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Abstract: Electronic devices based on two-dimensional (2D) MoS2 show great promise as future
building blocks in electronic circuits due to their outstanding electrical, optical, and mechanical
properties. Despite the high importance of doping of these 2D materials for designing field-effect
transistors (FETs) and logic circuits, a simple and controllable doping methodology still needs to be
developed in order to tailor their device properties. Here, we found a simple and effective chemical
doping strategy for MoS2 monolayers using CuCl2 solution. The CuCl2 solution was simply spin-
coated on MoS2 with different concentrations under ambient conditions for effectively p-doping the
MoS2 monolayers. This was systematically analyzed using various spectroscopic measurements using
Raman, photoluminescence, and X-ray photoelectron and electrical measurements by observing
the change in transfer and output characteristics of MoS2 FETs before and after CuCl2 doping,
showing effective p-type doping behaviors as observed through the shift of threshold voltages
(Vth) and reducing the ON and OFF current level. Our results open the possibility of providing
effective and simple doping strategies for 2D materials and other nanomaterials without causing any
detrimental damage.
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1. Introduction

Monolayer transition metal dichalcogenides (TMDCs) have been considered to be the
next-generation semiconducting channel materials because of their incredible electronic
and mechanical properties that make them suitable for flexible, wearable, and transparent
devices [1–5]. In addition, their ideally dangling bond-free surface and atomic thickness
show promise for van der Waals integration on various substrates/materials and in re-
ducing short channel effect, thus becoming candidates for the semiconducting channel
materials in nano-scaled electronics and optoelectronics devices [2,6–8]. Especially, the
field-effect transistors (FETs) composed of TMDC monolayers show high carrier mobility,
large On/Off ratio (>108), and low power consumption, which have inspired experimental
research in advancing FET performance of these devices [5,9–14].

To implement the TMDC monolayers for practical electronic device applications, the
device properties need to be tailored to show the desired output characteristics of electronic
devices. One way to achieve the desired device characteristics is through doping [3,15–19].
The doping of 2D materials is recognized to be the key to precisely controlling their
fundamental properties, based on the history of the contemporary Si or III–V-based semi-
conductors. Ion implantation is one of the possible doping techniques. However, this uses
high energy and can be detrimental to atomically thin 2D crystals. On the other hand, chem-
ical doping is potentially more advantageous compared to the ion implantation method,
as the chemical doping is generally based on a charge transfer by chemical potential of
adsorbed organic molecules and leads to less damage in 2D crystal structures [18,20–23].
The chemical doping of 2D TMDCs have been mostly relied on employing self-assemble
monolayer (SAM) techniques [3,9], substitutional doping [17,24], and passivation of sulfur
vacancy defects [5,25,26]. However, using such techniques, it is difficult to tune the amount
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of doping, and they generally require a controlled doping environment. Therefore, it is
required to find a convenient method to modulate electrical/optical properties, as well as
the electronic device properties.

Herein, we report a simple and controllable doping method for 2D MoS2 using copper
(II) chloride (CuCl2) performed at ambient conditions. In this process, the CuCl2 is dissolved
in ethanol, and the solution is simply spin-coated onto 2D MoS2 to effectively modulate
charge carrier densities without any damage to MoS2 crystals and their devices. The change
in doping was analytically confirmed through Raman, photoluminescence (PL), and X-ray
photoelectron spectroscopy (XPS), showing the p-type doping effect on 2D MoS2. We
further confirmed the feasibility of this doping process by simply coating the different
concentrations of CuCl2 solution onto the back-gated MoS2 transistors, showing effective
p-type doping behaviors as observed through the shift of threshold voltages (Vth) and
reducing the ON and OFF current levels. These findings pave an important pathway toward
modulating 2D materials and devices and designing logic devices based on 2D materials.

2. Materials and Methods

Synthesis of monolayer MoS2: Monolayer MoS2 was synthesized on a SiO2 (300 nm)/Si
substrate using the previously reported thermal chemical vapor deposition (CVD)
method [27,28]. Here, 0.05 mg of MoO3 precursors were prepared by dissolving the MoO3
powders into ammonium hydroxide (NH4OH) solution and loading the MoO3 onto alu-
mina boats using a micropipette. The SiO2/Si substrate was placed above the alumina boat
with the substrate placed faced down. The growth was carried in a 2-inch quartz tube, an
alumina boat containing 100 mg of sulfur powder was placed upstream, while the alumina
boat containing 0.05 mg of MoO3, and substrate was placed downstream in the middle of
the CVD furnace. The growth was carried out at 750 ◦C for 10 min, and the furnace was
naturally cooled down to room temperature. MoS2 crystal sizes around 30–50 µm were
obtained from the CVD synthesis.

Fabrication and measurement of MoS2 transistors: The synthesized MoS2 monolayers
were transferred onto HfO2/Si substrate using polystyrene (PS) film as the transferring
medium. The PS film (MW~192,000) was spin-coated onto MoS2/SiO2/Si substrate and
the film was detached during the transfer process while the film was floated on DI water.
The detached PS film with MoS2 was dried in air for 2 h and transferred onto HfO2/Si
substrate for device fabrication. The source and drain electrode pads were patterned
using photolithography, and 5 nm Ti/40 nm Au electrodes were deposited using a thermal
evaporator. The devices were annealed at 150 ◦C for 1 h under vacuum conditions. The
electrical properties were measured using semiconductor parameter analyzer (Keithley
4200A-SCS) and MS Tech probe station.

Characterization of MoS2: The Raman and PL measurements were carried out using
Alpha 300 R confocal Raman spectroscopy with 532 nm laser. AFM measurement was
carried out using XE7 (Park Systems, Suwon, Korea). XPS measurement was performed
using NEXSA (Thermofisher Scientific, Waltham, MA, USA).

3. Results

MoS2 monolayers were synthesized on a SiO2 (300 nm)/Si substrate using a chemical
vapor deposition (CVD). Figure 1a shows the CVD-grown monolayered MoS2 profiled by
atomic force microscopy (AFM) height measurement. The morphology and thickness of the
as-grown MoS2 show its thickness around 0.7 nm, confirming the single-layered thickness.
For doping of MoS2, CuCl2 was employed in this study as the metal chlorides offer a
wide range of doping molecules, have been frequently employed to modulate electrical
properties of graphene, and are known to be strong electron acceptors [29–31]. The metal
chloride generally acts as a strong electron acceptor due to the high electronegativity of
chlorine compared to molybdenum or sulfur [31]. It should be noted that CuCl2 has never
been used for doping 2D MoS2. Figure 1b illustrates our simple CuCl2 doping process.
CuCl2 was firstly dissolved in ethanol at different molar concentrations (0.5 M and 1 M).
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The as-grown MoS2 layer on SiO2 was then placed on a spin coater, and CuCl2 solution was
dropped onto the as-grown MoS2, followed by the spin coating at 3000 RPM. The doped
MoS2 samples were then dried on a hot plate at a mild temperature below 90 ◦C. All of the
doping processes were performed in ambient conditions.
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In order to understand the effect of CuCl2 doping on MoS2 monolayers, we first
performed Raman and PL analysis of the pristine MoS2 and CuCl2-doped MoS2 as shown
in Figure 2a,b. Figure 2a shows the Raman spectrum of pristine MoS2 (dotted grey line),
0.5 M CuCl2-doped MoS2 (purple line), and 1 M CuCl2-doped MoS2 (magenta). The Raman
spectrum of pristine MoS2 shows two characteristic peaks located at around 381 cm−1

and 400 cm−1, which correspond to the in-plane E1
2g and out-of-plane A1g vibrational

modes, respectively. As the CuCl2 is doped onto MoS2, the Raman peaks of MoS2 were
monotonically blue shifted with increasing the CuCl2 doping concentrations. Such a trend
of shifting in Raman peaks is a clear signature that carrier concentrations were changed
without damaging the crystal structure, and can be understood as a CuCl2-induced p-type
doping effect, which is in agreement with the previous studies [9,32]. Figure 2b shows
PL spectra measured for the pristine MoS2 and CuCl2-doped MoS2. The pristine MoS2
shows direct bandgap PL emission at around 1.82 eV. As the MoS2 monolayers were doped
with CuCl2, the PL intensity was largely increased. It has been widely accepted that the
PL intensity of 2D MoS2 is strongly affected by carrier concentrations. The increased PL
intensity of MoS2 monolayer can be due to the reduced trion formation and strongly in-
creased exciton radiative recombination rates through decreasing the carrier concentrations
of CuCl2-doped MoS2 monolayers [33]. Therefore, CuCl2 doping of MoS2 monolayer de-
creases carrier concentrations due to the strong electron accepting nature of CuCl2, which
was observed through Raman and PL measurements.

To further confirm the effect of CuCl2 doping and the chemical state of CuCl2 molecules,
we performed X-ray photoelectron (XPS) analysis as shown in Figure 3a–d. XPS analysis
was performed for both pristine MoS2 and CuCl2-doped MoS2, and we compared any
change in the binding energies. Figure 3a,b show the main binding energy of MoS2, Mo 3d
and S 2p peaks, and we compared the change of binding energies before and after CuCl2
doping. It is clearly observable that the binding energies of both Mo 3d and S 2p peaks
shifted toward lower binding energy by about 0.3 eV. The shift to a lower binding energy
in semiconducting MoS2 can be attributed to the shift of Fermi-level energy toward the
valence band, which results in the change of binding energies in MoS2, and the results agree
with the Raman and PL analysis that show the p-type doping effect of CuCl2 on MoS2.
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Figure 3. X-ray photoelectron spectroscopy (XPS) measurements before and after CuCl2 doping. XPS
spectrum of (a) Mo 3d and (b) S 2p before and after CuCl2 doping. The shift of the binding energies
to lower energy indicates lowered Fermi level in MoS2. XPS spectrum of (c) Cu 2p and (d) Cl 2p was
found in CuCl2 doped MoS2 film, demonstrating the CuCl2 is doped onto MoS2.

XPS analysis on CuCl2-doped MoS2 also showed the chemical state of CuCl2 as shown
in Figure 3c,d. Figure 3c and d show the high-resolution XPS peaks of Cu 2p and Cl 2p
peaks, respectively, which were recorded from the CuCl2-doped MoS2 sample. As shown
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in Figure 3c, it can be seen that the binding energies of Cu 2p are composed of the main
characteristic doublet peaks centered at around 953 eV and 933.3 eV, which correspond to
Cu 2p1/2 and Cu 2p3/2, respectively, and other satellite peaks [34]. The difference between
the two peaks is around 19 eV, which is in good agreement with the value reported in the
literature [35]. Cl 2p peaks can be deconvoluted into two main doublets, which are found
at 200.6 eV and 198.9 eV and correspond to Cl 2p1/2 and Cl 2p3/2, respectively. The peak
difference of the two peaks is around 1.7 eV, which is in good agreement with the value
reported in the literature [36]. The XPS results and the presence of Cu 2p and Cl 2p binding
energies confirm the presence of CuCl2 and the effective p-type doping on MoS2.

To understand the effect of CuCl2 doping on the electrical properties of FETs based
on a 2D MoS2 channel, the electrical properties were measured before and after doping
the MoS2 FETs with CuCl2. The FET devices were fabricated on a HfO2/Si substrate using
photolithography and metal deposition using a thermal evaporator. Figure 4a shows the
schematic description of the doping process of MoS2 FETs. The as-fabricated MoS2 FETs
were spin-coated with CuCl2 solution. Figure 4b shows the representative transfer curve,
drain-source current, IDS, as a function of the gate voltage, VG, which is plotted on a
logarithmic scale at the applied drain voltage of VDS = 0.1 V. The inset of Figure 4b shows
the transfer curve in a linear scale. The as-fabricated MoS2 FET showed n-type transfer
characteristics and a large ON/OFF ratio above 107. From the transfer characteristics, we
have estimated a field effect mobility using µFE = L

WCoxVds

dIds
dVgs

, where L is channel length,

W is channel width, and Cox is the gate capacitance of 309.9 nF cm−2. The field effect
mobility was measured to be 12.3 cm2/Vs, which is in good agreement with reported
values for a back-gated transistor using CVD-grown MoS2 monolayers. It can be observed
from Figure 4b that the CuCl2-doped MoS2 FETs shows a gradual decrease in both ON and
OFF current as the CuCl2 is doped onto the MoS2 FETs.

Nanomaterials 2022, 12, 2893 6 of 8 
 

 

transfer curve in a linear scale. The as-fabricated MoS2 FET showed n-type transfer char-
acteristics and a large ON/OFF ratio above 107. From the transfer characteristics, we have 
estimated a field effect mobility using 𝜇ிா = ௅ௐ஼೚ೣ௏೏ೞ ௗூ೏ೞௗ௏೒ೞ, where L is channel length, W is 

channel width, and Cox is the gate capacitance of 309.9 nF cm−2. The field effect mobility 
was measured to be 12.3 cm2/Vs, which is in good agreement with reported values for a 
back-gated transistor using CVD-grown MoS2 monolayers. It can be observed from Figure 
4b that the CuCl2-doped MoS2 FETs shows a gradual decrease in both ON and OFF current 
as the CuCl2 is doped onto the MoS2 FETs. 

 
Figure 4. (a) Schematic description of CuCl2 doping on MoS2 FETs. (b) The transfer characteristics, 
(c) output characteristics, (d) threshold voltages of MoS2 FETs before and after CuCl2 doping. 

Such behavior was also found when an output curve, the drain-source current versus 
drain-source voltage on a linear scale, was measured as shown in Figure 4c (inset image 
shows the output curve of 1 M CuCl2 doped MoS2 FET). The output curve of as-fabricated 
MoS2 FET shows a high ON current and a linearly dependent drain current showing good 
Ohmic contact between MoS2 and electrodes. As the CuCl2 is doped onto MoS2 FETs, the 
channel conductance is largely decreased, showing a p-type doping effect of CuCl2 on 
MoS2, in accordance with transfer curve measured in Figure 4b. 

Following the reduced ON current and channel conductance, it was also shown that 
as CuCl2 was doped onto MoS2 FETs, threshold voltage (Vth) was shifted towards positive 
voltages from -2.85 V to -1.45 V and -0.9 V as 0.5 M and 1 M CuCl2 was doped onto MoS2 
FETs as shown in Figure 4d. Using the changes in the Vth, the change in carrier concentra-
tions upon CuCl2 doping can be calculated using the parallel-plate capacitor model [3,9], 𝑁ௗ௢௣௜௡௚ =  ஼|∆௏௧௛|௘ , where C is the gate capacitance, ∆𝑉௧௛ is the change in the VTh after the 
CuCl2 is doped onto the device compared to the as-fabricated MoS2 FET, and 𝑒 is the el-
ementary charge. The amount of doping concentration was estimated to be 2.72 × 10ଵଶ 
cm−2 and 3.77 × 10ଵଶ cm−2 when 0.5 M CuCl2 and 1 M CuCl2 were doped onto MoS2 FETs, 

Figure 4. (a) Schematic description of CuCl2 doping on MoS2 FETs. (b) The transfer characteristics,
(c) output characteristics, (d) threshold voltages of MoS2 FETs before and after CuCl2 doping.
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Such behavior was also found when an output curve, the drain-source current versus
drain-source voltage on a linear scale, was measured as shown in Figure 4c (inset image
shows the output curve of 1 M CuCl2 doped MoS2 FET). The output curve of as-fabricated
MoS2 FET shows a high ON current and a linearly dependent drain current showing good
Ohmic contact between MoS2 and electrodes. As the CuCl2 is doped onto MoS2 FETs, the
channel conductance is largely decreased, showing a p-type doping effect of CuCl2 on
MoS2, in accordance with transfer curve measured in Figure 4b.

Following the reduced ON current and channel conductance, it was also shown that
as CuCl2 was doped onto MoS2 FETs, threshold voltage (Vth) was shifted towards positive
voltages from -2.85 V to -1.45 V and -0.9 V as 0.5 M and 1 M CuCl2 was doped onto
MoS2 FETs as shown in Figure 4d. Using the changes in the Vth, the change in carrier
concentrations upon CuCl2 doping can be calculated using the parallel-plate capacitor
model [3,9], Ndoping = C|∆Vth|

e , where C is the gate capacitance, ∆Vth is the change in the
VTh after the CuCl2 is doped onto the device compared to the as-fabricated MoS2 FET,
and e is the elementary charge. The amount of doping concentration was estimated to be
2.72 × 1012 cm−2 and 3.77 × 1012 cm−2 when 0.5 M CuCl2 and 1 M CuCl2 were doped
onto MoS2 FETs, respectively. The electrical analysis of MoS2 FETs before and after CuCl2
doping show that CuCl2 is an effective p-type dopant for MoS2 that can be easily employed
using simple spin coating of different concentrations of CuCl2 solution.

4. Conclusions

To conclude, we have demonstrated simple and effective p-type doping on the 2D
MoS2 FETs by simply spin coating the device with CuCl2 solution at ambient conditions.
The effect of CuCl2 doping was confirmed analytically through Raman, PL, and XPS
measurements. The p-type doping on the MoS2 channel showed largely decreased channel
conductance and the shift in threshold voltages towards positive gate voltages in back-gated
MoS2 transistors. It was also shown that the amount of doping can be simply controlled
by the CuCl2 concentrations in a solution containing ethanol. The results and findings
present an important pathway towards designing a CMOS circuit based on 2D FETs and
other nanomaterials.
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