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Abstract: The influence of oleylamine (OLA) concentration on the crystallography, morphology,
surface chemistry, chemical bonding, and magnetic properties of solvothermal synthesized CoFe2O4

(CFO) nanoparticles (NPs) has been thoroughly investigated. Varying OLA concentration (0.01–0.1 M)
resulted in the formation of cubic spinel-structured CoFe2O4 NPs in the size-range of 20–14 (±1) nm.
The Fourier transform spectroscopic analyses performed confirmed the OLA binding to the CFO NPs.
The thermogravimetric measurements revealed monolayer and multilayer coating of OLA on CFO
NPs, which were further supported by the small-angle X-ray scattering measurements. The magnetic
measurements indicated that the maximum saturation (MS) and remanent (Mr) magnetization de-
creased with increasing OLA concentration. The ratio of maximum dipolar field (Hdip), coercivity
(HC), and exchanged bias field (Hex) (at 10 K) to the average crystallite size (Dxrd), i.e., (Hdip/Dxrd),
(HC/Dxrd), and (Hex/Dxrd), increased linearly with OLA concentration, indicating that OLA concur-
rently controls the particle size and interparticle interaction among the CFO NPs. The results and
analyses demonstrate that the OLA-mediated synthesis allowed for modification of the structural
and magnetic properties of CFO NPs, which could readily find potential application in electronics
and biomedicine.

Keywords: CoFe2O4; oleylamine; solvothermal; crystal structure; magnetic properties

1. Introduction

Magnetic material, chemical, and biological architectures at the nanoscale dimensions
have introduced revolutionary healthcare and medical therapy trends [1]. Because of its
potential biomedical applications such as in bioimaging [2], cell labeling [3], magnetic
hyperthermia [4], and drug delivery [5], magnetic nanoparticles (MNP) are one of the
most appealing materials. ‘Size control’ in biomedical applications permits nanoparti-
cles to circulate through the bloodstream, infiltrate through cell membranes, and bypass
immune system detection [1,6]. Furthermore, the particle surface must be adequately
tailored for biomedical and healthcare applications to achieve better colloidal stability in
physiological fluids, drug encapsulation ability, and specific targeting to ensure proper
interaction with cells or tissues [7]. Due to the diversity in the chemistry and physics of
various biomolecules, designing a suitable surface modification method is challenging [8],
especially one that balances the intermolecular force between the biomolecules and the
outer layer of MNP [9,10]. Thus, the preparation of monodisperse, size-controlled MNPs is
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fundamentally important and inspiring, as their properties are strongly dependent on di-
mensions. [9,10]. Cobalt ferrite (CoFe2O4 (CFO)) nanoparticles (NPs) have been extensively
explored [11,12] due to their potential applications in a variety of fields. Some of these
include luminescence, molecular imaging, hyperthermia [13,14], electromagnetic wave
absorption performance [15], theranostic applications [16], drug delivery [17] magnetic
resonance imagining [18], catalysis [19], and field emission-based device applications [20].
However, controlling the crystal size, morphology, and composition of CFO nanoma-
terials is the key to achieving these applications [19]. For instance, as demonstrated by
Dippong et al. [19], the density and porosity of the CFO nanomaterials are affected based on
the synthetic approach and ionic size difference of the dopants considered [19]. In addition,
tuning the size–shape correlation while maintaining thermal and chemical stability is essen-
tial for practical applications. This is generally accomplished by surface modification [21].
Magnetic nanoparticles tend to agglomerate due to Van der Waals forces and magnetic
dipolar interactions, which can be decreased by encapsulating the magnetic nanoparticles
with suitable capping agents [22,23]. Moreover, the size, shape, dispersibility in a biological
medium, and chemical stability of surface-functionalized MNPs are the critical parameters
for determining their applicability in biomedicine [24,25]. In this context, coating with
oleic acid [26–28] and oleylamine (OLA) [29] is interesting for magnetic CoFe2O4 NPs.
Oleylamine, alkyl amine with a low affinity for transition metals, can operate as a solvent,
surfactant, and reducing agent all in one, minimizing the need for additional reagents.
Also, as reported by Georgiadou et al., OLA is an inexpensive, easily handled surfactant
due to its liquid state, while its high boiling point and reducing ability offer stability under
the harsh solvothermal conditions with no need of an extra solvent [9]. Additionally, the
multifunctional role of OLA as a versatile and flexible reagent in synthesis of nanoparticle
appears [9] to have a potential for utilization in the large-scale production of magnetic
nanoparticles for a wide variety of application. However, to date, only a few research efforts
have reported successfully generating CFO NPs with oleylamine [9,29–31]. Furthermore,
to our knowledge, fundamental scientific knowledge on the effect of OLA concentration
on the attributes of CFO NPs, such as particle size, shape, and magnetic properties, is
rare. In this context, CFO nanoparticles were synthesized via a one-step, ecofriendly, cost-
effective solvothermal route at lower temperatures (180 ◦C) by simply varying the OLA
concentration. As widely known to the scientific community, the solvothermal method is
environmentally friendly and is easier to conduct, as it does not need toxic chemicals and
oxygen-free procedures. Compared to other methods, the solvothermal synthesis route is
a simple one with a high rate of reaction with a low temperature of operation, resulting
in uniform size distribution. Therefore, we adopted this method for the synthesis of the
CFO NPs with varying OLA concentrations so as to produce CFO NPs with variable size
and magnetic properties. We explored the effect of OLA concentration on the physical and
chemical properties of CFO NPs to bridge the information gap and provide a deeper scien-
tific understanding. As presented and discussed elaborately, the present paper explores the
interplay between structural characteristics, electronic structure, interparticle interactions,
and magnetic properties.

2. Materials and Methods

The CoFe2O4 NPs were synthesized using a modified solvothermal [32] route by
varying the OLA concentration. Details of synthesis are reported in elsewhere [27]. Briefly,
the ethylene glycol solution was used as a solvent, and 0.01 M OLA solution was added
and ultrasonicated for one hour. After that, stoichiometry molar (1:2) amounts of cobalt (II)
nitrate and iron (III) nitrate were added to the ethylene glycol solution and were stirred
well for 1 hr. The chemical solution was subjected to solvothermal treatment at 180 ◦C
for 24 h. CoFe2O4 NPs with 0.01, 0.05, and 0.1 M OLA were synthesized using the same
approach and named CoFe1, CoFe2, and CoFe3, respectively. For clarity purposes, the
number of moles of all reagents used in the synthesis are summarized in Table 1.
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Table 1. The number of moles of all reagents used in the synthesis of CFO NPs.

Reagent Moles

cobalt (II) nitrate 0.001
iron (III) nitrate 0.002

Urea 0.002
ethylene glycol 2.5

Oleylamine 0.01 M (0.46 mL), 0.05 M (2.3 mL),
0.1 M (4.6 mL)

The morphology of the pristine samples was explored using field-emission scanning
electron microscopy (Fe-SEM, Karl ZEISS JEOL, Akishima, Tokyo, JAPAN). The size distri-
bution of NPs was calculated using Image-J software. The compositional study of pristine
NPs was carried out using energy-dispersive X-ray spectrometry (EDS). Small-angle X-ray-
scattering (SAXS) measurements were carried out using a Rigaku small-angle goniometer
mounted on a rotating anode X-ray generator. Details are mentioned in supporting infor-
mation. Fourier transform infrared spectroscopy (FTIR) studies were performed on pure
OLA, as well as CFO NPs produced with a varied OLA content to better understand the
oleylamine adsorption mechanism on the surface of CFO NPs. The FTIR spectra of powder
samples were acquired in the range of 400–4000 cm−1 using the JASCO-6100 spectrometer.
The structural analyses of pristine NPs were carried out using an X-ray powder diffrac-
tometer (D8-Advanced Bruker,) with Cu Kα radiation (λ ~ 1.5406 Å) at a scanning rate
of 4◦ min−1, over a 2θ range of 20◦ to 80◦. The Rietveld refinement method was used to
accomplish detailed structural characterization, utilizing ICSD data with the collection
code: 109044. The thermogravimetric analysis was carried out with the help of the (TGA,
METTLER TOLEDO. The X-ray photoelectron spectroscopy (XPS) measurements were
performed by Al-Ka (1486.6 eV) X-ray source. The Evercool II PPMS-6000 from Quantum
Design was used to conduct the magnetic measurements. Magnetic fields up to 90 kOe
were used to measure the magnetization hysteresis (M-H) loops at 300 K and 5 K. Under
a 100 Oe applied magnetic field and a temperature range of 10 to 398 K, the temperature
dependence of magnetization, i.e., M (T), was measured.

3. Results and Discussion
3.1. Chemical Composition, Morphology, and Inter-Particle Structure

The EDS analysis helped to identify various elements present in the sample in addition
to information on the chemical homogeneity [33,34]. In order to probe accurately the
chemical information and to understand the effect of OLA, the EDS spectra of the CFO
NPs were considered. The EDS spectra (Figure S1; Supporting Information) for OLA
functionalized CFO NPs indicated Co: Fe’s desired stoichiometry (1:2). The presence of C
and N was expected due to the capping of OLA on the surface of NPs, which also confirmed
OLA presence in all the samples. The effect of OLA concentration on the morphology
of pristine CFO NPs is evident in FESEM images presented in Figure 1a–f. Evidently,
at lower concentration, a spherical shape of CFO NPs that are well-separated from each
other are obtained. However, CFO NPs prepared with higher OLA concentration (0.1 M)
exhibited a very compact arrangement of CFO NPs that created layer appearance. The
uniform size distribution was evident for all the samples. The median diameter obtained is
~39.21 nm and 36.14 nm for CoFe1, and CoFe2 samples, respectively. The size reduction
was noted as a function of OLA concentration. However, it was difficult to quantify and
predict the size using SEM micrograph for CoFe3 due to the compact arrangement of
NPs. Therefore, further analysis for size of NPs was performed using SAXS. As shown in
Figure 2a–c, the scattering profiles were very similar for all the samples. The mesoscopic
density fluctuations in a material are represented by scattered intensity I (q), where q is the
scattering vector [35].
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Figure 1. SEM images of CoFe1 (a,b), CoFe2 (c,d), and CoFe3 (e,f) samples.

In the present case, the scattering occurs due to density fluctuations arising from
the primary spherical CFO NPs. The scattering profiles of all the samples have been
analyzed based on the polydisperse spherical shell particle model under monodispersed
approximation [36,37]. Figure 2a–c shows the scattered intensity profiles and the fitted
curves for all the samples. The fractal dimension of the three samples is ~3, which agrees
with the standard value for spherical shape. The structural parameters obtained from
the SAXS analysis are listed in Table S1. Two key points emerged from the SAXS study
of OLA-coated samples. (i) There were two contributions in all the samples: (a) naked
spherical shell nanoparticles with a mass fractal structure factor and (b) inhomogeneities on
a length scale of 2 nm, which could be attributed to OLA capping over the NPs. (ii) As the
concentration of OLA rose, the average size of CFO NPs and monomer radius (ro) decreased.
The size distribution patterns obtained from SAXS analysis are shown in Figure 2d, which
were consistent with the XRD results. The outer radius of NPs for CoFe1, CoFe2, and
CoFe3 samples was 5.48 nm, 4.00 nm, and 3.05 nm, respectively. For CoFe1, the difference
between outer and inner radius, i.e., ∆R, was found to be 2 nm, indicating that OLA is
monolayer coated (OLA length size 1.97 nm). The presence of ∆R > 2 nm in CoFe2, and
CoFe3, indicated that OLA is multilayered. These findings are consistent with the TGA
studies reported in the following section.
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CFO NPs (d).

3.2. FTIR Analysis

To further assess the chemical bonding and structural quality of CFO NPs, we relied
on spectroscopic characterization, particularly FTIR measurements. Note that the spectro-
scopic characterization using FTIR and/or Raman scattering provides direct information
on the chemical bonding and dopants (if any) [38,39]. In the present case, the FTIR mea-
surements allowed us to confirm the OLA binding to the CFO NPs. For reference purposes,
the FTIR data of pure OLA is shown in Figure S2. Peak identification was carried out by the
literature [40]. The vibrational modes observed for pure OLA are summarized in Table S2.
Figure 3a presents the FTIR spectra of CFO NPs prepared with different concentration
of OLA. The −CH2− scissoring and NH2 scissoring peaks at 1450 cm−1 and 1661 cm−1,
respectively, were visible. Their appearance indicated the presence of OLA molecules on the
surface of CFO NPs. The observed peaks matched with the literature. Moreover, the bend-
ing vibration of C–N was observed at 1070 cm−1 only for CoF1 and CoFe3. All the samples
exhibited -CH2 symmetric and asymmetric stretching vibrations at 2857 and 2929 cm−1,
respectively, revealing the absorption of the oleyl group onto the surface [41,42]. The
characteristic peaks of OLA at 1593 and 3300 cm−1 were not detected. This indicates that
no free OLA existed at the surface [43]. However, for all the samples, a broad peak located
at 3423–3383 cm−1 was not expected. It was assigned to the ν(N–H) stretching of the NH2
group [44]. Furthermore, as shown in Figure 3b two signature absorption bands for ferrite
NPs were observed. The first absorption band (ν1) observed at 612–600 cm−1 was assigned
to the stretching vibrations of tetrahedral metal (Fe3+)–oxygen bond. The second band (ν2)
positioned at 407–420 cm−1 was caused by the octahedral metal-oxygen bond vibrations at
octahedral sites. In addition, slight splitting of the octahedral absorption band near ν2 was
observed as it was beyond the detection limit of our FTIR equipment (<400 cm−1).
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than that of bulk CFO. Size factors, such as surface dipole interactions, surface tension, 
and cation charge distribution inside the nano-crystallite, were attributed to the lower lat-
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Figure 3. FTIR spectra of OLA coated CFO NPs (a) for 400–4000 cm−1 and (b) magnified data from
400–1000 cm−1 for clarification.

3.3. Crystal Structure

Figure 4 shows the X-ray diffraction pattern for all samples, along with Rietveld
refinement. Tables S3 and S4 list the structural parameters gained after refinement. All the
samples were crystallized in the cubic spinel structure (JCPDS file No. 221086), according
to the refinement data. The lattice constant of functionalized CFO NPs (8.391 Å) was lower
than that of bulk CFO. Size factors, such as surface dipole interactions, surface tension, and
cation charge distribution inside the nano-crystallite, were attributed to the lower lattice
constant [10]. With increasing OLA concentration, the diffraction peaks became broader,
reflecting a reduction in crystallite size. As OLA content increased, the average crystallite
size dropped from 20 nm to 14 nm (±1 nm).
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Using the Rietveld refinement parameters, the unit cell model for all samples was
constructed using the VESTA software. The results for CoFe1 are shown in Figure 5a.
All the samples were found to be made up of a cubic close-packed array of oxygen an-
ions occupying the 32e position at (0.247, 0.247, 0.247). The cations (Fe+3, Co+2; Fe1 and
Co1) were octahedral 16c site {B-sites} with trigonal 3 m point symmetry. The cations
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(Fe+3, Co+2; designated as Fe2 and Co2) occupied cubic 43 m point symmetry tetrahedral
8b sites [A-sites].
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Figure 5. The crystal structure of the CoFe1 sample is shown (a), where octahedral, tetrahedral,
and oxygen atoms are highlighted in blue, violet, and red color, respectively. The bond angles and
neighborhoods around the tetrahedral and the octahedral sites in CoFe1 (b), CoFe2 (c), and CoFe3
samples (d) are illustrated.

It is noticeable that (i) the refinement of diffraction data for CoFe1, CoFe2, and CoFe3
exhibited deviation from the ideal inverse cation distribution i.e., [Fe+3]{Co+2Fe+3}O−2 by
transferring some Co+2 cations from octahedral (B-site) to tetrahedral (A-site) i.e., [Co+2

(x)
Fe+3]Tet{Co+2

(1−x)Fe+3}OctO−2. (ii) Importantly, the occupancy and Wyckoff position of
metal cations were nearly identical for all samples. However, different occupancy was
observed for oxygen anion for all the samples. Therefore, it is reasonable to postulate that
OLA might have formed the coordination with lattice oxygen, which can disturb the overall
charge compensation of CFO lattice. It may have generated some lattice defects that led to
the observed variation in the lattice parameters. Furthermore, it can be observed that the
bond length observed at A and B sites and inter-cation distances slightly changed as OLA
concentration changed (see, Table 2). Accordingly, slight local distortion was observed in
Co1–O–Co2 bond angle (for all the samples) compared to the standard value of 125.26◦

reported for ideal spinel structure. Furthermore, the O–Co1–O bond angle deviated to
88.67◦, 85.31◦, and 87.91◦ as opposed to the O–Fe1–O bond angle of 91.33◦, 94.69◦, and
92.09◦ observed for CoFe1, CoFe2, and CoFe3 samples, respectively. The O–Co1–O and
O–Fe1–O bond angle values deviated from an ideal spinel value of 90◦. This distortion
can be attributed to the decrease in crystallite size. Notably, the observed O–Co2–O bond
angle matched the ideal value of 109.47◦ for all the samples. Thus, it is evident from the
observed values of bond angle and bond length that all the OLA functionalized CFO NPs
were stabilized in the cubic structure with slight local distortion at B sites. Therefore, the (i)
absence of local distortion at tetra- and octahedral sites and (ii) decrease in particle size as a
function of OLA concentration strongly supported the significant role of oxygen occupancy
and capping of OLA with CFO NPs. As expected, and postulated, OLA controlled the
nucleation and growth of NPs. Consequently, we can expect the modification of magnetic
properties of CFO NPs as a function of OLA concentration.
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Table 2. Bond angle and bond length extracted from Rietveld refinement of the samples.

Bond Angle (◦) CoFe1 CoFe2 CoFe3 Bond Length (Å) CoFe1 CoFe2 CoFe3

O–Co2–O 109.47 109.47 109.47
d12 = O–Co2 1.855 1.953 1.881
d23 = Co2–O 1.855 1.953 1.881
d13 = O–O 3.029 3.189 3.072

Co1–O–Co2 124.33 122.01 123.80
d12 = Co1–O 2.071 2.015 2.061
d23 = O–Co2 1.855 1.953 1.881

d13 = Co1–Co2 3.473 3.471 3.478

O–Co1–O 88.67 85.31 87.91
d12 = O–Co1 2.071 2.015 2.061
d23 = Co1–O 2.071 2.015 2.061
d13 = O–O 2.894 2.731 2.861

O–Co1–O 91.33 94.69 92.09
d12 = O–Co1 2.071 2.015 2.061
d23 = Co1–O 2.071 2.015 2.061
d13 = O–O 2.962 2.964 2.967

3.4. Electronic Structure and Surface Chemistry

Finally, to probe the chemistry of the CFO NPs samples and the effect of OLA on the
electronic structure, the samples were analyzed using XPS. Specifically, an attempt was
made to establish the oxidation states of Co and Fe in the CoFe2O4 NPs using core-level
spectra of the respective elements. The XPS data are shown in Figure 6. The survey XPS
spectra of all the samples are presented in Figure S3. The XPS data indicated the presence of
respective O 1s, Fe 2p, Co 2p, N 1s, and C 1s peaks. For the CoFe1 sample, the XPS spectrum
of Fe 2p is presented in Figure 6A. The binding energy (BE) position and separation of
Fe 2 p3/2 (711.79 eV) and 2 p1/2 (725.49 eV) peaks, and the presence of corresponding
shakeup satellites at 719.30 and 735.48 eV, respectively, characterized Fe ions in their highest
oxidation state (+3) [45,46]. Furthermore, it has been reported that the BE Fe+2 is at 709.9 eV,
which was not detected in all the samples confirming the absence of Fe2+ state [47]. The
unassigned shoulder at BE~701.49 and 702.89 eV, respectively, for CoFe1 and CoFe2, may
be due to the metallic state of Fe as the BE for metallic Fe is expected ~707 eV [48–50].
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The XPS core level data of Co 2p also evidenced that the Co ions exist in a +2 chemical
state. The peaks at 782.59 eV and 804.90 eV with its satellite at 787.72 eV and 797.78 eV,
respectively, indicated Co in +2 state [51,52]. Moreover, the unassigned shoulder at around
(764.64 eV, 772.53 eV), (765.94 eV and 773.90 eV) and 767.73 eV observed for CoFe1, CoFe2
and CoFe3, respectively [48–50], may have been due to the metallic state of Co. Furthermore,
the O 1s XPS spectrum shown in Figure 6 (Ac, Bg, Ck) was divided into two peaks.
CoFe1 sample showed the peaks were positioned at binding energies of 533.07 eV and
534.77 eV. The most intense peak at 533.07 eV corresponded to O2− in the CFO spinel
crystal lattice [52]. However, in CFO NPs, BE~534.77 eV was ascribed as the surface and
near-surface defect sites with low oxygen coordination, often formally described as O−
species [53]. With an increase in OLA concentration, the following were noted: (i) The
most intense peak shift was from 533.07 eV (CoFe1) to 534.46 eV, (CoFe2) and 534.9 eV
(CoFe3). (ii) The peak became asymmetric at lower BE for CoFe2 and CoFe3 samples
compared to CoFe1 sample. This observation suggests that they were caused mainly by the
chemisorbed oxygen species because the smaller sized nanoparticles generally exhibited
a higher adsorption capability [54]. Furthermore, we could verify the presence of OLA
capping on the surface of CFO NPs in the presence of carbon and nitrogen peaks. Normally
carbon peak originated at ~285 eV. It must be emphasized that the carbon peak in the XPS
spectra may also have been due to adventitious carbon from the exposure of samples to
air following the synthesis before being placed in the XPS system. Therefore, C 1s peak
in XPS alone may have not provided direct confirmation of OLA. On the other hand, the
presence of OLA capping on the surface of CFO NPs validated more directly FTIR results,
which corroborated with the XPS to some extent. For all the three capped NPs, it resulted
in an amine co-adsorbate that could be detected in the XPS N 1s region as a single peak
found at 399.7 eV (Figure 6). The BE was comparable to literature values for amine-capped
nanoparticles [55,56]. For the OLA-capped CFO NPs, the C 1s XPS region, shown in Figure 6
(Ad, Bh, Cl) indicated three different carbon-containing species. It has been reported that
the C 1 s feature was composed of multiple peaks at lower binding energy, i.e., ~285.22 eV
(for CoFe1) used for calibration. In the present case, the peak found at 285.22 eV, 285.73 eV,
285.78 eV for CoFe1, CoFe2, and CoFe3 was attributed to the carbon of the alkyl chains
of oleylamine, which also agreed with the literature [57]. The peak observed at 288.65 eV,
289.70 eV, and 288.55 eV for CoFe1, COFe2, and CoFe3, respectively, was a combination
of the C-N bond [58,59], C=O (~287.38 eV), and O–C=O (~288.88 eV) of oleylamine. The
third peak observed at 290.99 eV, 292.01 eV and 292.03 eV for CoFe1, CoFe2 and CoFe3,
respectively, corresponded to the Plasmon π-π* [57,58]. Remarkably, with an increase in
OLA concentration, the peak position value of Co+2, Fe+3, O, and C was observed to shift
towards the higher BE from CoFe1 to CoFe3, respectively. Poor signal originates for Fe+3

and Co+2 in CoFe3 compared to CoFe1 due to the fact that it was prepared with a higher
concentration of OLA and exhibited the multilayer coating. Thus, FTIR, XPS, EDS, and
TGA results validated and confirmed the OLA functionalization of the CFO NPs.

3.5. Thermal Behavior-Thermogravimetric (TGA) Analysis

The TGA data of the CFO NPs are presented in Figure 7. Moisture and volatile
component loss were responsible for the initial weight loss observed in all samples in
the 50–100 ◦C range. Because the breakdown temperature of OLA is 350 ◦C, the second
weight loss occurred in the range of 100–400 ◦C due to breaking functional groups from the
surfactant layer. CO and CO2 effluents from the sample accounted for the third weight loss,
which occurred in the 400–600 ◦C range. The total weight loss noted for CoFe1, CoFe2 and
CoFe3 was 18.12%, 31.06% and 68.74%, respectively. The increased percentage of weight
loss with OLA concentration indicated the OLA effect on the CFO NPs’ surface. Note
that the sample’s thermal behavior depends on structure, homogeneity, and composition.
Decomposition products are released more rapidly when particles size is reduced. As the
particle size was reduced, the surface area increased, allowing more water molecules to
escape during heating [27]. When weight loss was less than 20%, the monolayer coating
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of surfactant was present, and when weight loss was greater than 20%, the multilayer
coating of surfactant was present [27]. Thus, for CoFe1, it is reasonable to believe that the
OLA forms a monolayer on individual NPs, but for CoFe2 and CoFe3, it is possible to
suppose that the OLA forms a multilayer on individual NPs. OLA ligands per particle are
~369, 476, and 732 for CoFe1, CoFe2, and CoFe3. While the present scope of the work is
more directed towards the CFO NPs synthesis and optimizing conditions towards realizing
superior magnetic properties, Stefanescu et al. demonstrated an approach to realize CFO
NPs in SiO2 matrix by thermal decomposition of carboxylate type precursors [60,61]. By
heating the solutions metal nitrates-ethylene glycol, a redox reaction produced carboxylate
anions, which reacted with Co(II) and Fe(III) cations to form coordinative compounds,
which eventually resulted in CFO NPs. The average diameter varied 10–20 nm, depending
on annealing temperature [60].
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3.6. Magnetic Properties

The ZFC-FC data (Figure 8a) shows a branching between the values of MFC and MZFC
that increased with decreasing temperature for all samples in the temperature range of
10–398 K at 100 Oe magnetic field. The irreversibility of the ZFC and FC curves begins
far above 398 K, implying that all samples must have been above 398 K to overcome the
superparamagnetic limit. This behavior indicated that the NPs have a highly anisotropic
behavior. Only the CoFe1 sample had a negative ZFC magnetization (MZFC) value at low
temperatures (from 10 K to 86.15 K). This behavior can be attributed to a variety of factors,
including structural phase transition changes in the sign of f-d exchange interaction spin
reorientation and negative interaction coupling [62–64]. Furthermore, as the temperature
rose, the MZFC value remained constant until it reached 25–50 K, at which point it began to
approach the FC value. These findings were qualitatively consistent with the ferrimagnetic
compositions based on CFO [60]. All samples showed a significant change in slope for
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the MZFC curve towards 200–300 K. CFO NPs produced with varying oleic acid concentra-
tions exhibited similar activity [27]. The charge ordering, metal-insulator transition was
responsible for this transformation. The negative result of MZFC in this study could be
attributed to residual magnetization in the magnetometer that was not compensated by
the 100 Oe field. The increase in volume anisotropy and interparticle interaction caused
by molecular coating can cause the Tmax of MZFC to shift to higher temperatures [25].
The MFC showed temperature-independent behavior after initially falling monotonically
with decreasing temperature from 398 K to 100 K, corresponding to non-interacting areas.
The temperature-independent behavior was related to dipolar contacts and interparticle
coupling interactions, which resulted in finite-size interaction effects [25]. The MFC fall
more quickly from 397 K to 300 K (as reported for CoFe1), but more slowly from 300 K
to 100 K. Furthermore, due to OLA diamagnetic susceptibility, the OLA-capped magnetic
grains were restricted in ZFC conditions at lower temperatures and did not respond to the
applied magnetic field [65,66].
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Magnetization (M-H) loops measured at 10 K, and 300 K are shown in Figure 8b,c
and magnetic parameters are presented in Table 3. Maximum saturation magnetization
(MS) and remanent magnetization (Mr) values (at 10 K and 300 K) were obtained for the
CFO NPs prepared with 0.01 M of OLA. These MS and Mr values were significant and
higher compared to an ideal inverse CFO structure (80 emu/gm) and those reported for
CFO NPs [2]. In order to understand the importance of these CFO NPs prepared by OLA
and their magnetic behavior, a comparison of the magnetic parameters with those reported
in the literature is presented in Table 4. Moreover, these values decreased for CFO NPs
synthesized with higher OLA concentrations (0.05–0.10 M). The non-stoichiometric cation
distribution among the octahedral and tetrahedral sites, as compared to the ideal spinel
structure anticipated by XRD refinement, may account for the increase in MS value for
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CoFe1. The inversion parameter obtained was 0.56. The parameter was obtained using the
formula (Co1−δFeδ)[CoδFe2−δ]O4 to explain the cation distribution in the spinel structure
of the CoFe2O4 NPs, in addition to assuming that Fe+3 and Co+2 ions have magnetic mo-
ments of 5 µB and 3 µB, respectively. The partial inverse spinel crystal structure of CoFe2O4
NPs was indicated by this value of the inversion parameter. Similarly, improved mag-
netic property was reported for CFO NPs prepared with lower concentration (1–3 wt%) of
polystyrene synthesized by solvothermal process [65,66]. The MS and Mr values decreased
with increasing OLA concentration. The MS value reduction can be attributed mainly to
the presence of OLA molecules and the smaller magnetic cores, surface disorder/spin
canting at the NP surface [27,67]. The particle size is one of the critical facets in tuning
the magnetic behavior of nanomaterials. The increased particle size in CoFe1 compared
to CoFe2 and CoFe3 is evident from XRD and SAXS analyses. Thus, at lower (0.01 M)
OLA concentrations, the larger size of NP lowers surface spin disorder, resulting in a
considerable improvement in the MS value.

Table 3. Magnetic parameters obtained for CoFe1, CoFe2, CoFe3 and CoFe3-350 samples.

Sample Temperature
(K)

MS
(emu/g)

Mr
(emu/g) Mr/MS

HC
(Oe)

Hex
(Oe)

KE
(erg/cm3)

Hdip
(Oe)

CoFe1
10 101.79 80.65 0.79 6090.83 −23.09 5.14 × 106 21.24

300 82.84 28.01 0.34 421.35 −31.59 3.41 × 106 377.29

CoFe2
10 51.31 36.89 0.72 8007.88 −10.62 1.93 × 106 32.25

300 42.295 16.78 0.39 658.81 29.24 2.89 × 105 475.59

CoFe3
10 35.57 26.615 0.75 6575.89 19.35 2.31 × 105 120.57

300 30.23 9.615 0.32 459.87 −10.31 1.15 × 105 2028.75

CoFe3-350
10 80.06 66.72 0.83 12,465.6 −36.00 8.23 × 106 13,051.54

300 73.24 31.89 0.44 1210.03 −05.13 7.31 × 105 9140.98

Table 4. Comparison of the saturation magnetization and coercivity of OLA produced NPs. with
other ferrites in the literature.

Composition Magnetization (MS; emu/g) Coercivity (HC; Oe) Reference(s)

CoFe2O4 54.65 8.19 [4]
Co0.5Mn0.5Fe2O4 55.32 9.05 [4]

NiFe2O4 19 - [5]
Co0.5 Zn0.5 Fe2O4 52.03 82.71 [6]

CuFe2O4 20.62 63.1 [7]
ZnFe2O4 24.05 - [8]
MnFe2O4 51.99 - [9]
MnFe2O4 46 64 [10]
Mg1Fe2O4 0.071 194 [11]

Zn0.5Mg0.5Fe2O4 0.293 69 [11]

Remarkably, jumps in the M-H curve at 10 K (Figure 8b) were noted only for CoFe1 and
CoFe2 samples. This can be attributed to the low-temperature spin reorientation of surface
spin and the crystal alignment of CFO nanospheres. Importantly, this jump was absent in
the CFO NPs prepared with a higher (0.1 M) concentration of OLA (CoFe3). To get more
insight, the CoFe3 sample was thermally treated at 350 ◦C to breakdown the OLA from
CoFe3 NPs, and the resulting values are shown in Table 3. The M-H loops for the CoFe3
sample after thermal treatment (CoFe3350) at 10 K and 300 K are shown in Figure 9a. The
M-H curve jumped at 10 K, which is interesting. As a result, we believe the observed kink
was due to OLA coating efficiently reorienting the surface spin and interparticle interaction.
Significantly, the M-H curve of the CoFe3350 sample revealed an increase in magnetic
characteristics such as MS, Mr, HC, Mr/MS, and KE values (see Table 4). Furthermore,
Figure 9b sheds the ZFC-FC curve for the CoFe3350 sample and notes that (i) the ZFC-FC
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curve of the CoFe3350 sample showed the absence of temperature-independent behavior,
(ii) the bifurcation between the values of MFC and MZFC was drastically decreased after
the thermal treatment. An overall magnetic study implies that the interparticle interaction
among the NPs is well controlled with OLA concentration.
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At 10 K, the squareness ratio (R = Mr/MS) is between 0.72–0.79. A trend toward cubic
anisotropy is shown by high R values [27]. Moreover, all of the OLA-functionalized CFO
NPs possessed coercivity (HC) of 6.09–8.00 kOe at 10 K, significantly higher than bulk CFO
(~5 kOe at 5 K) [27]. Studies on the change in HC with particle size have also been widely
published [68–74]. Some researchers have proposed that HC variations with particle size
are due to a transition from single-domain to multi-domain behaviour. By altering the
annealing temperature of CFO NPs, some investigations have found a non-monotonous
variation in HC with particle size [75,76]. When CFO NPS was prepared with 1, 2, 3, 4,
and 5 wt% of polystyrene using the co-precipitation method, Vadivel et al. [63] found
that HC changes with particle size were not monotone. Therefore, the HC/DXRD as a
function of OLA content was also examined and is depicted in Figure 7d. The CoFe3
sample presented the highest HC/DXRD values at 10 K, evidently due to the decreased
particle size of NPs due to OLA concentration. This was further strongly supported by the
fact that the after-heat treatment CoFe3350 sample showed the enhanced value of coercivity.
Thus, the two points mentioned above imply that one can tune the coercivity of MNPs
using the present approach.

Furthermore, HC is provided by Hc = 0.64 KE/MS for randomly oriented, non-
interacting spherical particles with cubic anisotropy, where KE is the effective anisotropy
constant. The KE values were determined and are summarized in Table 3 using this relation-
ship. At 10 K, the KE values rose with particle size, as seen with Fe3O4 NPs [74], implying
that the surface component of anisotropy (KS) played a modest role in these systems. For
an increase in KS at the nanoscale, magnetic anisotropy normally increases as particle size
decreases. The measured magnetic characteristics in this study, on the other hand, revealed
that anisotropy rose with particle size, implying that the magnetocrystalline component
played a substantial role, as seen in Fe3O4 and CFO NPs [77].

The functionalization of CFO NPs with OLA alters the interparticle magnetic inter-
action; therefore, the strength of dipolar interparticle interactions in the samples was
estimated by the maximal dipolar field Hdip between nearest-neighbor particles [27,77].
Hdip appeared to increase with an increase in OLA concentration (Figure 10b). Because of
the higher magnetic particle size at different concentrations of OLA, Hdip (Table 3) rapidly
increased at 300 K compared to 10 K.
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Besides, the shift of the M-H loop generally referred to as the exchange bias field (Hex),
has been seen in ferromagnetic NPs [27]. The M-H loop shifts along the field axis at 10 K,
and this shift increases with OLA concentration. Because of the rise in surface/volume
ratio (S/V), interface exchange coupling increased as particle size decreased (Figure 10d).
The OLA coating [74] lowered spin disorder, making interface exchange coupling between
the ordered core and the magnetically disordered shell more challenging. Furthermore,
the rise of interparticle interactions, which improved the efficiency of the exchange bias
phenomena, can be attributed to an increase in the exchange bias field for sample CoFe3 [77].

4. Conclusions

The CoFe2O4 nanoparticles in a size range of 14–20 nm were synthesized by vary-
ing oleylamine concentration. The structure-property analyses indicated that the effect
of oleylamine concentration was significant on the structure, morphology, inter-particle
interactions, electronic structure, and magnetic properties. All the CFO NPs crystallized
in the cubic spinel structure with a lattice constant lower than that of bulk CFO. The
interaction of oleylamine with CoFe2O4 surface atoms altered magnetic characteristics
such as maximum saturation magnetization, remanent magnetization, coercivity, effective
anisotropy constant, and interparticle interactions significantly. Maximum saturation mag-
netization (MS = 82.84 emu/g) and remanent magnetization (Mr = 28.01 emu/g) values
were obtained for the MS and Mr values due to OLA-induced NP-size variation. Simi-
larly, at 10 K, all the OLA functionalized CFO NPs exhibited remarkably higher coercivity
(HC) of 6.09–8.00 kOe compared to bulk CFO. Understanding the effect of oleylamine in
regulating the nucleation and the structure-morphology-magnetic property, correlations
established provide a roadmap to produce CFO NPs with desired size and properties for a
given application.
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