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Abstract: Silicon is a worthy substitute anode material for lithium-ion batteries because it offers high
theoretical capacity and low working potentials vs. Li+/Li. However, immense volume changes
and the low intrinsic conductivity of Si hampers its practical applications. In this study, nano/micro
silicon particles are achieved by ball milling silicon mesh powder as a scalable process. Subsequent
metal (Cu/Fe/Mn) doping into nano/micro silicon by low-temperature annealing, followed by high-
temperature annealing with graphite, gives a metal-doped silicon/graphite composite. The obtained
composites were studied as anodes for Li-ion batteries, and they delivered high reversible capacities of
more than 1000 mAh g−1 with improved Li+ diffusion properties. The full cells from these composite
anodes vs. LiCoO2 cathodes delivered suitable energy densities for Li+ storage applications. The
enhanced electrochemical properties are accredited to the synergistic effect of metal doping and
graphite addition to silicon and exhibit potential for suitable Li+ energy storage applications.

Keywords: silicon–graphite composites; transition metal doping; cost-effective anodes; Li-ion batteries;
Li+ energy storage

1. Introduction

Lithium-ion batteries (LIBs) have many advantages over other energy storage devices,
such as high energy density, low discharging rate, long cycling life, portability, and light
weight, which makes them a promising technology for future energy storage applications [1–4].
The overall performance of LIBs is significantly influenced by the properties of electrode
materials; hence, anode materials play a vital role in accomplishing high energy and power
densities [5,6]. Commercial graphite is a conventional anode material for LIBs, owing to
its high abundance, structural stability, low working potential, and long-term cyclability.
However, its low theoretical capacity of 372 mAh g−1 is incapable of meeting current
high energy demands, such as automotive applications, electric vehicles, energy storage
devices, etc. [7,8]. Therefore, alternative anode materials with high theoretical capacities
with low working potentials are necessary to meet the high energy and power density
demands. Silicon (Si) is considered one of the promising anode materials owing to its high
theoretical capacity of ~4200 mAh g−1 and low working potential of ~0.4 V vs. Li/Li+. Its
environmentally friendly nature and high abundance further boost its practical applicability
as an efficient anode material for LIBs [9–11]. However, massive volume expansion, low
intrinsic conductivity, and an unstable solid electrolyte interphase (SEI) layer limit its
practical applicability. Active Si undergoes severe structural and mechanical stress during
Li+ alloying/dealloying reactions and leads to the loss of contact with the correct collector
and causes a rapid decline in capacities [12,13].

To address these issues, several strategies have been employed to improve the Si-
based anodes, including reducing the Si particle size from bulk to nanosize [14,15], and
synthesizing different Si nanostructures to control the cracking and pulverization of
Si [16,17]. Nanosize active materials benefit in alleviating structural breakdowns affected
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by the large strain. The large surface area provided by nanomaterials could afford a large
reaction site for Li+ ions and thus retain superior specific capacities [18]. However, the
large-scale material production of these nanostructures is highly impractical due to the
requirement of sophisticated equipment and high synthesis expenditures. Preparation of
nano/micro/sub-micron Si particles from bulk Si by high-energy ball milling is an afford-
able and cost-effective approach, which greatly reduces the production cost of Si [19,20].
Merging nanosized anode materials with carbon/carbonaceous materials greatly improves
the electrochemical performance by relieving the volume changes and holding the electrical
contact during the lithiation/delithiation process [18]. Introducing carbon materials as
composites with Si and using protective carbon coatings are also effective ways to improve
the performance of Si anodes [21–23]. The amount of carbon in the composite material plays
a crucial role in stabilizing the Si anode performance by affording the required electrical
conductivity and mechanical stability [24,25]. However, adding large amounts of carbon
significantly reduces the overall specific capacity of the composite material by forming a
dead layer on the surface of the electrode. Impurity doping such as boron (B) [26,27] and
phosphorous (P) [28,29] is another contemporary way to overcome these disadvantages
and advance the conductivity and ionic mobility of Si anodes. Ke et al. synthesized thin
carbon shell and nitrogen/phosphorus co-doped two-dimensional (2D) carbon sheet dual
encapsulate Si nanoparticles, which showed high reversible capacities of 592 mAh g−1

after 100 cycles at 200 mA g−1, indicating the excellent conductive support of nitrogen and
phosphorous dopants along with carbon [30].

Recent reports reveal that transition metal alloying/doping/composites with Si im-
prove its electrical conductivity and structural stability and are favorable in enhancing
the overall electrochemical performance [31–33]. Hou et al. prepared ultrafine cobalt
sulfide encapsulated multi-channel carbon nanofibers as anodes, which showed excellent
electrochemical properties with 737 mAh g−1 capacities after 100 cycles at 200 mA g−1 [18].
Previous reports also suggested that the transition metal-doped Si nanoparticles showed
improved electronic and magnetic properties [34,35]. Kim et al. prepared Al-doped Si film
and studied it as anode material for LIBs. The Al-doped Si films showed better electrochem-
ical properties than pristine Si [36]. Huang et al. prepared a NiSix intermetallic skin-coated
Si anode, where NiSix acted as a protective layer, which exhibited improved cyclability
with rate capabilities [37]. Lin et al. fabricated Cu-induced porous Si composite films as
an anode, which showed excellent electrochemical properties [38]. Lee et al. prepared a
graphite–FeSi alloy composite anode, where FeSi2 acted as a buffer matrix for active Si
and exhibited good cyclability with high reversible capacities [39]. Bimodal nanoporous
NiO@Ni-Si networks prepared by Wang et al. delivered excellent long-term cyclability
with 1387 mAh g−1 capacities at 500 mA g−1 after 1000 cycles, where the Ni-Si network
plays a crucial role in accommodating the large volume changes during cycling [40]. The
composite of dual-shell Si/TiO2/CF prepared by Zeng et al. delivered 583 mAh g−1 spe-
cific capacity with 87.4% retention at 100 mA g−1 after 180 cycles, where the rigid TiO2
gives the required mechanical strength, and carbon affords excellent electrical conductivity
to Si particles [41]. From our previous report, Co-doped Si nanoparticles also showed
favorable electrochemical properties, along with improved Li+ diffusion properties [30].
Apart from Si anodes, other anode materials doped with Cu, Fe, and Mn such as Li3VO4,
SnO2, TiO2, ZnFe2O4, etc., showed improved electrochemical properties compared to their
pristine material [42–46]. All these results suggested that transition metal doping encour-
ages Li+ kinetics, intrinsic conductivity, and structural stability, which favors the overall
electrochemical properties of the host electrode.

In our previous work, the influence of metal doping on Si NPs was studied, where low
doping concentrations of transition metals (Mn, Ni) were used to dope into Si nanoparti-
cles [47]. However, the usage of Si NPs (commercially purchased) increases the production
cost, which is a drawback for industrial applications. In this study, bulk Si is taken as
precursor material instead of Si NPs, which is cost-effective, greatly reduces expenses,
and encourages large-scale manufacture. The addition of graphite powder significantly
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enhances the stability of bulk Si in advancing a long and stable cycle life. Based on the
above findings, considering a relatively cost-effective and scalable approach, we proposed
a metal-doped Si/graphite composite as an anode material for LIBs. Here, three different
transition metals (Cu, Fe, Mn) with low doping concentrations (0.5 at %) were used to
dope into the Si host, and subsequently, construct a composite with graphite. The metal
dopants in the composite enhanced the intrinsic conductivity of Si, as the graphite provides
the required electrical conductivity and structural stability to Si. All prepared anodes
delivered favorable electrochemical properties attributed to enriched electrical conductivity
and structural stability provided by metal dopants and graphite in the composite material.

2. Experimental
2.1. Materials and Methods

Si powder (325 mesh, 99% trace metals basis, Sigma-Aldrich,Burlington, MA, USA),
copper nitrate trihydrate (Cu(NO3)2·3 H2O—Sigma-Aldrich, Burlington, MA, USA), iron
nitrate nonahydrate (Fe(NO3)3·9 H2O—Sigma-Aldrich, Burlington, MA, USA), manganese
nitrate hexahydrate (Mn(NO3)2·6H2O—Sigma-Aldrich, Burlington, MA, USA), graphite
powder (TIMCAL TIMREX® SFG6, TIMCAL Ltd. Bodio, Leventina, Switzerland), and an
ethanol solvent (≥99.5%, Sigma-Aldrich, Burlington, MA, USA) were purchased and used
without further purification.

The metal-doped Si/graphite composite was prepared by a three-step process. Firstly,
nano/micro Si particles were prepared from bulk Si (325 mesh). Later, the prepared
nano/micro Si was doped with transition metals, followed by making a composite with
graphite powder, yielding a transition metal-doped Si/graphite composite.

2.2. Preparation of Nano/Micro Si

To prepare nano/micro Si, 5 g of Si powder (325 mesh) was taken into a high-density
polyethylene (HDPE) vial along with a few zirconium balls, with a ball-to-powder ratio
of 50:1. Then, the vial was tightly closed with Teflon tape and placed in a ball mill. The
milling was carried out for 48 h at the speed of 150 rpm at room temperature. The obtained
Si powder with zirconium balls was sieved for about 2 h and the powder was collected,
referred to as Si-48.

2.3. Fabrication of Transition Metal-Doped Nano/Micro Si

The prepared Si-48 powder was taken into a zirconium sample holder of a mini-
mill and added with the desired amount (0.5 at%) of Cu precursor along with ~1 mL of
ethanol. Then, the lid was placed and the milling was carried out for 1 h at a speed of
30 oscillations sec−1 to make a uniform slurry. The obtained slurry was taken into an
alumina crucible and placed in a tubular furnace and heat-treated at 600 ◦C for 2 h at
a heat rate of 3 ◦C min−1 under an argon atmosphere. When the furnace reached room
temperature, the sample was collected and signed as SiCu by its metal dopant. Using this
same approach, Fe-doped and Mn-doped Si materials were prepared and named SiFe and
SiMn, respectively. All the prepared materials were used for further analysis.

2.4. Preparation of Metal-Doped Si/Graphite Composite

The preparation of metal-doped Si/graphite composite was as follows. Firstly, 425 mg
of metal (Cu/Fe/Mn)-doped Si particles was taken into a mini-mill and 75 mg of graphite
powder was added and milled for 30 min for thorough mixing of the two materials. Then,
the mixture was transferred to an alumina crucible of a tubular furnace and heat-treated
at 400 ◦C for 2 h at a heat rate of 5 ◦C min−1 in an argon atmosphere. After the furnace
was cooled to room temperature, the samples were collected and named SiCuG, SiFeG,
and SiMnG, referring to the presence of metal dopant and graphite. Si-48 was also added
with graphite powder and prepared composite with the same experimental conditions to
analyze the effect of metal dopants, and named SiG. All the prepared materials were used
for further analysis.
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2.5. Material Characterization

The crystal structure of the prepared materials was investigated by an X-ray diffrac-
tometer (XRD) using the Rigaku D/MAX-2200 (Rigaku corp., Tokyo, Japan) Ultima in-
strument equipped with Cu@Kα radiation (λ = 1.54056 Å) in the range of 10◦ < 2θ < 80◦

operating at 30 kV and 40 mA. The surface morphology and microstructures were analyzed
by scanning electron microscopy SEM, JSM7000F (JEOL Ltd., Tokyo, Japan) and transmis-
sion electron microscopy TEM, JEM-2100F (JEOL Ltd., Tokyo, Japan). Raman spectroscopy
was used to analyze the chemical composition of the samples. Thermogravimetric analysis
(TGA) was operated from 25 ◦C to 800 ◦C to investigate the amount of carbon in the mate-
rials. X-ray photoelectron spectroscopy (XPS) on a PHI Quantear SXM (ULVAC-PHI Inc.,
Kanagawa, Japan) was employed to investigate the surface chemical states of the prepared
materials. The Brunauer–Emmett–Teller (BET) method was applied to analyze the specific
surface area of the prepared composite materials.

2.6. Electrochemical Measurements

The CR 2032 button-type coin cells were used to evaluate the electrochemical proper-
ties of all prepared materials. The working electrodes (SiCuG, SiFeG, and SiMnG) were
prepared by adding 80% of active materials with 20% of polyamide-imide (PAI-(Typolymer.
Co., Ltd. Torlon(R) Amideimide, 4000T-HV, Seoul, Korea)) in N-methyl pyrrolidone (NMP)
as a binder. No conductive carbon additive was added due to the presence of graphite in
the active material. For a comparison study, the other working electrodes (Si-48, SiCu, SiFe,
and SiMn) were prepared by adding 68% active material with 12% super P as conductive
carbon and 20% of PAI binder in NMP to match the amounts of Si, carbon, and binder. All
components were taken into a mini-mill and milled for 15 min to make a uniform slurry.
The resultant slurry was uniformly coated on a copper foil current collected with a 20 µm
thickness by using the traditional doctor blade approach (wet film thickness: 0–3000 µm,
controllable accuracy: 5 µm). Then, the electrodes were dried in the oven at 80 ◦C to
evaporate the excess solvent, subsequently transferred to the vacuum oven, and dried
at 200 ◦C for 3 h to activate the binder. After that, the electrodes were punched into
14 mm disks and used as working electrodes. The mass loading of the active material
was ~2.6 mg·cm−1, with an average thickness of 145 µm. All coin cells were fabricated in
an Ar-filled glove box (H2O < 0.1 ppm and O2 < 1 ppm). Metallic lithium (MTI KOREA
Corp., Seoul, Korea) with thickness: 0.17 mm, diameter: 16 mm was used as a counter
electrode without prior surface cleaning. Then, 1 M LiPF6 in ethylene carbonate (EC),
diethyl carbonate (DEC), and fluoroethylene carbonate (FEC) were used in a v/v ratio
of 5:70:25. Polypropylene (PP Wellcos Corporation, Separator 2400) with a thickness of
27 µm and a diameter of 19 mm was used as the separator. The cyclability tests were
carried out at 200 mA g−1, and the rate capability tests were conducted between 200 and
3200 mA g−1 applied currents, in the voltage range of 0.01 V–2.0 V. The redox behavior
of the electrodes was investigated by employing cyclic voltammetry (CV) in the voltage
window of 0.01 V–2.0 V at a scan rate of 0.1 mV s−1. Electrochemical impedance spec-
troscopy (EIS) was employed within the frequency range of 10 mHz to 10 kHz. For full cell
preparation, 16 mm diameter disks of the prepared anodes were prelithiated by assembling
half cells with Li metal as a counter electrode, with 1 M LiPF6 in EC:DEC:FEC (v/v ratio of
5:70:25) electrolyte, and a polypropylene separator. The cells were fully discharged to 0.01 V
at 200 mA g−1. To prepare the cathode electrode, 90% commercial LiCoO2 (LCO, purity
99.5%, Thermo Fisher Scientific Inc., Waltham, MA, USA) powder was added to 5% Super-P
carbon as a conductive additive and 5% PVDF in NMP as a binder. All components were
thoroughly mixed using a mortar and pestle for 30 min to form a uniform slurry. The slurry
was then coated on Al foil using the traditional doctor blade method (wet film thickness:
0–3000 microns, controllable accuracy: 5 µm) with a thickness of 45 µm and dried in an
oven at 80 ◦C for 2 h. Later, the electrode was heat-treated in a vacuum oven at 100 ◦C for
1 h. Then, 14 mm diameter disks were punched and used as cathode electrodes. The specific
capacity of the working electrode was calculated based on the weight of the active material.
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3. Results and Discussion
3.1. Experimental Synthesis Mechanism

The schematic of the three-step preparation process of the metal (Cu/Fe/Mn)-doped
Si/graphite composite is shown in Figure 1. The bulk Si (325 mesh) was taken into a ball
mill with zirconium balls, and milling was carried out for 48 h, where bulk Si particles
were crushed into nano/micro particles, as shown in Figure 1a. In the next step, the
prepared nano/micro Si particles were thoroughly mixed with the desired amount of
metal (Cu/Fe/Mn) nitrate precursor and ethanol solvent by using a mini-mill for 1 h. The
obtained uniform slurry contains dissociated metal (Cu/Fe/Mn) and nitrate ions together
with silicon particles and was transferred into an alumina crucible of a tubular furnace
and subjected to thermal annealing at 600 ◦C for 2 h in an argon atmosphere. This process
allows the successful metal (Cu/Fe/Mn) doping with minute nitrogen, while the excess
amounts of solvent, water, and oxygen were excluded from the sample and giving metal
(Cu/Fe/Mn)-doped nano/micro Si particles, as shown in Figure 1b. As shown in Figure 1c,
metal (Cu/Fe/Mn)-doped nano/micro Si particles were mixed with graphite powder by
using a mini-mill for 30 min to make a uniform mixture. Then, the mixture was taken into
an alumina crucible and heat-treated at 400 ◦C for 2 h in argon. When the furnace was
cooled to room temperature, the samples were collected and named SiCuG, SiFeG, and
SiMnG, referring to their metal dopants.

Figure 1. Schematic of step-by-step preparation of metal (Cu/Fe/Cu)-doped Si/graphite composite
materials. (a) Preparation of nano/micro Si particles from bulk Si (325 mesh); (b) fabrication of
metal doping into nano/micro Si particles; (c) metal (Cu/Fe/Mn)-doped Si/graphite composite
preparation.

3.2. Structure, Morphology and Component Analysis

The XRD patterns of all prepared materials are shown in Figure 2. The sharp diffraction
peaks at 2θ = 28.4◦, 47.4◦, 56.2◦, 69.2◦, and 76.3◦ correspond to the {111}, {220}, {311}, {400},
and {331} lattice planes of crystalline Si (JCPDS#27-1402), indicating the high crystallinity of
the materials after the thermal annealing approach. The materials SiCuG, SiFeG, and SiMnG
showed crystalline peaks around ~26.5◦, corresponding to the {002} plane of graphite in the
composite material. However, SiCuG, SiFeG, SiMnG, SiCu, SiFe, and SiMn materials did
not show any peaks related to metal dopants, and this could be due to their low doping
concentrations. No other impurity peaks were detected and are in agreement with the
previous reports [10,21,30]. The elemental composition of the prepared composites was
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examined by Raman spectroscopy, and the obtained results for SiCuG, SiFeG, and SiMnG
are shown in Figure 3a. The peaks around ~510 cm−1 and ~935 cm−1 are the characteristic
peaks of crystalline Si and are observed for three materials [11,27]. The two broad peaks at
1345 and 1595 cm−1 in three materials correspond to the D-band and G-band, respectively.
The D-band represents the structural defects and the G-band represents the graphitic carbon.
These properties encourage electrical conductivity and structural stability and are beneficial
for fast Li+ kinetics in the electrode materials [2,10,11]. The amounts of carbon present in
the prepared composites were evaluated by using TGA. The TGA curves were measured
from 50 ◦C to 800 ◦C at a heating rate of 10 ◦C min−1 in the air atmosphere. The resultant
TGA curves are shown in Figure 3b. From the results, the weight of Si-48 is increased after
500 ◦C, demonstrating the partial oxidation on the surface of Si particles and the formation
of the (SiOx) layer. The weight loss is observed for SiCuG, SiFeG, and SiMnG materials and
could be accredited to the carbon oxidation in the air. The amounts of carbon in SiCuG,
SiFeG, and SiMnG are 13.9%, 14%, and 14.7%, respectively, and are relatively close to the
amount of carbon added in the preparation process, indicating the successful composite
formation [25].

Figure 2. XRD patterns of Si-48, SiCu, SiFe, SiMn, SiCuG, SiFeG, and SiMnG materials.

Figure 3. (a) Raman spectra of SiCuG, SiFeG, and SiMnG. (b) TGA results of Si-48, SiCuG, SiFeG,
and SiMnG.

The microstructures of the prepared Si-48, SiCuG, SiFeG, and SiMnG were evaluated
through SEM and TEM. The SEM images of Si-48 are shown in Figure S1a,b. From FigureS1a,
we can observe the Si particles with different sizes ranging from ~150 nm to a few mi-
crometers (µm), and the approximate particle sizes are shown in Figure S1b. The SEM
images of SiCuG, SiFeG, and SiMnG are shown in Figure S1c, Figure S1e, and Figure S1f,
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respectively, where graphite flakes are thoroughly combined and incorporated with metal
(Cu/Fe/Mn)-doped Si particles. The graphite flakes are shown with red arrows, whereas
metal (Cu/Fe/Mn)-doped Si particles are shown with yellow arrows. A closer view of the
images is shown in Figure S1d, Figure S1f, and Figure S1h, where graphite flakes in the
composite are shown with white/black arrows, which are associated with metal-doped Si
particles. These graphite flakes can give suitable conductivity and structural stability to Si
particles and are favorable for delivering better electrochemical properties.

The TEM images of SiCuG are shown in Figure 4a–c, where we can observe the
agglomeration of nano/micro Si particles with graphite shown with yellow and black arrows,
respectively. The TEM-EDX elemental mapping of Figure 4c is shown in Figure 4d–f with
respect to the elements Si, Cu, and C, indicating their presence in the prepared material.
The TEM-EDX spectra of SiCuG is shown in Figure 4g, indicating Si, C, and Cu with
76.62 at %, 22.58 at %, and 0.8 at %. The spectra show high amounts of Cu in the material
compared to the precursor, and this could be due to the Cu grid used in TEM analysis. The
TEM images of SiFeG are shown in Figure 5a–c, and those of SiMnG are shown in Figure 6a–c.
The TEM-EDX elemental mapping of Figure 5c is shown in Figure 5d–f with respect to
the elements Si, Fe, and C. Likewise, the TEM-EDX elemental mapping of Figure 6c is
shown in Figure 6d–f with respect to the elements Si, Mn, and C. The TEM-EDX spectra of
SiFeG and SiMnG are shown in Figures 5g and 6g, respectively, showing their respective
elements. The amounts of Fe and Mn are about 0.34 at % and 0.32 at % in SiFeG and SiMnG,
respectively, which are relatively close to the doping concentrations. All these results
significantly indicate the presence of metal dopants in their respective composite materials.

Figure 4. (a–c) TEM images, where yellow arrows represent Si particles and black arrows indicate
graphite; (d–f) corresponding EDX elemental mapping of Si, Cu, and C of (c); (g) TEM-EDX spectra
of SiCuG, where green colored lines indicate C, Si and Cu (from left to right), and red colored lines
indicate Copper (Cu) from the TEM sample grid.
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Figure 5. (a–c) TEM images; (d–f) corresponding EDX elemental mapping of Si, Fe, and C of (c); (g)
TEM-EDX spectra of SiFeG, where green colored lines indicate C, Si and Fe (from left to right), and
red colored lines indicate Copper (Cu) from the TEM sample grid.

Figure 6. (a–c) TEM images; (d–f) corresponding EDX elemental mapping of Si, Mn, and C of (c);
(g) TEM-EDX spectra of SiMnG, where green colored lines indicate C, Si and Mn (from left to right),
and red colored lines indicate Copper (Cu) from the TEM sample grid.

The information about the surface chemical states of the prepared composites is
determined by XPS, and the resultant spectrum is shown in Figures 7 and S2. The survey
spectrum of SiCuG is shown in Figure S2a, indicating that the composite is composed of
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Si, Cu, G, and O. The curve-fitting approach was used to distinguish the positions and
chemical states of the elements. The high-resolution spectra of Si 2p are fitted to three
peaks in Figure 7a. The peaks at binding energies around 99.7 and 103.7 eV are assigned to
Si0 and Si4+, respectively. The broad peak between 99 and 104 eV can be ascribed to the
commonly observed surface SiOx layer of Si NPs [48]. Low-intensity Cu 2p peaks were
observed due to the low doping concentration of Cu, and the high-resolution Cu 2p spectra
are shown in Figure 7b and imply two main peaks located at 953.5 and 933.24 eV, attributed
to Cu 2p1/2 and Cu 2p3/2, respectively. The peaks at binding energies 955.9 and 933.7 eV
are attributed to Cu2+ peaks, and the binding energies at 953.1 and 932.7 eV correspond
to Cu0 peaks and suggest the presence of Cu in the material [37]. The C 1s spectra shown
in Figure 7c comprise two peaks at 284.5 and 285.4 eV related to the C-C bonds and C-O
bonds, respectively [49]. The survey spectra of SiFeG and SiMnG are shown in Figure S2b
and Figure S2c, respectively. Figure S2b shows binding energy peaks of Si, Fe, C, and O,
and S2c shows binding energy peaks of Si, Mn, C, and O. The high-resolution Si 2p spectra
of SiFeG and SiMnG are shown in Figures 7d and 7g, respectively. In both Si 2p spectra,
the peaks around ~99.7 and ~103.5 eV correspond to Si0 and Si4+, respectively, and the
broad peak around 103 eV is ascribed to the SiOx surface layer. The high-resolution Fe 2P
spectra is shown in Figure 7e and shows two peaks at 724.5 and 711.5 eV binding energies,
which reflect Fe 2p1/2 and Fe 2p3/2, respectively. The binding energies at 732.1, 724.6, and
715.3 eV are related to Fe2+ peaks, and the binding energy at 711.3 eV is attributed to Fe3+

and confirms the presence of Fe in SiFeG material [50]. The high-resolution Mn 2p spectra
are shown in Figure 7h, where the peaks at 654.2 and 642.2 eV are assigned to Mn 2p1/2 and
Mn 2p3/2, respectively. The peaks at binding energies at 658.2 and 645.6 eV are responsible
for Mn4+ and the peaks at binding energies at 654.2 and 642.2 eV are related to Mn3+,
implying the presence of Mn in SiMnG material [51]. The C 1s spectra of SiFeG and SiMnG
materials are shown in Figures 7f and 7i, respectively. Both spectra show binding energy
peaks at around ~284.5 and 285.7 eV, implying C-C and C-O bonds, respectively [49]. The
O 1s spectra of SiCuG, SiFeG, and SiMnG materials are shown in Figure S2d, Figure S2e,
and Figure S2f, respectively. Three spectra show the O 1s peak at binding energy around
~533.2 eV, originating from the SiOx surface layer [21]. The evaluated BET surface areas of
the prepared Si-48, SiCuG, SiFeG, and SiMnG are 2.1, 6.1, 6.36, and 8.37 m2 g−1, respectively.
For all the composite materials, the surface areas are slightly increased after the addition of
graphite and are favorable for affording more active sites for Li+ ion reactions [21].

Figure 7. High-resolution XPS-spectra. (a) Si 2p, (b) Cu 2p, (c) C 1s of SiCuG. (d) Si 2p, (e) Fe 2p,
(f) C 1s of SiFeG. (g) Si 2p, (h) Mn 2p, (i) C 1s of SiMnG.
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4. Electrochemical Evaluation in LIBs

Different electrochemical tests were carried out to investigate the electrochemical
performance of the prepared electrode materials. To compare the performance of electrodes,
all tests were conducted under the same conditions. The CV results for the first five cycles
of Si-48, SiCuG, SiFeG, and SiMnG are shown in Figure 8a, 8b, 8c, and 8d, respectively, and
SiCu, SiFe, and SiMn are shown in Figure S3a, Figure S3b, and Figure S3c, respectively. In
the first lithiation of the cathodic scan, Si-48 shows a typical broad reduction peak around
~0.7 V, resulting from the SEI formation layer due to the electrolyte decomposition on the
surface of the electrode material. the SiCuG, SiFeG, and SiMnG materials show a smaller
extent of SEI formation, indicated by a small reduction peak around ~1.2 V (shown in
the insets of Figure 8b–d). A possible reason could be because the formation of the SEI
layer may be a sluggish process during the initial cycles, so the characteristic SEI reduction
peaks were not obvious in the initial cycles of CV curves [52]. This SEI reduction peak
disappeared in the following cycles, indicating stable SEI layer formation. The sharp peak
at 0.05 V vs. Li+/Li in all electrodes corresponds to the alloying of Li+ in crystalline Si
and the formation of an amorphous LixSi phase. In the anodic scan, SiCuG, SiFeG, and
SiMnG materials show two peaks at around ~0.26 V and ~0.58 V, which are related to
the characteristic two-step dealloying process of LixSi phase to metastable amorphous Si.
However, in the anodic scan, Si-48 shows one sharp peak around 0.56 V, resulting from the
dealloying of Li+ from the LixSi phase and the formation of amorphous Si, indicating that
dealloying in Si-48 is a slow and sluggish process. This occurrence is normally observed
in many Si-based anodes. The increase in peak intensities in all electrodes increases with
cycles due to the ongoing activation process of the active materials [25,45]. The CV results
of SiCu, SiFe, and SiMn are similar to the CV curves of Si-48, indicating that the reaction
path of the lithiation and delithiation process was not changed after metal doping into Si,
due to inactivity of metal dopants towards Li-ions [30].

Figure 8. Cyclic voltammograms for 1–5 cycles of (a) Si-48, (b) SiCuG, (c) SiFeG, and (d) SiMnG vs.
Li/Li+ as a counter electrode with 1 M LiPF6 in EC:DEC:FEC (v/v ratio of 5:70:25) at 0.1 mV s−1 scan
rate in the potential window of 0.01–2.0 V.

The specific capacity vs. voltage profiles for the 1st, 2nd, and 50th cycles at a current
density of 200 mA g−1 for Si-48, SiCuG, SiFeG, and SiMnG are shown in the Figure 9a,
Figure 9b, Figure 9c, and Figure 9d, respectively. The long discharge plateau below 0.1 V in
the first cycle in all electrodes is related to the alloying reaction of Li-ions with crystalline
Si and the formation of the LixSi phase. In the following cycles, the discharge plateaus
are shifted to above ~0.22 V due to the formation of amorphous Si. The charge plateaus
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above ~0.5 V are in all electrodes, representing the dealloying reaction LixSi phase to
amorphous Si [12]. These charge/discharge profiles are in agreement with CV profiles.
The first discharge/charge capacities of Si-48, SiCuG, SiFeG, and SiMnG are 3219/1874,
2919/2430, 2954/2340, and 2915/2456 mAh g–1 with Coulombic efficiencies (CEs) of 58.2%,
83.2%, 79.2%, and 84.2%, respectively. The irreversible capacity loss is accompanied by the
formed SEI layer on the electrode’s surface. The lower CE% of Si-48 could be due to the
formation of a thick SEI layer, and is consistent with CV results (Figure 8). On the other
hand, the prepared anode materials showed better initial CE because of the thin SEI layer
formation resulting from the metal dopant, which controls the Si volume expansion, and
the graphite carbon, which maintains the overall structural stability. Furthermore, Si-48
capacities declined rapidly and reached 321/312 mAh g−1 with 97% CE after 50 cycles,
but the prepared SiCuG, SiFeG, and SiMnG electrodes delivered 1253/1244, 1208/1197,
and 1170/1165 mAh g−1 specific capacity with 99.2%, 99%, and 99.5% CE, respectively.
The discharge/charge profiles for the 1st, 2nd, and 50th cycles for SiCu, SiFe, and SiMn
are shown in Figure S4a, Figure S4b, and Figure S4c, respectively. These materials also
show similar capacity vs. voltage profiles, indicating the same reaction path as other
prepared materials.

Figure 9. Voltage vs. specific capacity profiles for 1st, 2nd, and 50th cycles of (a) Si-48, (b) SiCuG,
(c) SiFeG, and (d) SiMnG vs. Li/Li+ as counter electrode with 1 M LiPF6 in EC:DEC:FEC (v/v ratio of
5:70:25), at 200 mA g−1 in the potential window of 0.01–2.0 V.

The long-term cyclic stability and CEs were evaluated for Si-48, SiG, SiCuG, SiFeG,
SiMnG, SiCu, SiFe, and SiMn materials at applied currents of 200 mA g−1 within the
voltage of 0.01–2.0 V. The cyclability and CE results for Si-48, SiCuG, SiFeG, and SiMnG are
shown in Figure 10a,b, and those for SiG, SiCu, SiFe, and SiMn are shown in Figure S5a,b.
From Figure 10a, Si-48 shows a higher initial capacity compared with the other three
electrodes, but these capacities declined rapidly with the number of cycles. After 75 cycles,
Si-48 reached 226/222 mAh g−1 with 98.2% CE and 23.4% capacity retention compared
with the 10th cycle. The less stability and poor capacities could be due to the massive
volume changes during lithium reactions, leading to structural destruction and peeling
of active materials from the copper current collector. On the other hand, SiCuG, SiFeG,
and SiMnG material showed better cyclic stabilities compared to Si-48. After 75 cycles,
SiCuG, SiFeG, and SiMnG delivered 1075/1072, 1015/1009, and 1025/1022 mAh g−1

capacity with 99.7%, 99.4%, and 99.7% CE with 64.2%, 64.4%, and 63.3% capacity retention
(compared with 10th cycle), respectively. From Figure S5a, Si-48, SiCu, SiFe, and SiMn
materials show similar cyclability results. However, compared with Si-48, the prepared
SiCu, SiFe, and SiMn materials show slight stable cyclability. After 75 cycles, SiCu, SiFe,
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and SiMn materials delivered 355/342, 417/412, and 437/431 mAh g−1 capacity with 61.3%,
67.6%, and 52.5% capacity retention (compared with the 10th cycle), respectively. From
the cycling results of all prepared materials, it is evident that SiCu, SiFe, and SiMn show
better cyclability results, and this could be due to the enhanced intrinsic conductivity and
structural stability given by the metal dopants, which are helpful for faster Li+ reactions.
The SiG material also showed better cyclability compared to Si-48, which could be due to
the adequate conductivity and structural stability provided by the graphite. However, after
10 cycles, SiG also showed declined capacities. After 30 cycles, the SiG electrode managed
to deliver 935/916 mAh g−1 specific capacities, which is less compared to SiCuG, SiFeG,
and SiMnG electrodes. This result suggests that only the addition of graphite into Si-48
is not sufficient to attain stable capacities. On the other hand, SiCuG, SiFeG, and SiMnG
materials showed much better cyclability results compared with SiCu, SiFe, and SiMn
materials. These results suggest that metal doping into nano/micro Si is insufficient to
afford the required structural stability and conductivity to nano/micro Si particles and the
need for graphite carbon. The graphite in the composite successfully afforded the required
conductivity and structural and mechanical stability to nano/micro Si and encouraged
stable SEI formation on the electrode’s surface during harsh Li+ reactions. The synergetic
properties of metal dopants and graphite together promote faster Li+ diffusion into the
active materials and encourage enhanced electrochemical properties. The rate capability
results were evaluated for Si-48, SiCuG, SiFeG, and SiMnG electrodes at wide applied
current densities from 200 to 3200 mA g−1 in the voltage window of 0.01 V to 2.0 V, and
the resultant specific capacity vs. cycle number plots and CEs are depicted in Figures 10c
and 10d, respectively. For all prepared materials, the specific capacities are decreased with
increasing applied current densities. All prepared SiCuG, SiFeG, and SiMnG showed stable
rate capability results compared to Si-48, which failed at higher current densities. Si-48
delivered 3418, 996, and 301 mAh g−1 at applied currents of 200, 400, and 800 mA g−1,
respectively. After that, the rate capacities dropped quickly and reached single-digit
capacities at 1600 mA g−1 and failed to sustain at higher current densities. On the contrary,
the prepared anodes SiCuG/SiFeG/SiMnG delivered 2910/2924/2893, 1366/1440/1575,
955/943/1106, 615/729/761, and 543/642/695 mAh g−1 capacities at 200, 400, 800, 1600,
and 3200 mA g−1 applied currents, respectively. The rate capability results suggest that the
metal dopants and graphite in the composite material play a critical role in enhancing the
conductivity and affording the structural flexibility of nano/micro Si particles. The specific
capacities of all prepared anode materials at different cycles are summarized in Table 1.

Figure 10. (a,b) Cyclability and respective Coulombic efficiency at 200 mA g−1 in the potential
window of 0.01–2.0 V. (c,d) Rate capability and respective Coulombic efficiency results at applied
currents of 200–3200 mA g−1 in the potential window of 0.01–2.0 V of Si-48, SiCuG, SiFeG, and SiMnG
vs. Li/Li+ as counter electrode with 1 M LiPF6 in EC:DEC:FEC (v/v ratio of 5:70:25) electrolyte.
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Table 1. Summarized specific capacities of all prepared anode materials at different cycles.

Cells 1st
CyclećmAh g−1

2nd
CyclećmAh g−1

30th
CyclećmAh g−1

75th
CyclećmAh g−1

Si-48 vs. Li+/Li 3219/1874 1588/1526 449/437 226/222
SiG vs. Li+/Li 2732/2207 1905/1845 935/916 ———–

SiCu vs. Li+/Li 3154/2490 1783/1446 442/440 355/342
SiFe vs. Li+/Li 3096/2527 1841/1642 413/411 417/412
SiMn vs. Li+/Li 3172/2311 1812/1503 474/471 437/431
SiCuG vs. Li+/Li 2919/2430 2450/2143 1268/1261 1075/1072
SiFeG vs. Li+/Li 2954/2340 2382/2077 1330/1319 1015/1009
SiMnG vs. Li+/Li 2915/2456 2469/2129 1257/1252 1025/1022

The long cyclability and CEs of prepared materials were evaluated by cycling at high
currents of 1000 mA g−1, and the results are shown in Figures 11a and 11b, respectively.
The three electrodes showed declined capacities in the initial cycles, but after 20 cycles, the
capacities are stabilized. In the initial cycle, SiCuG, SiFeG, and SiMnG delivered 2514/1609,
2810/1740, and 3105/1600 mAh g−1 capacities with 64%, 61%, and 51% CE. After 100 cycles,
the materials managed to deliver 704/696, 779/758, and 754/740 mAh g−1 specific capaci-
ties with 98.8%, 97.3%, and 98.1% CE, respectively. The capacity retention values compared
with the 10th cycles are 73.6%, 72%, and 72.4%, respectively, and suggest the highly stable
microstructures of metal-doped Si/G composite even at higher applied currents.

Figure 11. (a,b) Cyclability and respective Coulombic efficiency results of SiCuG, SiFeG, and SiMnG
vs. Li/Li+ as counter electrode with 1 M LiPF6 in EC:DEC:FEC (v/v ratio of 5:70:25) electrolyte at
1000 mA g−1 in the potential window of 0.01–2.0 V.

The Li+ kinetics between electrode and electrolyte were analyzed by employing EIS.
The resultant Nyquist plots for Si-48, SiCuG, SiFeG, and SiMnG electrodes before and
after 25 charge/discharge cycles at 500 mA g−1 are displayed in Figures 12a and 12b,
respectively. All three electrodes exhibited a depressed semicircle in the mid- and high-
frequency regions related to the charge transfer resistance between the electrode and
the electrolyte interface. The inclined line in the low-frequency region corresponds to
the lithium diffusion process [53]. The equivalent circuit model in Figure 12c consists
of solution resistance (Rs), SEI layer resistance (RSEI), charge transfer resistance (Rct),
constant phase elements (CPE1, CPE2), and Warburg impedance (Wb). From Figure 12a,
all electrodes exhibited Rct of more than 500 Ω (shown in the inset Figure 10a). After 25
charge/discharge cycles at 500 mA g−1, the Rct values are greatly decreased due to the
wetting process of electrolyte into the electrodes and electrode kinetics with Li-ions. From
Figure 12b, Si-48 showed 106.5 Ω, which is quite high compared to the other three prepared
electrodes, as SiCuG, SiFeG, and SiMnG showed much lower Rct values of 40.3, 38.2, and
40.7 Ω, respectively, and could be attributed to faster Li+ diffusion and enhanced electrical
conductivity afforded by the metal dopants and graphite in the composite materials. The
values of Rs, RSEI, and Rct values after 25 cycles are summarized in Table 2. The evaluation
of Li+ diffusion properties, ZRe vs. ω−1/2, is plotted and depicted in Figure 12d. From the
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plot, ZRe linearly depends onω−1/2 in the low-frequency region. The following equations
were used to calculate the diffusion coefficient (D) of Li+ into the electrode materials.

ZRe = Rs + RSEI + Rct + σw ω
−1/2 (1)

D = R2 T2/2 A2 F 4 C2 σw
2 (2)

Figure 12. Electrochemical impedance spectroscopy results (a) before cycling and (b) after 25 cycles
at 500 mA g−1. (c) Equivalent circuit; (d) ZRe vs. ω −1/2 plots of Si-48, SiCuG, SiFeG, and SiMnG vs.
Li/Li+ as counter electrode with 1 M LiPF6 in EC:DEC:FEC (v/v ratio of 5:70:25) electrolyte.

Table 2. Summarized impedance values (after cycling) and calculated diffusion coefficients.

Sample Rs (Ω) RSEI (Ω) Rct (Ω) D (cm2 s−1)

Si-48 5.6 22.3 106.5 3.53 × 10−12

SiCuG 11.3 15.2 40.3 1.41 × 10−11

SiFeG 8.4 14.8 38.2 4.09 × 10−11

SiMnG 12.6 15.3 40.7 1.07 × 10−11

Here, R is the gas constant, T is the absolute temperature, C is the molar concentration
of Li+ ions, A is the electrode area, and F is the Faraday constant. The slope of ZRe
vs. ω−1/2 plots gives the Warburg impedance coefficients σw. The lower slope values
yield higher diffusion coefficients and suggest better diffusion properties. The calculated
Warburg factors for Si-48, SiCuG, SiFeG, and SiMnG are 65.1, 32.5, 19.1, and 37.3 Ω s−1/2,
respectively. The calculated D values from Equation (2) for each electrode material are
summarized in Table 2. All prepared materials show higher D values compared to Si-48,
demonstrating the faster Li+ kinetics owing to enhanced conductivity, more ionic channels
due to metal dopants, structural stability, and flexibility afforded by the graphite.

To investigate the structure and morphology changes of the Si-48, SiCuG, SiFeG, and
SiMnG materials, the cells were carefully disassembled after 20 charge/discharge cycles,
and the anode electrodes were collected. To remove the SEI layer, the electrodes were
washed with anhydrous dimethyl carbonate solution and dried in an oven. Later, the
electrode materials were carefully collected for SEM analysis. Figure S6 shows the SEM
images of Si-48 and Figures S7–S9 show the SEM images, SEM-EDX elemental mapping,



Nanomaterials 2022, 12, 3004 15 of 19

and spectra of SiCuG, SiFeG, and SiMnG, respectively. From Figure S6, the Si-48 particles
are aggregated to a larger extent and no individual particles have appeared (as shown in
Figure S1b), which results in structural damage and leads to declined specific capacities with
cycle number (showed in Figure 10a). From the SEM images of SiCuG, SiFeG, and SiMnG, Si
particles and graphite are agglomerated to a small extent. The SEM-EDX mapping and EDX
spectra results also specify the presence of Si, metal (Cu/Fe/Mn) dopants, and C in their
respective materials. These results suggest the favorable structural and mechanical stability
of metal-doped Si/graphite composite materials even after 20 charge/discharge cycles.

The practical applicability of the prepared anodes SiCuG, SiFeG, and SiMnG are evalu-
ated by fabricating full cells. The full cells were assembled with a commercial LiCoO2 (LCO)
cathode. The fundamental electrochemical properties such as voltage profiles, cyclability,
and rate capability results of the LCO cathode are shown in Figure S10a, Figure S10b, and
Figure S10c, respectively. The cyclability tests were carried out at 0.5 C (1 C = 140 mA g−1,
based on the cathode active material), and the rate capability test was carried out from
0.1 C to 5 C. After 100 cycles, the LCO cathode delivered 110.6/109.1 mAh g−1 capacity
with 98.6% CE, and at the high rate of 5 C, the LCO cathode delivered 51.8/48.9 mAh g−1

capacity, indicating suitable cyclic stability and rate capability, suggesting LCO as a strong
cathode material for LIBs. For full cell fabrication, the N/P ratio was fixed at 1.102, 1.142,
and 1.083 for SiCuG, SiFeG, and SiMnG materials, respectively, to match the capacities
of cathode and anode active materials. Before fabricating full cells, the prepared anodes
(SiCuG, SiFeG, and SiMnG) were prelithiated up to two complete cycles, followed by
complete discharge to 0.01 V at a current density of 200 mA g−1. After prelithiation, the
cells were disassembled carefully in a glove box, and prelithiated anodes were used in full
cell fabrication with the LCO cathode. The cyclability tests for full cells were carried out at
0.5 C (1 C =140 mA g−1, based on the cathode active material), and the results are shown in
Figure 13. The 1st and 2nd voltage vs. specific capacity plots, cyclability, and CE results of
SiCuG, SiFeG, and SiMnG are depicted in Figure 13a, Figure 13b, and Figure 13c, respec-
tively. After 100 cycles, the full cells delivered 79.5, 73.5, and 85.5 mAh g−1 capacities with
more than 99.5% CE with 79.5%, 72%, and 75% of capacity retention (vs. 2nd cycle charge
capacity), respectively. Even though the electrode SiFeG shows a better diffusion coefficient
(Table 2), it shows little lesser capacities compared to SiCuG and SiMnG. This could be
due to the N/P ratio being a little higher than the other two electrodes, which significantly
affects the full cell performance due to the availability of lower Li+ ions compared to the
other two electrodes. Detailed observations revealed that three prepared composites show
little differences in half cell and full cell performances. These small differences could be
attributed to the individual metal dopants’ physical and chemical properties such as electri-
cal conductivity, resistivity, how effectively they doped, the internal bonding of the metal
matrix with host Si and/or with surface oxygen, etc. These factors could cause differences
in the overall performance of the composite material [54]. The calculated energy densities
for SiCuG // LCO, SiFeG // LCO, and SiMnG // LCO are 302, 297.5, and 314 Wh.·kg−1,
respectively, with an average voltage of 3.5 V. The energy densities are reasonable for
materials prepared from bulk Si particles by a low-cost and affordable approach and are
most suitable and acceptable for Li-ion energy storage applications.
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Figure 13. (a) Potential vs. specific capacity plots for 1st and 2nd cycles. (b) Cyclability, (c) Coulombic
efficiency results of SiCuG // LCO, SiFeG // LCO, and SiMnG // LCO full cells with 1 M LiPF6

in EC:DEC:FEC (v/v ratio of 5:70:25) electrolyte at 0.5 C, in the potential window of 2.8–4.2 V,
respectively.

5. Conclusions

In this study, we successfully prepared a transition metal (Cu, Fe, Mn)-doped nano/micro
silicon/graphite composite by employing a cost-effective and scalable approach. In the
prepared composite, the doped metals endure significant volume changes by forming an
inactive phase and enhancing the intrinsic conductivity. On the other hand, graphite acted
as a tough framework and afforded structural stability along with improved conductivity
to the nano/micro silicon particles. All these key factors favor the composite electrodes in
achieving more than 1100 mAh g−1 capacity after 75 cycles at 200 mA g−1, and more than
700 mAh g−1 after 100 cycles at 1000 mA g−1. The full cells prepared from prelithiated
anodes (SiCuG, SiFeG, and SiMnG) and the LiCoO2 cathode delivered 302, 297.5, and
314 Wh.·kg−1 energy densities, respectively, with an average voltage of 3.5 V. We believe
that the successful fabrication of prepared materials by a simple and cost-effective approach
benefits the insight into the development of next-generation, low-cost advanced battery
materials and signifies a promising path for practical applicability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12173004/s1, Figure S1: SEM images (a) & (b) Si- 48,
(c) & (d) SiCuG, (e) & (f) SiFeG, and (g) & (h) SiMnG respectively; Figure S2: XPS-Spectra (a),
(b), (c) survey scan spectra, (d), (e), (f) O 1S spectra of SiCuG, SiFeG, and SiMnG respectively; Figure
S3: Cyclic voltammograms of (a) SiCu (b) SiFe and (c) SiMn vs. Li/Li+ counter electrode with 1M
LiPF6 in EC: DEC: FEC (v/v ratio of 5:70:25) electrolyte at 0.1 mV s-1 scan rate, in the potential window
of 0.01–2.0 V; Figure S4 : Voltage vs. specific capacity plots for 1st, 2nd, and 50th cycles (a) SiCu (b)
SiFe and (c) SiMn vs. Li/Li+ as a counter electrode with 1M LiPF6 in EC: DEC: FEC (v/v ratio of
5:70:25), at 200 mA g-1 in the potential window of 0.01–2.0 V; Figure S5: (a) cyclability (b) coulombic
efficiency results of Si-48, SiCu, SiFe, SiMn and SiG vs. Li/Li+ as counter electrode with 1M LiPF6 in
EC: DEC: FEC (v/v ratio of 5:70:25) electrolyte at 200 mA g-1 in the potential window of 0.01–2.0 V;
Figure S6: SEM images of Si-48 after 20 cycles at different magnifications; Figure S7: (a) and (b) SEM
images (c) SEM-EDX elemental mapping of image (b) with respective Si, C, and Cu elements overlap
(d) Si mapping (e) C mapping (f) Cu mapping (g) SEM-EDS spectra of image (b); Figure S8: (a) and
(b) SEM images (c) SEM-EDX elemental mapping of image (b) with respective Si, C, and Fe elements
overlap (d) Si mapping (e) C mapping (f) Fe mapping (g) SEM-EDS spectra of image (b); Figure S9:
(a) and (b) SEM images (c) SEM-EDX elemental mapping of image (b) with respective Si, C, and Mn
elements overlap (d) Si mapping (e) C mapping (f) Mn mapping (g) SEM-EDS spectra of image (b);
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Figure S10: (a) Potential vs. specific capacity plots (b) cyclability (c) rate capability results of LCO vs.
Li/L+ as a counter electrode at 0.5 C, in the voltage window of 3.0–4.2 V.
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