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Abstract: We theoretically propose and experimentally realize a new configuration of a photonic
Chern topological insulator (PCTI) composed of a two-dimensional square-hexagon lattice gyromag-
netic photonic crystal immersed in an external magnetic field. This PCTI possesses five distinct types
of edges and all of them allowed the propagation of truly one-way edge states. We proceeded to
utilize this special PCTI to design topological transmission lines of various configurations with sharp
turns. Although the wave impedances of the edge states on both sides of the intersections in these
transmission lines were very different, definitely no back reflection occurred and no mode-mixing
problems and impedance-mismatching issues at the intersections were present, leading to topological
resistance-free one-way transport in the whole transmission line network. Our results enrich the
geometric and physical means and infrastructure to construct one-way transport and bring about
novel platforms for developing topology-driven resistance-free photonic devices.

Keywords: topological one-way edge states; square-hexagon lattice; resistance-free transport;
gyromagnetic photonic crystal

1. Introduction

Photonic crystals (PhCs) waveguides are the fundamental and necessary building
block for numerous PhCs-based devices, e.g., photonic integrated circuits [1,2], directional
couplers [3,4], beam splitters [5,6] and so on. Generally, the lengths of practical PhCs waveg-
uides are finite, so any waveguide in realistic photonic circuits or devices unavoidably
terminates at some intersections or discontinuities and tends to transit from single modes
to multi-modes locally. Especially, at the intersections or discontinuities, once the distinct
waveguide modes mutually transform and mix, the impedance matching of them will
become difficult, thereby leading to strong back reflections. This surely is an important prob-
lem that cannot be neglected in the design of practical PhCs-based optical devices. Hence,
reducing or avoiding mode-mixing problems at intersections and impedance-mismatching
issues at discontinuities becomes a crucial issue that must be taken into full account in
improving the transport efficiency of PhCs-based circuits and devices [7–9]. If one does not
have to deal with such mode-mixing problems and impedance-mismatching issues, the
design of PhCs-based optical devices will become much simplified.

In a vastly different field of topological photonics, the routes, methods and technolo-
gies to control the motion of photons have witnessed fantastic development over the past
ten years [10–15]. Photonic Chern topological insulators (PCTIs), like their electronic coun-
terparts, are known mostly for the unique properties of the one-way edge states involved
in them. A prototypical example is the existence of one-way edge states in a magnetized
gyromagnetic photonic crystal (GPC) whose time-reversal symmetry is broken [16–21].
In this scenario, one-way edge states emerge with topological protection properties, al-
lowing photons to propagate in one direction and forbidding backscattering under any
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type of imperfections. Utilizing this one-way property, one can construct numerous useful
photonic devices, such as topological dispersionless slow light states [22–24], topological
splitters [6,25], topological lasers [26] and topological antennas [27,28]. Contextually, a nat-
ural question appears: can PCTIs offer an effective solution to avoid mode-mixing problems
and impedance-mismatching issues at terminates, intersections and discontinuities in de-
signing PhCs-based circuits and devices, besides the one-way transport property? Besides,
the vast majority of well-studied PCTIs have been based on the basic square [17,18,29,30],
honeycomb [20,31–33] and triangular [34–36] lattices, but limited by the simple geometrics
of the lattices, these PCTIs only possess relatively fewer edge types. Then, it is interesting
to build a PCTI with more edge types for the construction of transmission lines with high
design flexibility and modulation freedom, and to see whether they still can provide signif-
icant improvement and simplification for energy transport to implement the topological
resistance-free transport of electromagnetic (EM) waves.

Here, we construct a new configuration of PCTIs in a two-dimensional microwave
GPC of a composite square-hexagon lattice. We calculate the band structure, projected band
diagram and Chern number of each bulk band to determine the emergence of one-way
edge states. In sharp contrast to the aforementioned PCTIs with the basic lattices, this PCTI
has five types of edges and all of them are found to support the existence of a one-way
guided mode. We utilize the one-way nature of the edge states to overcome various mode-
mixing problems at intersections and impedance-matching issues at discontinuities, and to
establish the topological resistance-free transmission lines of various configurations with
sharp bends. In these transmission lines, although the wave impedances of the edge states
on both sides of discontinuities are extremely distinct, the energy fluxes still can propagate
forward along the composite lines in a resistance-free way, in stark contrast to conventional
transmission lines where energy fluxes will be reflected back at discontinuities and affect
the transport efficiency. These results will enrich the geometric and physical infrastructure
for the implementation of PCTIs with one-way edge states and will bring about the novel
paths for designing topological resistance-free photonic devices.

2. Topological One-Way Edge States at Various Edges

We considered the GPC structure with a square-hexagonal array of yttrium iron garnet
(YIG) cylinders (3.0 mm in diameter, 5.0 mm in height), as seen in Figure 1a. The lattice
constants were a = 14.0 mm and b = 14

√
2 mm along the x and y directions, respectively.

Note that, unlike the basic square, honeycomb and triangular lattices that only possess
relatively fewer edge types, this GPC inherently possessed five types of edges, labeled as
Edge 1, 2, 3, 4 and 5 by five colors, respectively, as shown in Figure 1b. The structural and
material properties of the GPC can be viewed in the Supplementary Materials. Additionally,
the band structures were calculated by using the commercial software COMSOL MULTI-
PHYSICS with the RF module in the frequency domain [37], and only the E polarization
state (where the electric field E was parallel to the z-axis direction) was considered (see the
Supplementary Materials for the experiment schemes and the calculation methods).

It is known that the Chern number can be utilized to predict the existence of one-
way edge states in a GPC [38]. Here, we calculated the Chern number numerically via
the Wilson-loop approach [39], in which the Chern number of the nth band is defined

as Cn =
1

2π
∫ π
−π dθn,ky , where θn,ky ≡

∫ π
−π dkxΛ(x)

n,
→
k

is the Berry phase for the nth band

along the loop of kx for a fixed ky, and Λ(x)

n,
→
k

is x component of the Berry connection.

Our calculations showed that the Chern number of the first, second, third and fourth
bands was zero, while the total Chern number of the intersecting fifth and sixth bands
was −1, as depicted in Figure 2. Thus, the sum of the Chern number below the second
bandgap (yellow region) was −1, indicating that there existed single-mode one-way edge
states in the bandgap. We proceeded to perform theoretical calculations and experimental
measurements to verify the existence and transport robustness of the one-way edge states
for these five edges, as viewed in the Supporting Information.
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Figure 1. Square-hexagon lattice GPC. (a) Photo picture of experimental sample. (b) Five types of 
edges highlighted in five polylines colored in different colors. There were three zigzag-type edges 
(Edges 1–3) along x direction. When the outermost row of YIG cylinders of Edge 1 (outlined with a 
magenta polyline) is removed, Edge 2 (outlined with a yellow polyline) is formed. When the outer-
most row of Edge 2 continues to be removed, Edge 3 (outlined with a green polyline) is formed. 
Two armchair-type edges (Edges 4–5) are directly along y direction. When the outermost row of 
Edge 4 (outlined with blue polyline) is taken away, Edge 5 (marked with purple polyline) emerges. 
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the bandgap. We proceeded to perform theoretical calculations and experimental meas-
urements to verify the existence and transport robustness of the one-way edge states for 
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Figure 2. Bulk band of a square-hexagon lattice GPC. There existed a complete bandgap ranging 
from 17.45 to 17.95 GHz (yellow region) and the Chern number of each band below the second 
bandgap is marked (red). The Chern number of the first, second, third and fourth bands was zero, 
while the total Chen number of the intersecting fifth and sixth bands was −1. The lower left inset is 

Figure 1. Square-hexagon lattice GPC. (a) Photo picture of experimental sample. (b) Five types of
edges highlighted in five polylines colored in different colors. There were three zigzag-type edges
(Edges 1–3) along x direction. When the outermost row of YIG cylinders of Edge 1 (outlined with
a magenta polyline) is removed, Edge 2 (outlined with a yellow polyline) is formed. When the
outermost row of Edge 2 continues to be removed, Edge 3 (outlined with a green polyline) is formed.
Two armchair-type edges (Edges 4–5) are directly along y direction. When the outermost row of Edge
4 (outlined with blue polyline) is taken away, Edge 5 (marked with purple polyline) emerges.

Nanomaterials 2022, 12, 3009 3 of 9 
 

 

 
Figure 1. Square-hexagon lattice GPC. (a) Photo picture of experimental sample. (b) Five types of 
edges highlighted in five polylines colored in different colors. There were three zigzag-type edges 
(Edges 1–3) along x direction. When the outermost row of YIG cylinders of Edge 1 (outlined with a 
magenta polyline) is removed, Edge 2 (outlined with a yellow polyline) is formed. When the outer-
most row of Edge 2 continues to be removed, Edge 3 (outlined with a green polyline) is formed. 
Two armchair-type edges (Edges 4–5) are directly along y direction. When the outermost row of 
Edge 4 (outlined with blue polyline) is taken away, Edge 5 (marked with purple polyline) emerges. 

It is known that the Chern number can be utilized to predict the existence of one-
way edge states in a GPC [38]. Here, we calculated the Chern number numerically via 
the Wilson-loop approach [39], in which the Chern number of the nth band is defined as C = dθ , , where θ , ≡ dk Λ , ⃗( )  is the Berry phase for the nth band along 

the loop of k  for a fixed k , and Λ , ⃗( )  is x component of the Berry connection. Our 
calculations showed that the Chern number of the first, second, third and fourth bands 
was zero, while the total Chern number of the intersecting fifth and sixth bands was −1, 
as depicted in Figure 2. Thus, the sum of the Chern number below the second bandgap 
(yellow region) was −1, indicating that there existed single-mode one-way edge states in 
the bandgap. We proceeded to perform theoretical calculations and experimental meas-
urements to verify the existence and transport robustness of the one-way edge states for 
these five edges, as viewed in the Supporting Information. 

 
Figure 2. Bulk band of a square-hexagon lattice GPC. There existed a complete bandgap ranging 
from 17.45 to 17.95 GHz (yellow region) and the Chern number of each band below the second 
bandgap is marked (red). The Chern number of the first, second, third and fourth bands was zero, 
while the total Chen number of the intersecting fifth and sixth bands was −1. The lower left inset is 

Figure 2. Bulk band of a square-hexagon lattice GPC. There existed a complete bandgap ranging from
17.45 to 17.95 GHz (yellow region) and the Chern number of each band below the second bandgap is
marked (red). The Chern number of the first, second, third and fourth bands was zero, while the total
Chen number of the intersecting fifth and sixth bands was−1. The lower left inset is the first Brillouin
zone of a square-hexagonal lattice. The lower right inset is the unit cell of square-hexagon lattice.

3. Topological Resistance-Free One-Way Transport

Now, we examine the transport behaviors of energy fluxes in a transmission line
composed of different types of edges, so as to explore and demonstrate how PCTIs
can overcome the mode-mixing problems and impedance-mismatching issues at the
terminals. In general, two simple but very useful parameters, the reflection coefficient
rn,n+1 = (Zn+1 − Zn)/(Zn+1 + Zn) and transmission coefficient tn,n+1 = 2Zn+1/(Zn+1 + Zn),
can be used to characterize the degree of impedance mismatching [7–9]. As shown
in Figure 3, for the nth interface, Zn and Zn+1 are the wave impedances for the input
nth PhC waveguide and the output (n + 1)th PhC waveguide, respectively. The wave
impedance is usually proportional to the group velocity of the guided mode (vg = dω/dkx);
thus, the equation of the reflection and transmission coefficients can be expressed as
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rn,n+1 = (vg,n+1 − vg,n)/(vg,n+1 + vg,n) and tn,n+1 = 2vg,n+1/(vg,n+1 + vg,n). When the optimum
coupling of energy into the system is achieved, rn,n+1 = 0 and tn,n+1 = 1, so if one wants
to obtain perfect impedance matching at a terminate, vg,n+1 must be equal to vg,n. We
calculated the group velocities of Edges 1–5 at center frequency fs = 17.76 GHz to esti-
mate the transmission coefficient at the intersections. The calculations showed that the
group velocities of Edges 1–5 were vg1 = 0.213c, vg2 = 0.176c, vg3 = 0.006c, vg4 = 0.299c and
vg5 = 0.115c, respectively. Obviously, the group velocities of the edge states at different
types of edges were distinctly different; thus, there must have been some impedance mis-
matching occurring at the intersections connecting any two types of edges, which might
affect the transmission efficiency in an ordinary sense of knowledge in optics. However,
this rule was no longer effective to the transmission lines constructed by the PCTI.
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We constructed two transmission lines with sharp turns in the square-hexagon lat-
tice PCTI. One configuration is illustrated in Figure 4a, where two metallic strips were 
placed at the upper Edge 1 and left Edge 4 to form a transmission line with a 90° turn. 
The microwave absorbers were placed close to the lower Edge 1 and right Edge 4 to 
avoid the reflection of the EM waves. The simulated wave transport diagram displayed 
in Figure 4b clearly shows that the energy fluxes could unidirectionally transport along 
the Edge 1, bypass the 90° turn and continue to transport along Edge 4 in a reflection-
free way, despite the sharp bend and serious impedance mismatching between Edge 1 

Figure 3. Schematic diagram of matching transmission line network. The upper and left boundaries
were set as perfect electric conductors (colored in yellow) to form the transmission lines (Line n
and Line n + 1). The lower and right boundaries were set as the scattering boundary conditions
(colored in blue) to avoid the reflection of EM waves. The blue star is the line source, the green and
purple arrows at the intersection represent the reflected waves (rn,n+1) and transmitted waves (tn,n+1),
respectively. The impedances (group velocities) of the upper and left transmission lines are Zn (vg,n)
and Zn+1 (vg,n+1), respectively.

We constructed two transmission lines with sharp turns in the square-hexagon lattice
PCTI. One configuration is illustrated in Figure 4a, where two metallic strips were placed at
the upper Edge 1 and left Edge 4 to form a transmission line with a 90◦ turn. The microwave
absorbers were placed close to the lower Edge 1 and right Edge 4 to avoid the reflection of
the EM waves. The simulated wave transport diagram displayed in Figure 4b clearly shows
that the energy fluxes could unidirectionally transport along the Edge 1, bypass the 90◦ turn
and continue to transport along Edge 4 in a reflection-free way, despite the sharp bend and
serious impedance mismatching between Edge 1 and Edge 4. The transmission parameters
S21 and S12 represent the forward and reverse transmission coefficients, respectively. Thus,
the measured transmission spectra displayed in Figure 4c further confirm that the EM
waves at the frequency range of 17.45~17.95 GHz showed an excellent one-way property
when transporting along this complicated transmission line.
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samples. The metallic strips were placed near the boundaries of GPC to form the transport channels,
and the microwave absorbers were utilized to avoid the reflection of EM waves. (b,e) Simulated
electric field distribution excited by a line source. The blue star is the line source and the white
arrow indicates the direction of electric field transmission. (c,f) Measured transmission spectra of
topological resistance-free transmission lines. There existed a big contrast (about 35 dB) between
parameters S21 and S12 at 17.45~17.95 GHz.

We proceeded to add a metallic strip close to the lower Edge 1 to build a more
complicated transmission line with two 90◦ turns, as shown in Figure 4d. The simulated
field pattern, as illustrated in Figure 4e, showed that the EM wave perfectly traveled
from the upper Edge 1 to the lower Edge 1 in a resistance-free way that seemed to ignore
the existence of the two sharp turns and serious impedance-mismatching issues. The
experimental measurement data illustrated in Figure 4f showed that there still existed a big
contrast (about 35 dB) between the parameters S21 and S12 at 17.45~17.95 GHz, indicating
good one-way transport behavior. It is worth noting from Figure 4b,e that there appeared
no strong electric field localization at the sharp turns, indicating that no strong partial
scattering produced by mode-mixing problems occurred. These results clearly indicate that
in these transmission lines, although the wave impedances of the lines on both sides of the
intersections differed very much, the energy fluxes still transported in only one direction
along the transmission lines with no resistance. These key features of the topological
transmission line can be attributed to the topologically protected removal of the back
reflections in each transport line, as a result of which the standing waves produced by the
back reflections between the neighboring transport lines were forbidden and the smooth
propagation of energy fluxes along complicated composite transmission lines was ensured.

We continued to introduce three metallic strips close to the boundaries of the GPC to
form an even more complicated composite transmission line with six 90◦ turns. The first
structure is illustrated in Figure 5a for a realistic sample in the experiment, where each 90◦

turn connected two types of edges (including Edge 1 and Edge 4). Figure 5b illustrates
that this transmission line allowed EM wave propagating in one direction and forbade
back reflections under sharp turns and impedance-mismatching issues. The measured
transmission spectra still remained a strong nonreciprocity dwelling in the yellow region
(17.45~17.95 GHz), as shown in Figure 5c. Beyond the robust transport, these results imply
the possibility of implementing topological resistance-free transport in a more complex
transmission line with various types of edges.
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The second transmission line structure is illustrated in Figure 5d, which was a very
complicated device consisting of six 90◦ turns, but now connected all five types of edges.
Each of the six 90◦ turns connected two types of edges with different wave impedances;
especially, the wave impedance of Edge 3 was much larger than that of the other edges.
We investigated the transport behaviors of the energy fluxes in this extremely complicated
multi-bend transmission line both numerically and experimentally. Figure 5e reveals that
the energy fluxes could transport leftwards at the upper Edge 1, pass through the six sharp
corners (90◦ turn) and five composite edges one by one smoothly and finally reach the lower
Edge 1 with no back scattering, mode-mixing problems and impedance-mismatching issues.
The measured transmission spectra, as plotted in Figure 5f, also showed that this composite
transmission line still maintained a big contrast between the transmission parameters S21
and S12, meaning that the energy fluxes unidirectionally propagated along the transmission
line in a resistance-free way.

Finally, we verified the topological resistance-free one-way transport property of the
transmission lines by comparing the transmission spectra of the three transmission lines
with varying levels of complexity. Figure 6a–c show the simulated and measured trans-
mission spectra of the three transmission lines illustrated in Figure S4d and Figure 5a,d,
respectively. As shown in Figure 6(a1–c1), in simulations, the transmission efficiency of the
energy flux in three transmission lines was nearly 100% (the yellow regions ranging from
17.45 to 17.95 GHz). This result reveals that there were no back reflections, mode-mixing
problems and impedance-mismatching issues in these topological transmission lines. So,
EM waves could propagate forwards in only one direction even when impinging on the
intersections between two lines with different wave impedances, and even when repeat-
edly taking sharp turns. These phenomena were also verified by the measured results
illustrated in Figure 6(a2–c2), where the transmission spectra of these three transmission
lines exhibited a strong nonreciprocity (about 30~35 dB in contrast) at the frequency range
of 17.45~17.95 GHz, although there existed some disturbances in the magnitude. Note
that there existed some noises in the experimental results. On the one hand, these noises
existed mainly because the source of the vector network analyzer was unstable, and this is
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very common in microwave experiments [33–36]. On the other hand, the coupling losses
induced by the mode mismatching at the input/output end and the transmission losses
that originated from the fabrication errors of the sample also introduced some noises in
the experiment results. However, although there existed some noises in the experimental
results, the transmission spectra still showed the strong nonreciprocity in the frequency
range of 17.45~17.95 GHz, indicating the excellent one-way transport property. Addition-
ally, it should be noted that the perturbation of the external magnetic field strength had
almost no influence on the transport behavior of the one-way edge states (see more detailed
calculations in the Supplemental Information). Moreover, Chen et al. also demonstrated
that the realization of the one-way edge states in a GPC system has a very strong tolerance
to the nonuniform magnetization [40].
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(c) Transmission line with six 90◦ turns consisted of Edges 1–5 plotted in Figure 5d. (a1–c1) Simulated
and (a2–c2) measured transmission spectra of three types of topological resistance-free transmission lines.

4. Conclusions and Discussion

In conclusion, we theoretically proposed and experimentally realized a new config-
uration of PCTIs in a two-dimensional square-hexagon lattice GPC. We found that this
PCTI possesses five types of edges and all of them support the one-way propagation of
edge states, which can travel around the sharp turns and bypass metallic obstacles in a
reflection-free way. We utilized the one-way property of edge states to overcome entirely
the issues of back reflection, mode mixing and impedance mismatching at terminates,
intersections and discontinuities. We implemented the construction of topological trans-
mission lines of various configurations, some of which even consisted of all five types of
edges consecutively connected and thus were very complicated, and demonstrated the
topological resistance-free transport in the whole transmission line network. We expect that
these results will enrich the geometric and physical infrastructure to implement the PCTIs
possessing truly one-way edge states and will bring about novel platforms for developing
topology-driven resistance-free photonic devices. Although our work has focused on GPCs,
similar ideas can be generalized to other photonic systems, and more broadly to other
bosonic platforms, such as acoustics, electrics, mechanics and more.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12173009/s1, Figure S1: Schematic of the supercell of gyro-
magnetic photonic crystal of Edge 1. Figure S2: Simulated structure for the field distribution at Edge
1. Figure S3: Projected band structures of Edge 1 under different external magnetic fields. Figure S4:
One-way edge states of Edge 1. Figure S5: One-way edge states of Edge 2. Figure S6: One-way edge

https://www.mdpi.com/article/10.3390/nano12173009/s1
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states of Edge 3. Figure S7: One-way edge states of Edge 4. Figure S8: One-way edge states of Edge 5.
Figure S9: Transport robustness of one-way edge-states at five types of edges.
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dimensions. Nat. Phys. 2016, 12, 337–340. [CrossRef]
3. Zylstra, M.; Bakhtazad, A.; Sabarinathan, J. Photonic crystal slab edge directional coupler for deflection sensing. Opt. Express

2019, 27, 38509–38520. [CrossRef]
4. Arora, S.; Bauer, T.; Parappurath, N.; Barczyk, R.; Verhagen, E.; Kuipers, L. Breakdown of spin-to-helicity locking at the nanoscale

in topological photonic crystal edge states. Phys. Rev. Lett. 2022, 128, 203903. [CrossRef] [PubMed]
5. Gao, Z.; Gao, F.; Zhang, B. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal.

Appl. Phys. Lett. 2016, 108, 041105. [CrossRef]
6. Chen, J.; Li, Z.-Y. Configurable topological beam splitting via antichiral gyromagnetic photonic crystal. Opto-Electron. Sci. 2022, 1,

220001. [CrossRef]
7. Boscolo, S.; Midrio, M.; Krauss, T.F. Y junctions in photonic crystal channel waveguides: High transmission and impedance

matching. Opt. Lett. 2002, 27, 1001–1003. [CrossRef]
8. Miri, M.; Khavasi, A.; Mehrany, K.; Rashidian, B. Transmission-line model to design matching stage for light coupling into

two-dimensional photonic crystals. Opt. Lett. 2010, 35, 115–117. [CrossRef]
9. Vynck, K.; Centeno, E.; d’Yerville, M.L.; Cassagne, D. Efficient light coupling from integrated single-mode waveguides to

supercollimating photonic crystals on silicon-on-insulator platforms. Appl. Phys. Lett. 2008, 92, 103128. [CrossRef]
10. Ozawa, T.; Price, H.M.; Amo, A.; Goldman, N.; Hafezi, M.; Lu, L.; Rechtsman, M.C.; Schuster, D.; Simon, J.; Zilberberg, O.; et al.

Topological photonics. Rev. Mod. Phys. 2019, 91, 015006. [CrossRef]
11. Chen, J.; Liang, W.; Li, Z.-Y. Progress of topological photonic state in magneto-optical photonic crystal. Acta Opt. Sin. 2021, 41,

0823015. [CrossRef]
12. Wang, X.; Zhao, W.; Zhang, H.; Elshahat, S.; Lu, C. Magnetic-optic effect-based topological state: Realization and application.

Front. Mater. 2022, 8, 816877. [CrossRef]
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