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Abstract: In this study, a high-performance bio-organic memristor with a crossbar array structure
using milk as a resistive switching layer (RSL) is proposed. To ensure compatibility with the com-
plementary metal oxide semiconductor process of milk RSL, a high-k Ta2O5 layer was deposited as
a capping layer; this layer enables high-density, integration-capable, photolithography processes.
The fabricated crossbar array memristors contain milk–Ta2O5 hybrid membranes, and they exhibit
bipolar resistance switching behavior and uniform resistance distribution across hundreds of repeated
test cycles. In terms of the artificial synaptic behavior and synaptic weight changes, milk–Ta2O5

hybrid crossbar array memristors have a stable analog RESET process, and the memristors are highly
responsive to presynaptic stimulation via paired-pulse facilitation excitatory post-synaptic current.
Moreover, spike-timing-dependent plasticity and potentiation and depression behaviors, which
closely emulate long-term plasticity and modulate synaptic weights, were evaluated. Finally, an
artificial neural network was designed and trained to recognize the pattern of the Modified National
Institute of Standards and Technology (MNIST) digits to evaluate the capability of the neuromor-
phic computing system. Consequently, a high recognition rate of over 88% was achieved. Thus,
the milk–Ta2O5 hybrid crossbar array memristor is a promising electronic platform for in-memory
computing systems.

Keywords: organic memristors; crossbar array structure; milk; synaptic weight modulation; neuro-
morphic computing system

1. Introduction

In the present information age, unstructured data are rapidly increasing with the
swift growth of social media platforms and artificial intelligence (AI) technologies [1–3].
However, processing large amounts of unstructured data is considerably challenging given
the present von Neumann architecture in which the processor and memory units are sepa-
rated [4–6]. Owing to this problem, a revolutionary structural device that can establish a
novel intelligent computing platform has been developed [7,8]. Two-terminal memristors
of the metal–insulator–metal (MIM) configuration have been extensively investigated in
relation to the development of such computing systems, primarily owing to their geometric
simplicity, nonvolatile memory, low operational power consumption, and the capability to
perform computations based on sequential analog resistive switching (RS) of insulating
layers [9–11]. For the key to the synaptic plasticity RS layer of memristors, a variety of
materials, including bio-inspired, organic, inorganic, and hybrid nanocomposites, have
been investigated [12–15]. In particular, memristors based on organic materials, such as
pectin, albumin, chitosan, or milk, offer a variety of advantages, including low cost, high
flexibility, biocompatibility, biodegradability, non-toxicity, and solution processing [16].
Accordingly, materials that offer such benefits should be compatible with state-of-the-art
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electronic devices such as skin-attached and wearable devices that require high flexibility
with good elastic properties [17,18]. Furthermore, bio-organic memristors must resolve
existing problems such as poor endurance and inconsistent long-term retention. Among
many organic materials, milk is structurally superior to many organic materials and con-
tains many molecules of a protein called casein, which is widely utilized as a component of
plastics [19–21].

In this study, we propose a high-performance crossbar array structure for bio-organic
memristors using milk as an RS layer (RSL). For fabricating the two-terminal MIM mem-
ristor, milk RSL, a solution-based biomaterial, was spin-coated on the bottom electrode
(BE). Additionally, the ability to generate fine patterns by photolithography is required
for the high integration of bio-organic-material-based electronic components. To facilitate
the photolithography process, a high-k Ta2O5 capping layer, which serves as a mechanical
and chemical protective layer, was deposited onto the milk layer to ensure compatibil-
ity with the complementary metal oxide semiconductor (CMOS) process. Subsequently,
bipolar resistive switching (BRS) operation and memristive switching characteristics of
the prepared crossbar array memristors were measured. Moreover, short- and long-term
plasticity, which is crucial for synaptic devices, such as paired-pulse facilitation (PPF),
spike-timing-dependent plasticity (STDP), and potentiation depression behaviors, were
examined. Finally, the recognition rate was investigated by learning the Modified National
Institute of Standards and Technology (MNIST) digits datasets to verify the applicability of
the neuromorphic system.

2. Experimental Method
2.1. Materials

The crossbar array memristors were composed of: p-type (100) Si wafers (resistivity
range of 1–10 Ω·cm, LG SILTRON Inc., Gumi, Korea), Ti pellets (purity > 99.999%, TFN,
Seoul, Korea), Pt pellets (purity > 99.95%, TFN, Seoul, Korea), and Seoul milk (Seoul, Korea).

2.2. Fabrication of Milk–Ta2O5 Hybrid Crossbar Array Memristors

To start, a standard radio corporation of America (RCA) cleaning method was em-
ployed to clean the 300 nm thick thermally oxidized p-type (100) Si wafers. To create the BE
of the memristors with the MIM configuration, a 10 nm thick Ti adhesive layer and a 100 nm
thick Pt layer were sequentially deposited onto the substrate using an E-beam deposition
system, which was followed by photolithography and lift-off processes. Subsequently, the
milk RS layer, which is the most crucial part of the device, was formed as follows. The milk
was filtered using polytetrafluoroethylene (PTFE) syringe filters with 1 µm pore size (What-
man, Maidstonem, UK) to eliminate particles. The filtered solution was spin-coated onto
the BE at 500 rpm for 10 s and 6000 rpm for 30 s, respectively. Thereafter, it was oven-baked
at a temperature of 120 ◦C for 30 min, which finally resulted in a solid milk layer thickness
of 120 nm. Following that step, a 20 nm thick high-k Ta2O5 film was deposited onto the
milk layer using a radio-frequency (RF) magnetron sputtering system at an operating
pressure of 4 mTorr, an RF power of 75 W, and an Ar flow rate of 20 sccm. The high-k Ta2O5
capping layer shields the milk layer from chemical and mechanical degradation, thereby
facilitating lithography processes in bio-organic-material-based devices. In fabricating the
upper electrode (TE) of the MIM memristors, a 150 nm thick Ti layer was deposited onto the
milk–Ta2O5 hybrid membranes using an E-beam evaporator, followed by a lift-off process.
Ultimately, the contact holes in the BE were formed via a reactive ion etching (RIE) process.

Figure 1a,b illustrate the schematics of the fabricated milk–Ta2O5 hybrid crossbar
array memristor and the optical microscope image of the memristor (150×magnification),
respectively.
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Figure 1. (a) Schematic of the fabricated milk–Ta2O5 hybrid crossbar array memristor. (b) Optical 
microscope image of the memristor (150× magnification). 
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The crossbar array memristors with the MIM structure were placed in a two-point 

probe station inside a dark box to shield from external light and electrical noise. An Ag-
ilent 4156B precision semiconductor parameter analyzer (Hewlett-Packard Co., Palo Alto, 
CA, USA) was used to examine the RS operation and memristive synaptic characteristics. 
Additionally, electrical pulse stimulation was applied to measure the synaptic modulation 
behavior using an Agilent 8110A pulse generator (Hewlett-Packard Co., USA). The optical 
microscope image of the prepared memristor was obtained using an SV-55 microscope 
system (SOMETECH, Seoul, Korea).  

3. Results and Discussions 
Before evaluating the electrical properties, it is necessary to identify the various prop-

erties of milk used as an insulating layer. Milk primarily consists of water, with 3.2% fat, 
3.2% protein, 4.5% lactose, and 0.7% minerals. The composition of the milk film used in 
this study was investigated by analyzing the corresponding Fourier transform infrared 
spectroscopy (FT-IR). Figure 2a,b illustrate the FT-IR spectra of the milk films after and 
before baking at a temperature of 120 °C, respectively. In the FT-IR spectrum of milk, 
within the wavelength range of 1900–900 cm−1, it was found that the heterogeneous region, 
including vibrational bands of fatty acids, proteins, and carbohydrates, was in the range 
of 1700–1000 cm−1. The peaks at 1640 cm−1 and 1547 cm−1 correspond to protein compo-
nents representing amide I (ν C = O, ν C–N) and amide II (δ N–H, ν C–N), respectively, 
whereas the peaks between 950 and 1200 cm−1 correspond to the carbohydrate (such as 
lactose) components (ν OH, ν C–O) [22–26]. Compared with the unbaked film, there was 
a noticeable increase in the peaks of amides I and II and carbohydrates in the film baked 
at 120 °C. In particular, the heat treatment altered the chain spacing and structural organ-
ization, and the 1110 cm−1, representing cellulose, rose rapidly [27]. It is well known that 
cellulose is a complex carbohydrate composed of a chain of thousands of glucose mole-
cules. In particular, approximately 80% of the protein in milk is casein, which contains 
abundant mobile protons along with carbohydrates [28–31]. Figure 2c presents a simpli-
fied filament formation and rupture mechanism. The competition between the two types 
of conductive filaments, made of mobile ions and oxygen vacancies (Vox), respectively, 
determined the RS behaviors in the fabricated crossbar array memristors. More specifi-
cally, when a positive bias was applied to the TE, the mobile ions in the milk layer mi-
grated to the Ta2O5 layer. In contrast, the Vox in the Ta2O5 layer migrated to the milk layer. 
This is mainly because the components that do not form conductive filaments (CF) in each 
layer are diffused by the electric field owing to the relatively short distance between TE 
and BE.  

Figure 1. (a) Schematic of the fabricated milk–Ta2O5 hybrid crossbar array memristor. (b) Optical
microscope image of the memristor (150×magnification).

2.3. Characterization of Milk–Ta2O5 Hybrid Crossbar Array Memristors

The crossbar array memristors with the MIM structure were placed in a two-point
probe station inside a dark box to shield from external light and electrical noise. An Agilent
4156B precision semiconductor parameter analyzer (Hewlett-Packard Co., Palo Alto, CA,
USA) was used to examine the RS operation and memristive synaptic characteristics.
Additionally, electrical pulse stimulation was applied to measure the synaptic modulation
behavior using an Agilent 8110A pulse generator (Hewlett-Packard Co., USA). The optical
microscope image of the prepared memristor was obtained using an SV-55 microscope
system (SOMETECH, Seoul, Korea).

3. Results and Discussions

Before evaluating the electrical properties, it is necessary to identify the various
properties of milk used as an insulating layer. Milk primarily consists of water, with
3.2% fat, 3.2% protein, 4.5% lactose, and 0.7% minerals. The composition of the milk film
used in this study was investigated by analyzing the corresponding Fourier transform
infrared spectroscopy (FT-IR). Figure 2a,b illustrate the FT-IR spectra of the milk films
after and before baking at a temperature of 120 ◦C, respectively. In the FT-IR spectrum of
milk, within the wavelength range of 1900–900 cm−1, it was found that the heterogeneous
region, including vibrational bands of fatty acids, proteins, and carbohydrates, was in
the range of 1700–1000 cm−1. The peaks at 1640 cm−1 and 1547 cm−1 correspond to
protein components representing amide I (ν C = O, ν C–N) and amide II (δ N–H, ν C–N),
respectively, whereas the peaks between 950 and 1200 cm−1 correspond to the carbohydrate
(such as lactose) components (ν OH, ν C–O) [22–26]. Compared with the unbaked film,
there was a noticeable increase in the peaks of amides I and II and carbohydrates in the film
baked at 120 ◦C. In particular, the heat treatment altered the chain spacing and structural
organization, and the 1110 cm−1, representing cellulose, rose rapidly [27]. It is well known
that cellulose is a complex carbohydrate composed of a chain of thousands of glucose
molecules. In particular, approximately 80% of the protein in milk is casein, which contains
abundant mobile protons along with carbohydrates [28–31]. Figure 2c presents a simplified
filament formation and rupture mechanism. The competition between the two types
of conductive filaments, made of mobile ions and oxygen vacancies (Vox), respectively,
determined the RS behaviors in the fabricated crossbar array memristors. More specifically,
when a positive bias was applied to the TE, the mobile ions in the milk layer migrated to
the Ta2O5 layer. In contrast, the Vox in the Ta2O5 layer migrated to the milk layer. This is
mainly because the components that do not form conductive filaments (CF) in each layer
are diffused by the electric field owing to the relatively short distance between TE and BE.
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Figure 2. FT-IR spectra of the milk films (a) before and (b) after baking at 120 ◦C. (c) Simplified
filament formation and rupture mechanism.

Figure 3a depicts the endurance characteristics (for 300 DC cycles) of milk–Ta2O5
hybrid crossbar array memristors measured with a DC bias applied to TE while the BE
is grounded. The figure displays that the milk–Ta2O5 hybrid crossbar array memristors
provided stable BRS operation. When the BE was grounded, the current flowing through
the RSL was measured by applying the consecutive DC voltage loop of 0 V→ 2 V→ 0
V→ −1.8 V→ 0 V (in 0.05 V step) to TE. When a positive voltage is applied to the TE,
as indicated by arrow 1, via the SET process, the current flowing through RSL rose with
the voltage. The positive electric field led the oxygen ions and mobile ions in the RSL
to form the CFs. Then, the devices transitioned from the high-resistance state (HRS) to
the low-resistance state (LRS) due to the CFs. Conversely, when a negative voltage was
applied to the TE as indicated by arrow 4, via the RESET process, oxygen ions and mobile
ions in the RSL diffused back into the CFs. The resistance state was changed from the
LRS to the HRS as a result of the CFs being ruptured [32–34]. The high-resistance state
(HRS) and the low-resistance state (LRS) were determined at a read voltage (Vread) of
0.1 V, which was obtained from the repeated BRS I–V curves, as presented in Figure 3b.
The average resistances (Ravg) of HRS and LRS were 1.58 × 105 Ω and 2.31 × 103 Ω,
respectively, and their corresponding standard deviations (SD) were 9.73 × 103 Ω and
1.13 × 102 Ω, respectively. Thus, the RS memory window, defined as minimum HRS
(HRSmin)/maximum LRS (LRSmax), was 48.83, which was almost constant for 300 DC
cycles. Figure 3c shows the cumulative distribution of the set and reset operating voltages
(Vset and Vreset) across 300 DC cycles. The voltage at the point where the conductance of
the BRS I–V curve rapidly shifts from HRS to LRS is Vset, whereas the voltage determined
at the reset current (Ireset) at which the conductance of the BRS I–V curve began to decline
during the reset process is Vreset [35]. Herein, the set and reset voltages of the milk–Ta2O5
hybrid crossbar array memristor exhibited uniform cumulative distributions. The inset
indicates the BRS operation power for the set process (Pset) and reset process (Preset), where
Pset = Vset × Icc and Preset = |Vreset × Ireset|. The highest current in the reset process
was Ireset, whereas the compliance current (Icc) was a limiting current that blocks a hard
breakdown during the set process. Thus, the average values of Vset, Vreset, Pset, and Preset
were 1.56 V, –1.24 V, 3.42 mW, and 2.92 mW, respectively. Figure 3d displays the nonvolatile
retention performance of LRS and HRS states at a read voltage of 0.1 V, which indicates
steady nonvolatile retention properties in both resistance states.

The modulation of multi-step conduction states is crucial for synaptic devices to
achieve high-density memory storage. Figure 4 depicts the analog RESET process for
a milk-Ta2O5 hybrid crossbar array memristor, showing how the RESET−stop voltage
(Vreset-stop) was used to regulate progressive RESET to produce multilevel memory states.
The analog RESET characteristics were measured from −3.6 V to −5.3 V by consecutively
reducing the maximum negative RESET voltage in steps of −0.1 V after the performance of
one positive SET operation. The storage capacity corresponding to the memory window of
the memristor device depends on the change in the size of Ion/Ioff. The result derived from
Figure 4 presents a method for significantly increasing the storage capacity density of a
memristor device. Multilevel storage is typically accomplished by selecting the appropriate
programming voltage (Vreset-stop) or by increasing the programming current (Icc). However,



Nanomaterials 2022, 12, 2978 5 of 12

as the conductive path is firmly established and resists breakage, a larger Icc may result in
a short circuit. This implies that the functional Vreset-stop indicates a better technique for
extending Ion/Ioff, which further leads to multilevel storage. As each of these parameters
corresponds to the resistance data stored in the memory, it is challenging to change them in
various HRSs.
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milk-Ta2O5 hybrid crossbar array memristors at a read voltage of 0.1 V.
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In biological nervous systems, neurons communicate with each other through synapses
in response to electrical or chemical inputs. The synapses that are critical in signal trans-
duction include the nano-clefts between pre- and post-synaptic neurons [36]. Pre-synaptic
neuronal input is conveyed to the post-synaptic neuron by the diffusion of intra-synaptic
neurotransmitters, the generation of a transient current, or the excitatory post-synaptic cur-
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rent (EPSC). Figure 5 presents the single-spike EPSC curves of milk-Ta2O5 hybrid crossbar
array memristors with pulse durations of (a) 100 ms and (b) 1000 ms for pulse amplitudes
of 1–5 V. Figure 5c illustrates the maximum EPSC with different spike amplitudes and dura-
tions. It is evident that smaller spike amplitudes and shorter durations result in lower EPSC
values, whereas larger spike amplitudes and longer durations result in higher EPSC values.
This is because additional mobile ions migrate between the electrode and the interface of
the insulating layer, which results in a larger concentration gradient. Consequently, as the
spike stimulus becomes stronger and longer, the ability to modulate synaptic weights for
simulating human brain functions increases.
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In a neurological system, PPF is crucial for processing biological temporal information,
such as auditory or visual input [37]. PPF is an essential characteristic of short-term synaptic
plasticity, a brain facilitation phenomenon where the first post-synaptic spike is amplified
by the second pre-synaptic spike after a short time interval (∆t) [38]. The second synaptic
spike following the first spike induces a higher EPSC for PPF as a function of ∆t between
two consecutive pre-synaptic spikes. The mobile ions transported by the first pre-synaptic
spike diffuse between the electrolyte and the interface, where a short ∆t causes the mobile
ions to continuously accumulate at the interface owing to the insufficient time to return to
their original position [39].

Figure 6a displays the EPSC induced by the paired pre-synaptic pulses (amplitude: 1 V,
duration: 100 ms, ∆t = 50 ms) for milk–Ta2O5 hybrid crossbar array memristors. The second
EPSC peak (A2) is higher than the first EPSC peak (A1) (A2 > A1), and partially relaxed
mobile ions triggered by paired presynaptic pulses as a function of ∆t were responsible for
the obtained PPF characteristic. Figure 6b presents a plot of the PPF index as a function of ∆t
for two subsequent pre-synaptic pulses with amplitudes ranging from 1 to 3 V, determined
by the ratio of the maximum EPSC peak amplitude (A2/A1) and ∆t. The PPF index varies
with the length of ∆t: specifically, it increases when ∆t is short and decreases when ∆t is
long, thereby emulating a biological synaptic response [40]. The obtained PPF index data
were fitted with the following double exponential decay relationship [38]:

PPF index = A + C1exp
(
−∆t

τ1

)
+ C2exp

(
−∆t

τ2

)
, (1)

where A is a constant, C1 and C2 represent the initial facilitation magnitudes, and τ1 and
τ2 symbolize typical relaxation times. Consequently, the fitting curves of the PPF index
by the double exponential decay function (solid line) were verified to be consistent with
the experimental data (closed circles). Consequently, the fitting curves (solid lines) of the
PPF index given by Equation (1) were verified to be consistent with the experimental data
(closed circles).
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Figure 6. (a) EPSC induced by paired pre-synaptic pulses (amplitude: 1 V, duration: 100 ms,
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from 1–3 V.

In contrast to short-term plasticity, long-term plasticity demonstrates long-term changes
in synaptic weights and creates a template for memory storage. Rapid and repetitive
stimulation strengthens the synaptic weight, and this sustained ascent is called long-term
potentiation (LTP). By contrast, long-term depression (LTD) is a term used to describe a loss
in synaptic weight over an extended period [41,42]. The LTP and LTD spike timings for the
proposed device were identified via STDP. Pre-synaptic and post-synaptic neural learning,
an important learning and memory mechanism in the brain, modulates the strength of
connections between neurons by temporally correlating neural learning. STDP is an
improvement on Habbian learning rules considering the temporal sequence of activities
between pre- and post-synaptic neurons [43–45]. Figure 7 illustrates the properties of STDP
for excitatory response modes. The capacity of a natural or artificial synapse to modify
its strength according to the precise timing of a single pre-synaptic spike (I1) and a post-
synaptic spike (I2) is referred to as STDP. The presynaptic spike arrival time (tpre) and the
post-synaptic spike production time (tpost) affect the synaptic weights relative to each other
(∆T = tpost − tpre). If the pre-synaptic spike precedes the post-synaptic spike (∆T > 0), the
strength of the synaptic connection increases (known as potentiation). Moreover, synaptic
weights change more dramatically with shorter spike timing differences. By contrast,
synaptic weights decrease when the post-spike occurs before the pre-spike (∆T < 0), which
indicates that the synaptic connection is inhibited (known as depression). Furthermore, as
|∆T| increases, the change in synaptic weight diminishes. When STDP was inverted, the
milk–Ta2O5 hybrid crossbar array memristor switched to an inhibitory response mode [46].
In Figure 7, ∆W = (I2 − I1) produced positive values for ∆T > 0 and negative values for
∆T < 0, thus defining the relative change in the synaptic weight. The behavior of STDP is
obtained by the following equation [43].

∆W =

{
A+exp(−∆T/τ+), ∆T ≥ 0
−A−exp(∆T/τ−), ∆T < 0

. (2)

The range of ∆T is determined by τ+ and τ−, and the symbols denote the range
in which synaptic connections are potentiated and depressed, respectively. The maxi-
mal synaptic alteration that can occur when ∆t is near to zero is determined by A+ and
A− [43,44,47–49]. For biological synapses, the exact pre- and post-spike timing windows
that regulate the direction and magnitude of synaptic weight alterations were approxi-
mately 100 ms [48,49]. Therefore, the measured data revealed that the biological STDP
characteristics can be mimicked in the proposed crossbar array memristors.
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Figure 7. STDP properties for excitatory response modes. Illustrations of the spike signals are shown
in the inset.

The increase and decrease in the synaptic weight features were investigated to identify
the progressive conductance modulation in response to electrical pulse stimulations, which
is crucial for memristive switching. Figure 8 illustrates the conductance modulation of
potentiation and depression characteristics by applying pre-synaptic spikes. The conduc-
tance change characteristics for a period of 30 pulses of potentiation and 30 pulses of
depression are displayed in Figure 8a. Insets represent the schematics for a single pre-spike
of potentiation and depression read behavior. One cycle comprises 30 potentiation pulses
(1.5 V/200 ms) and 30 depression pulses (−1.2 V/200 ms). Figure 8b shows five cycles of
successive conductance modulation operation by applying 300 pulses. Over the five-cycle
test period, the conductance modulation behavior with a dynamic range of approximately
150 nS was effectively modulated and remained constant. Consequently, the LTP and
LTD properties of the milk-Ta2O5 hybrid crossbar array memristors induced by successive
pulses were identified, and their suitability for artificial synaptic devices was demonstrated.
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of depression. (b) Five cycles of successive conductance modulation operation by applying 300 pulses.

In biological systems, data processing, such as cognitive function pattern recognition
and information transmission, is critical. A three-layer perceptron network model that sim-
ulates the learning of MNIST handwritten digits is proposed to validate that the proposed
crossbar array memristors can perform neuromorphic computations. Figure 9a illustrates a
designed artificial neural network (ANN) comprising an input layer (784 neurons), hidden
layer (200 neurons), and output layer (10 neurons). The 28 × 28 pixels of the binarized
MNIST data and the digits 0–9 were represented by 784 input neurons in the input layer and



Nanomaterials 2022, 12, 2978 9 of 12

10 output neurons in the output layer, respectively. Each neuron was connected to another
via a synapse, and the synaptic weights representing the connection strength correlated
with normalized potentiation and depression conductance of milk–Ta2O5 hybrid crossbar
array memristors. The normalized potentiation and depression characteristics of memris-
tors were used as the basis for MNIST pattern recognition simulations. The normalized
conductance was obtained by dividing each conductance by the maximum conductance
(G/Gmax), as shown in Figure 9b. The dynamic range (DR), asymmetry ratio (AR), and
linearity of the normalized potentiation and depression curves play vital roles in enhancing
the accuracy of learning and recognition simulations. The value of DR (Gmax/Gmin) indi-
cates that the range of conductance modulation was 3.47. The recognition rate may change
depending on the magnitude of the DR. Although high DRs do not guarantee superior
performance, low DRs typically result in subpar performance [50]. The AR is an indicator
of conductance modulation asymmetry. The following equation defines AR, where Gp(n)
and Gd(n) represent the conductance values following the nth potentiation or depression
pulse, respectively [51]:

AR =
max

∣∣Gp(n)− Gd(n)
∣∣

Gp(30) − Gd(30)
f or n = 1 to 30 (3)
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to each input neuron. (b) Nonlinearity analysis for normalized conductance of potentiation and
depression (G/Gmax). Recognition rates according to (c) the number of hidden nodes at epoch 1 and
(d) the number of epochs with 200 hidden nodes.

For high recognition accuracy, the AR in the ideal symmetric case is preferably zero.
The AR value of the milk–Ta2O5 hybrid crossbar array memristor was 0.29, which is quite
close to the ideal value. Moreover, the following equation was used to derive nonlinearity
factors to verify the linearity of the conductance [52].

G =


((

Gα
max − Gα

min
)
× w + Gα

min
)1/α, i f α 6= 0

Gmin ×
(

Gmax
Gmin

)w
, i f α = 0

, (4)
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where Gmax and Gmin represent the maximum and minimum conductance values, respec-
tively. The non-linearity component controlling either the potentiation (αp) or depression
(αd) is denoted by the symbol α. The internal variable w has a value between 0 and 1.
Nonlinearity coefficient values (αp = αd = 1) are represented by changes in fully linear and
symmetric conductivity in the ideal device [52,53]. The fitted potentiation and depression
curves yielded nonlinearity factors of 1.33 and 0.34, respectively. Subsequently, the ANN
was simulated with a dataset containing approximately 60,000 MNIST digits to calculate the
recognition rate by adjusting the number of hidden nodes from 10 to 300. Figure 9c depicts
the recognition rate in relation to the number of hidden nodes at epoch 1. It is evident that
as the number of hidden nodes increased, the recognition rate increased until it reached
a suitable level of over 86% (from 51.7%), from the starting rate of just 10 hidden nodes.
Figure 9d shows the recognition rate from the first to the fourth epoch with the number of
hidden nodes fixed at 200. Although the number of epochs increased, the recognition rate
remained almost constant, with a high recognition rate of approximately 88 %. Thus, these
outcomes demonstrate the efficiency of the proposed ANN in data processing activities,
such as pattern recognition.

4. Conclusions

We fabricated two-terminal crossbar array memristor devices using commercial milk as
an RSL. A high-k Ta2O5 capping layer on top of the milk layer facilitated the photolithogra-
phy process, thereby enabling high-density integration of the device. The proposed crossbar
array memristors demonstrated steady BRS characteristics, outstanding endurance, and
resistance distribution for DC 300 cycle repetition. Moreover, they exhibited stable retention
characteristics up to 104 s. The fabricated milk–Ta2O5 hybrid crossbar array memristors
featured a stable analog RESET process with memristive switching characteristics. The
analog RESET process was measured by increasing the Vreset-stop to adjust the density
of storage capacity. Additionally, the emulation of critical biological synaptic properties,
such as short- and long-term plasticity, were investigated. Conductivity modulation using
300 repeated pulses (dynamic range of ~150 nS) was reliably measured by potentiation and
depression. Finally, a superb recognition rate of over 88% was attained as a result of MNIST
handwritten digital learning simulation by the three-layer perceptron network model. In
summary, milk–Ta2O5 crossbar array memristors are expected to provide potential applica-
tions for biocompatible and environmentally friendly neuromorphic systems as a viable
device for implementing artificial synapses.
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