphene substrate. Pyr-graphene and imi-graphene were then collected after drying
under N2 as dark grey powders (0.016 g).
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Preparation of Cobaloxime-Based Materials [Co]-Pyr-Graphene and [Co]-Imi-Graphene
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To a stirring suspension of Co(dmgH)2Cl2 (0.003 g, 0.007 mmol) in MeOH (1 mL),
Et3N (0.0014 g, 0.014 mmol) was added. The dark green suspension immediately turned
brown upon Et3N addition and was left stirring for 15 min in r.t. The pyr-graphene or
imi-graphene materials (0.01 g) were then added and well-dispersed in MeOH (2 mL). The
dispersion was refluxed during a 3-day period. The reaction mixture was then filtered over
a PTFE membrane filter (pore size 0.2 µm) and washed with MeOH. The solid residue was
sonicated in MeOH, filtered and washed again with large amounts of MeOH to remove
organic impurities, dried under N2 and collected as a dark grey powder (0.011 g).

3. Results and Discussion

In order to covalently incorporate the desired moieties on the exfoliated graphene
lattice, we deployed the successful protocol of diazonium reaction [16]. Both pyridine and
imidazole adducts were designed to carry an aryl amine, capable to be converted to the
respective diazonium salt under certain conditions and then reduced to the reactive aryl
radical [15]. Next, bis(dimethylglyoximato)cobalt(II) complex was employed to furnish the
cobaloxime-functionalized [Co]-pyr-graphene and [Co]-imi-graphene (Figure 1).

3.1. Raman Spectroscopy

Raman spectroscopy unveils information regarding both the lattice structure and
functionalization status of graphene-based materials [17–19]. Spectral regions of interest
are the D (1350 cm−1), G (1580 cm−1) and 2D (~2720 cm−1) bands, which are associated
with the defects (sp3 hybridization), lattice integrity of sp2 carbons and stacking order,
respectively [18]. Raman spectra (514 nm) of intermediate materials pyr-graphene and
imi-graphene are presented in Appendix A Figure A1, along with their corresponding
color scale maps of ID/IG intensity ratio of 30 × 30 µm areas. The considerable increase in
the average D/G intensity ratio value (ID/IG) from graphene (0.12) to [Co]-pyr-graphene
(0.20) and [Co]-imi-graphene (0.24) is indicative of sp3 hybridization increase upon co-
valent grafting [19]. As expected, the ID/IG intensity ratio of the intermediate materials
remains the same upon their functionalization with the anchoring of cobaloxime moieties
for the realization of [Co]-pyr-graphene and [Co]-imi-graphene (Figure 2), since no further
interference on the graphene lattice takes place. In Figure 2b–d, the ID/IG intensity ratio
derived from the corresponding Raman spectra of 30 × 30 µm areas of exfoliated graphene,
[Co]-pyr-graphene and [Co]-imi-graphene, are represented as color scale maps. Interest-
ingly, in both functionalized materials the ID/IG fluctuates around 0.20 to 0.24 on average,
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while occasionally surpassing these values, being even 4 times higher than that of exfoli-
ated graphene (0.12). The Raman spectra of exfoliated graphene, [Co]-pyr-graphene and
[Co]-imi-graphene (Figure 2a) collectively show the successful covalent functionalization
or else chemisorption of pyridine/Co(III) and imidazole/Co(III) coordination compounds
on exfoliated graphene’s lattice.
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Figure 2. (a) Representative (average) Raman spectra (514 nm) of exfoliated graphene (black), [Co]-
pyr-graphene (pink) and [Co]-imi-graphene (blue). Spatial Raman spectra (514 nm, 30 × 30 µm
areas) of (b) exfoliated graphene, (c) [Co]-pyr-graphene and (d) [Co]-imi-graphene, depicting the
ID/IG ratio.

3.2. Thermogravimetric Analysis

Information related to the loading achieved were extracted with the aid of thermo-
gravimetric analysis (TGA) under N2 constant flow. While graphene is relatively thermally
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stable, [Co]-pyr-graphene exhibits an 11.4% mass loss up to 500 ◦C summarized in two
decomposition steps at 264 and 350 ◦C, as revealed by the 1st order weight derivative
(Figure 3a). On the other hand, [Co]-imi-graphene has an 8.3% mass loss up to 500 ◦C,
analyzed in three different decomposition steps at 279, 347 and 436 ◦C (Figure 3a). In
order to gain insight into the functionalization status and degree of each material, model
pyridine/Co(III) and imidazole/Co(III) coordination compounds were synthesized and
characterized as well (see Experimental section). Specifically, their TGA graphs (Figure 3b)
confirm the profile of the functionalized materials (Figure 3a), with sole differences that the
thermal events up to 500 ◦C are shifted to higher temperature for the graphene materials. In
detail, for pyridine/Co(III) two decomposition steps are observed at 252 and 297 ◦C, while
for imidazole/Co(III) three steps are registered at 224, 285 and 396 ◦C This phenomenon is
a direct evidence of the successful covalent functionalization, since the covalent attachment
of the organic chains on the graphene lattice in comparison to their potential physisorption,
has been proved to result in higher temperature decomposition steps [20].
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Figure 3. TGA (solid lines) and 1st weight derivative (dashed lines) of (a) exfoliated graphene
(black), [Co]-pyr-graphene (pink) and [Co]-imi-graphene (blue), (b) pyridine/Co(III) (green) and
imidazole/Co(III) (teal), and (c) exfoliated graphene (black), pyr-graphene (purple) and imi-graphene
(light blue). Bottom panel: structure of functionalized materials [Co]-pyr-graphene and [Co]-imi-
graphene, model compounds pyridine/Co(III) and imidazole/Co(III), and intermediate materials
pyr-graphene and imi-graphene.

The TGA graphs of pyridine/Co(III) and imidazole/Co(III) compounds are shown
in Figure 3b, while those of intermediate materials pyr-graphene and imi-graphene, are
depicted in Figure 3c. One decomposition step is registered for each material until 500 ◦C
which is observed in both cases at around 350 ◦C. Markedly, similar loading is achieved in
both cases, as evidenced by the mass loss until 500 ◦C, that is around 5%, confirming the
reproducibility of the diazonium salt reaction on graphene. Due to the vast graphene lattice
that causes steric hindrance, to the dispersibility of the material and to the nature of the
reaction itself, the coordination step does not proceed quantitatively. Bearing that in mind, a
rough estimation of the degrees of functionalization [20] is around 1 pyridine/Co(III) every
330 C atoms and 1 imidazole/Co(III) every 450 C atoms in graphene. The deviation between
the two is expected, taking into account the lower yield achieved for the synthesis of
imidazole/Co(III) (ca. 52%) model coordination compound, compared to pyridine/Co(III)
(ca. 89%).
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3.3. Electrochemical Characterization

Despite the relatively low degree of functionalization, we attempted to confirm the
presence of Co(III) via square wave voltammetry recorded in 0.1 M TBAPF6 oxygen-free,
dry DMF (Figure 4, Table 1). The model compounds imidazole/Co(III) and pyridine/Co(III)
were firstly screened and we expected three types of redox couples for each, those being
the Co(III)/Co(II), Co(II)/Co(I) and Co(IV)/Co(III) [21,22]. Indeed, for pyridine/Co(III)
two completely reversible reductions at −0.83 V and −1.52 V and one reversible oxidation
at +0.77 V vs. Fc/Fc+ were registered, corresponding to Co(III)/Co(II), Co(II)/Co(I) and
Co(IV)/Co(III) redox couples, respectively (Figure 4a) [23]. In parallel, for imidazole/Co(III)
we observed two sequential reversible reductions located at −1.24 V and −1.53 V and one
reversible oxidation at +0.68 V vs. Fc/Fc+ corresponding to Co(III)/Co(II), Co(II)/Co(I) and
Co(IV)/Co(III) redox couples, respectively (Figure 4b). Due to the large peak height of the
second reduction corresponding to Co(II)/Co(I) redox couple, the first reductive peak of
Co(III)/Co(II) couple is masked inside the background current for both model compounds.
This is why when screening the functionalized materials, we were able to distinguish only
one reversible reduction at −1.39 V vs. Fc/Fc+ for [Co]-pyr-graphene and at −1.34 V vs.
Fc/Fc+ for [Co]-imi-graphene (Figure 4a,b). In Appendix A Figure A2, the square wave
voltammetry graph of exfoliated graphene is provided as reference and as expected, no
oxidation or reduction peaks are registered.
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saturated dry DMF and 0.1 M TBAPF6. Pt wire and Pt cloth were used as reference and counter
electrode, respectively, while a Pt button electrode was used as the working electrode.

Table 1. Square wave voltammetry (SWV) data for pyridine/Co(III), imidazole/Co(III), [Co]-pyr-
graphene and [Co]-imi-graphene recorded in N2-saturated 0.1 M TBAPF6 in dry DMF.

Material/Compound
Co(III)/Co(II)

E1/2
Red (∆Epa,pc)/

V vs. Fc/Fc+

Co(II)/Co(I)
E1/2Red (∆Epa,pc)/

V vs. Fc/Fc+

Co(IV)/Co(III)
E1/2

Ox (∆Epa,pc)/
V vs. Fc/Fc+

Pyridine/Co(III) −0.83 (0.04) −1.52 (0.0) 0.77 (0.06)
Imidazole/Co(III) −1.24 (0.06) −1.53 (0.03) 0.68 (0.1)
[Co]-pyr-graphene - −1.39 (0.1) -
[Co]-imi-graphene - −1.34 (0.13) -

The oxidation from Co(III) to Co(IV), being close to the upper limit of the electrochem-
ical window of DMF, was also not visible in functionalized materials, which is the case for
most studies on molecular cobaloximes [9,21]. However, the main parameter responsible
for the loss of these signals is linked to the nature of the materials, which behave completely
differently from their molecular analogues. The reductive peaks appear broadened and
are thus poorly defined. Moreover, they shifted towards more positive potential values
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by around 0.15 V on average, compared to the E1/2 of Co(II)/Co(I) reductive couple of
their molecular analogues. Especially, the easier Co(II)/Co(I) reduction, revealed by the
positive shift on the E1/2 for both [Co]-pyr-graphene and [Co]-imi-graphene, is in line with
the higher electron donation ability channeled by graphene.

3.4. Imaging

Combination of local scanning transmission electron microscopy (STEM) studies and
macroscopic X-ray photoelectron spectroscopy (XPS) analyses constitute perfect approaches
for getting important information on structural and chemical composition, even at sub-
nanometer scale, of complex systems. We performed such studies of [Co]-pyr-graphene
and [Co]-imi-graphene. Figure 5a,g display low-magnification micrographs, where the
graphene flakes are observed. From the high-angle annular dark-field (HAADF) high-
resolution STEM images (Figure 5b,h) some deposits corresponding to the [Co]-pyr and
[Co]-imi moieties can be distinguished.
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Figure 5. (a,b) and (g,h) HAADF-STEM (low-magnification (a,g), high-magnification (b,h)) micro-
graphs of [Co]-pyr-graphene and [Co]-imi-graphene, respectively. (c) and (i) XPS survey spectra of
[Co]-pyr-graphene and [Co]-imi-graphene, respectively. (d–f) and (j–l) HR-XPS spectra of [Co]-pyr-
graphene and [Co]-imi-graphene, respectively.
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Further electron-energy loss spectroscopy (EELS) analyses confirm these findings
(Figures 6 and 7). Furthermore, from the XPS analyses, the chemistry of these heterostruc-
tures was investigated. Figure 5c,i show survey XPS spectra for [Co]-pyr-graphene and
[Co]-imi-graphene, respectively, where the existence of C, N, O and Co is confirmed. High-
resolution spectra of these elements were acquired and also depicted in this figure (except
for the O as no further information is extracted from the O 1s spectra). Figure 5d,k display
the C 1s part of the XPS spectrum, with the peaks at 284.5, ~285, 286.4 and 288 eV corre-
sponding to C=C and C-C, COOH and C=O, respectively. The N 1s is depicted at Figure 5e,i
and corresponds to the pyridine unit. Finally, in Figure 5f,l, the Co 2p is observed. All these
findings allow us to understand and justify the configuration of these hybrids.
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while [Co]-imi-graphene’s is −0.38 V and [Co]-pyr-graphene’s appears even closer to Pt/C, 
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Figure 6. (a) HAADF-STEM micrograph of [Co]-pyr-graphene recorded on one graphene flake. An
EELS spectrum-line has been acquired on the red marked line. (b) The EEL spectrum corresponds
to the sum of 20 EEL spectra recorded in the red line. The C-K, N-K, O-K and Co-L3,2 edges are
clearly observed.
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3.5. Catalytic Studies on the Hydrogen Evolution Reaction

Having secured the structural characterization of the functionalized materials, we
proceeded with the electrocatalytic HER investigation. Cobaloxime-modified graphene
analogues [Co]-pyr-graphene and [Co]-imi-graphene as well as their precursor, exfoliated
graphene, were assessed towards HER in aqueous 0.5 M H2SO4 electrolyte. Figure 8a de-
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picts the corresponding LSV polarization curves in comparison with benchmark HER elec-
trocatalyst Pt/C. While reference materials pyr-graphene and imi-graphene do not differ-
entiate from exfoliated graphene (Figure A3) as expected, both cobaloxime-functionalized
materials exhibit more positive onset potential than their precursors by around 200–300 mV,
validating our initial hypothesis. In detail, graphene’s onset potential is −0.59 V, while
[Co]-imi-graphene’s is −0.38 V and [Co]-pyr-graphene’s appears even closer to Pt/C, at
−0.29 V vs. RHE. In line with standards of the research community, which has adopted the
overpotential at −10 mA/cm2 (η10) (in analogy with the standards set for solar to fuel en-
ergy conversion devices) [24] as activity marker in electrocatalytic HER, we report in Table 2
the respective values for our study. [Co]-pyr-graphene exhibits the lowest overpotential at
−10 mA/cm2 (−0.57 V), almost 200 mV lower than [Co]-imi-graphene’s (e.g., −0.76 V) and
more than 300 mV lower compared to exfoliated graphene’s (e.g., −0.88 V). To our pleasant
surprise, [Co]-pyr-graphene and [Co]-imi-graphene differ significantly, with the former
being drastically superior. This is confirmed also based on the inherent kinetics of each
material as reflected by the Tafel analysis (Figure 8b). In fact, [Co]-imi-graphene exhibits
the highest Tafel slope of 302 mV/dec, followed by exfoliated graphene with a value of
203 mV/dec, while the lowest one of 153 mV/dec corresponds to [Co]-pyr-graphene. The
lower the Tafel slope value, the faster the charge transfer across the electrocatalyst interface,
which is the case for [Co]-pyr-graphene. Surprisingly, whereas the two functionalized
materials differentiate solely on the axial ligation (pyridine vs. imidazole functional group),
[Co]-imi-graphene exhibits double the Tafel value of [Co]-pyr-graphene, meaning the kinet-
ics of the water dissociation step are efficiently facilitated on the surface of the latter [25].
Further insight on this matter is provided by electrochemical impedance spectroscopy
(EIS). The Nyquist plots, which were fitted by using an equivalent circuit, are depicted in
Figure 8c. The charge-transfer resistance (Rct) value of 116 Ω for [Co]-pyr-graphene was
lower than that of 133 Ω for [Co]-imi-graphene albeit higher than exfoliated graphene (e.g.,
87 Ω). The lower Rct value accounts for a faster Faradaic process and, therefore, superior
HER kinetics [26]. The higher Rct for both modified materials compared to graphene can
be probably attributed to the disruption of the vast sp2 graphene lattice or else modula-
tion of its electronic structure due to surface covalent modification and immobilization
of cobaloxime. Still, the pyridine analogue surpasses kinetically the imidazole analogue,
validating the rest electrocatalytic parameters (Table 2).
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Notably, while exfoliated graphene preserves its activity upon recycling, due to its me-
chanical stability, an amelioration of HER catalytic performance is observed for [Co]-imi-
graphene, as reflected by the 50 mV lower overpotential value at −10 mA/cm2 (Table 2). 
Evidently, [Co]-imi-graphene has a remarkable long-term stability and actually equili-
brates at an improved onset potential of −0.34 V vs. RHE upon recycling. On the other 
hand, an extra 20 mV is required for [Co]-pyr-graphene to reach −10 mA/cm2 after 10,000 

Figure 8. (a) LSV polarization curves for HER before (solid lines) and after (dashed lines)
10,000 catalytic cycles, and (b) Tafel slope, of exfoliated graphene (black), [Co]-pyr-graphene (pink),
[Co]-imi-graphene (blue) and Pt/C (light grey). The LSVs were obtained at 1600 rpm rotation speed
and 5 mV/s scan rate in N2-saturated aqueous 0.5 M H2SO4. The current densities are normalized
to the geometric electrode area. (c) Nyquist plots of [Co]-pyr-graphene (pink), [Co]-imi-graphene
(blue), exfoliated graphene (black) and benchmarck HER electrocatalyst Pt/C (light grey). Inset:
Equivalent circuit used for fitting the EIS data. Rs refers to the overall series resistance, Rct to the
charge transfer resistance and CPE to the constant phase angle element, which represents the double
layer capacitance of solid electrode in a realistic situation. The EIS measurements (Nyquist plots)
were recorded at the low overpotential (kinetic) region.
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Table 2. Electrocatalytic HER parameters for exfoliated graphene, functionalized materials [Co]-pyr-
graphene and [Co]-imi-graphene and benchmark HER electrocatalyst Pt/C.

Electrocatalyst

Onset PoAPPential
(V vs. RHE)

Potential @ −10
mA/cm2

(V vs. RHE)

Tafel Slope
(mV/dec) Rct (Ω)

0 c * 10,000 c * 0 c * 10,000 c * 0 c * 10,000 c * 0 c * 10,000 c *

exfoliated
graphene −0.588 −0.497 −0.887 −0.887 233 - 87 -

[Co]-pyr-graphene −0.296 −0.299 −0.576 −0.598 154 164 116 122

[Co]-imi-graphene −0.377 −0.342 −0.766 −0.717 302 291 133 141

Pt/C 0.02 0.01 −0.03 −0.03 30 - 6 -

* Before (0 c) and after (10,000 c) 10,000 catalytic cycles.

In contrast, durability studies reflect a different point of view. The LSV polarization
curves of the graphene materials after 10,000 catalytic cycles are presented in Figure 8a. No-
tably, while exfoliated graphene preserves its activity upon recycling, due to its mechanical
stability, an amelioration of HER catalytic performance is observed for [Co]-imi-graphene,
as reflected by the 50 mV lower overpotential value at −10 mA/cm2 (Table 2). Evidently,
[Co]-imi-graphene has a remarkable long-term stability and actually equilibrates at an
improved onset potential of −0.34 V vs. RHE upon recycling. On the other hand, an extra
20 mV is required for [Co]-pyr-graphene to reach −10 mA/cm2 after 10,000 catalytic cycles.
Given the common instability of the cobaloxime ring [27] that reflects also on non-covalent
cobaloxime/graphene heterostructures [28], this result is a solid evidence of the positive
effect of the covalent cobaloxime grafting on the lifetime of the electrocatalysts in acidic
HER conditions. The stability of the prepared catalysts upon extensive cycling is further
validated by the Tafel analysis performed after 10,000 catalytic cycles, as well as by the
EIS measurements after recycling (Table 2). In Appendix A Figure A4, the Tafel slopes of
[Co]-pyr-graphene and [Co]-imi-graphene and the respective Nyquist plots after recycling
are depicted. Notably, the Tafel slopes are only slightly affected (negatively for the pyridine
analogue and positively for the imidazole one), while the charge-transfer resistance (Rct) of
both is faintly enlarged, mirroring vaguely inferior kinetics after 10,000 catalytic cycles. The
plausible protonation of the imidazole ring in the highly acidic pH conditions, decreases the
Lewis basicity of imidazole ligand, resulting in less electron-donating activity, thus difficult
protonation of the Co-H intermediate species that eventually releases H2 [8,29]. This is not
the case for pyridine however. Therefore, this reasoning could explain the electrocatalytic
superiority induced by pyridine axial coordination. In contrast, the relatively stronger
Co-N axial ligation of imidazole, induced by its higher basicity, is probably responsible for
the elevated long-term performance.

4. Conclusions

In summary, despite the prima facie evidence, axial ligation of the cobaloxime func-
tionalized graphene plays a major role in the HER electrocatalytic process. Pyridine axial
ligand induced a better electrocatalytic activity, which was also confirmed kinetically. In
contrast, imidazole moiety was found to equilibrate long-term and resist any deactivation
upon extensive cycling. Our results highlight the importance of the primary axial coordi-
nation sphere substituents to cobaloxime complexes utilized as HER electrocatalysts and
provide a different point of view to researchers engaging in the surface engineering of 2D
nanomaterials as electrocatalysts.

Supplementary Materials: The following supplementary material can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12173077/s1, Figures S1–S10: 1H and 13C NMR data of
synthesized compounds.
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Figure A1. (a) Representative (average) Raman spectra (514 nm) of exfoliated graphene (black),
pyr-graphene (purple) and imi-graphene (light blue). Spatial Raman spectra (514 nm, 30 × 30 µm
area) of (b) exfoliated graphene, (c) pyr-graphene and (d) imi-graphene, depicting the D/G
intensity ratio.
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Appendix A 

 
Figure A1. (a) Representative (average) Raman spectra (514 nm) of exfoliated graphene (black), pyr-
graphene (purple) and imi-graphene (light blue). Spatial Raman spectra (514 nm, 30 × 30 µm area) 
of (b) exfoliated graphene, (c) pyr-graphene and (d) imi-graphene, depicting the D/G intensity ratio. 
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Figure A2. Square wave voltammetry (SWV) assays of exfoliated graphene recorded in N2-saturated
dry DMF and 0.1 M TBAPF6. Pt wire and Pt cloth were used as reference and counter electrode
respectively, while a Pt button electrode was used as the working electrode.
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