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Abstract: We have fabricated α-Sn/Ge quantum well heterostructures by sandwiching nano-films of
α-Sn between Ge nanolayers. The samples were grown via e-beam deposition and characterized by
Raman spectroscopy, atomic force microscopy, temperature dependence of electrical resistivity and
THz time-resolved spectroscopy. We have established the presence ofα-Sn phase in the polycrystalline
layers together with a high electron mobility µ = 2500 ± 100 cm2 V−1 s−1. Here, the temperature
behavior of the resistivity in a magnetic field is distinct from the semiconducting films and three-
dimensional Dirac semimetals, which is consistent with the presence of linear two-dimensional
electronic dispersion arising from the mutually inverted band structure at the α-Sn/Ge interface. As
a result, the α-Sn/Ge interfaces of the quantum wells have topologically non-trivial electronic states.
From THz time-resolved spectroscopy, we have discovered unusual photocurrent and THz radiation
generation. The mechanisms for this process are significantly different from ambipolar diffusion
currents that are responsible for THz generation in semiconducting thin films, e.g., Ge. Moreover, the
THz generation in α-Sn/Ge quantum wells is almost an order of magnitude greater than that found
in Ge. The substantial strength of the THz radiation emission and its polarization dependence may
be explained by the photon drag current. The large amplitude of this current is a clear signature of
the formation of conducting channels with high electron mobility, which are topologically protected.

Keywords: topological insulator; THz radiation; gray tin; quantum well

1. Introduction

The discovery of topological insulators (TI) [1] and Weyl semimetals [2] led to a “topo-
logical revolution” in materials science. These types of materials open an avenue for the
creation of novel photodetectors with significantly enhanced sensitivity compared to those
based on conventional metals, insulators, and semiconductors. Indeed, topological materi-
als have Weyl cone-like electronic structures uniquely characterized by the Berry curvature.
There, photocurrent is greatly enhanced and may be used to fabricate photodetectors with
extreme sensitivity, capable of single-photon detection when the excitation takes place in
the vicinity of Weyl nodes, where the Berry curvature diverges [3]. Quite recently, it was
shown that multilayer structures TaAs, TaP, NbAs, NbP, Bi1–xSbx are Weyl semimetals [4–7].
Over the past few years, this area has attracted increasing interest from the theoretical and
experimental communities. General progress in theoretical phenomenologies, new material
development and novel device fabrication has been summarized in a recent detailed review
on Weyl semimetals [8]. Despite a surge in research activity, there have been relatively few
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experimental studies on the optical properties of these materials. For example, circular
photocurrent and photovoltaic effects have been observed in TaAs at an excitation photon
energy h̄ω≈ 2.38 eV [9] and under a range of excitation frequencies, including illumination
with a CO2 laser [10,11]. Most recently, a trend has emerged focusing on the fabrication
of topological materials by combining traditional elements into multilayers and utilizing
time reversal symmetry breaking and band inversion. Notably, breakthroughs have been
achieved in studies of InAs/GaSb bilayer quantum wells (QW), demonstrating quantum
spin hall insulators (QSHI) phases and unique edge state transports [12]. Similarly, research
conducted on InAs/GaSb/InAs three-layer QWs has shown interband optical transition
and activity in the THz regime [13]. Therefore, the extent of the topological materials based
on multilayer superlattices and the evolution of their optical properties in relation to the
topological phases is a rapidly expanding, timely and promising field.

Here, we propose the creation of topological materials, including two and three dimen-
sional topological insulators (2DTI and 3DTI), as well as Weyl semimetals, by exploiting the
combination of traditional materials, such as Sn and Ge films, in a multilayer heterostruc-
ture. The premise focuses on the fabrication of systems with mutually inverted band
structures. Theoretical works have shown that such materials demonstrate gapless states
with linear carrier dispersion [14,15]. Specifically, the appearance of a metallic phase with a
linear electronic spectrum was predicted at the interface of a heterojunction between two Ge
and α-Sn semiconductors due to the appearance of a mutually inverted band structure—
where the valence band of Ge is transformed to the same irreducible representation of the
symmetry group as the conduction band of Sn, and vice versa.

Recently, a-Sn film has been shown to behave as a topological Dirac semimetal with
unusual properties. For example, α-Sn films were successfully grown on an InSb(111)
substrate [16]. Further research demonstrated that extremely high quality α-Sn films with
record hard mobilities of 30,000 cm2 V−1 s−1 could be obtained on InSb(001) substrates [17].
α-Sn films are extremely sensitive to strain and can be tuned to transition from a topological
Dirac semimetal (TDS) to a two-dimensional topological insulator (2DTI) by varying their
thickness [16,17]. It was also discovered that a system of a-Sn/CdTe quantum well (QW)
undergoes a phase transformation when the well width increases above a critical value of
8 nm [18]. In Ref. [18] it was shown that when the a-Sn/CdTe QW width exceeds the critical
width, the material behaves as a 2DTI, whereas below this value, it acts as a narrow-band
semiconductor. The paradigm of our present work is to create a hybrid topological material
in the form of a superlattice, QWs or a heterostructure, where the symmetry of inversion or
time reversal symmetry is broken, leading to the formation of Weyl cones.

Bulk Sn is present as a metastable white tin metal phase (β-Sn) at room temperature.
β-Sn undergoes a gradual transformation into the gray tin phase (α-Sn) when the temper-
ature is decreased to 286.4 K. In the case of Sn thin films, the temperature of this phase
transition varies with volume, growth conditions and the substrates on which the synthesis
is carried out. For example, for Sn films grown on an InAs substrate, the temperature for the
β—to—α transformation is generally higher than room temperature (300 K) and is strongly
dependent on the thickness of the Sn film and on the orientation of the substrate [19]. No-
tably, GeSn alloys, even at low Ge concentrations, form a diamond crystal structure similar
to α-Sn above room temperature [20]. Thus, it is expected that by growing Sn nanolayers
on a Ge surface, it would be possible to stabilise α-Sn even at high temperatures (~300 K).
In this manner, by sandwiching one Sn nanolayer between two Ge layers, one may obtain
an α-Sn and Ge quantum well. The number of sandwiched Sn nanolayers will determine
the number of quantum wells in the heterostructure. Our main aims are to fabricate single
and multiple quantum well nanostructures based on nanometer Ge and α-Sn layers and to
study their optical and electronic properties by studying the photocurrent both by contact
method and by generating terahertz radiation using femtosecond optical pulses.
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2. Results and Discussion

The investigated samples consisted of stacked Ge and α-Sn layers with varying
nanometer thicknesses in a heterostructure grown on a 300 nm thick SiO2 surface de-
posited on a silicon (Si) substrate. The layer thickness ranged between 1.5 to 10 nm. All
nanofilms were grown via the electron beam deposition method. For the photocurrent
measurement of 50 nm thick titanium (Ti), electrodes were deposited onto the surface
of the sample in a specific geometry through a rigid Si mask. The mask was laser cut
from a 500 nm thick Si waver and corresponded to a linear configuration of four square
1 mm × 1 mm sized windows separated by 2 mm. The Si mask was brought into direct
contact with the sample surface prior to Ti deposition. The schematic cross sections of the
Ge and α-Sn layer samples with Ti electrodes are shown in Figure 1a,b. Single and double
α-Sn and Ge quantum wells with overall thicknesses of 14.5 nm and 30.5 nm are depicted in
Figure 1a,b, respectively. The thickness of α-Sn layer was 10 nm in both cases, while the Ge
layers ranged in thickness from 1.5 nm–6 nm, depending on their location in the heterostruc-
ture. Electrical connections were made by gluing gold (Au) wires 25 µm in diameter using
silver (Ag) and reinforcing them mechanically using an insulating resin. Alternatively,
point-contact probes pressed onto Ti electrodes were used for electrical measurements.

Figure 1c,d show atomic force microscopy (AFM) topography images of the single
quantum well and double quantum well, respectively. Corresponding linescan profiles
are presented in Figure 1e,f. From the images, the polycrystalline structure of the layers
is clearly seen. For the single quantum well structure, 8–14 nm deep pits are observed.
Outside the pits, the surface has a roughness with a root mean square (RMS) of 1.2 nm. The
surface of the double quantum well structure contains fewer pits, 10–15 nm deep; however,
the RMS roughness is increased to 7 nm.

The composition of the α-Sn/Ge quantum well heterostructures was confirmed using
Raman spectroscopy at room temperature. Raman spectroscopy studies were performed in
a “backscattering” geometry on a Horiba Jobin-Yvon T64000 spectrometer equipped with a
confocal optical microscope and a YAG: Nd laser (λ = 532 nm) laser. During measurements,
the laser spot was focused on an area with a diameter of ~1 µm using a 100× objective
(NA = 0.9) and optical pumping was used to adjust the laser power in a range of 0.04–1 mW.
An increase in power should lead to heating of the sample and consequently to an α—
to—β phase transition [19]. It should be noted that at pump power of 2 mW, the film is
locally destroyed (burned out). Figure 2 shows the Raman spectra measured at a power of
40 µW (black line), 0.4 mW (red line), and 1 mW (blue line). The spectra are normalized
to the maximum intensity of the Ge mode. All spectra contain peaks corresponding to
the Si substrate (521 cm−1), the nanocrystalline bulk Ge (277.7 ± 0.2 cm−1) [21], and the
Ge—Sn shoulder mode (251 ± 3 cm−1) often observed in GeSn alloys [22]. Interestingly,
at the lowest laser power of 40 µW an additional peak is present at 210 ± 1 cm−1 (see
Figure 2 (black line)). This new peak disappears as the laser power is increased. The effect
is reversible. The observed disappearance of the 210 cm−1 peak may be attributed to an
α—to—β Sn phase transition as the sample is heated up locally with increased pumping
power. Thus, the presence of the 210 cm−1 mode and its temperature dependence can be
taken as evidence for the formation of α-Sn in the heterostructure. Similar behavior has
been observed in published literature [19]. It should be noted that the frequency of the
α-Sn mode (197 cm−1) reported in Ref. [19] is lower than the frequency of the α-Sn mode
detected in the present work (210 cm−1). The difference may be explained by a change of
substrate as well as substrate-induced elastic strain, which is more prominent here due
to nanofilm thickness. Additionally, the Raman results indicate the formation of a Ge-Sn
compound, which may be synthesized on the initial Ge layer (1.5 nm) prior to the growth
of α-Sn.
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Figure 1. Schematic cross section of the investigated α-Sn/Ge quantum wells heterostructures. (a,b) 
Single (left) and double (right) α-Sn/Ge quantum wells were composed of Ge and α-Sn layers 
nanolayers, grown on 300 nm thick SiO2 surface on a Si substrate. (c,d) AFM topography images 
and the corresponding linescan topography profiles (e,f) of the investigated single and double α-
Sn/Ge quantum wells heterostructures. Topography profiles were taken from the regions marked 
by white dashed lines in (c,d). 
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in a “backscattering” geometry on a Horiba Jobin-Yvon T64000 spectrometer equipped 
with a confocal optical microscope and a YAG: Nd laser (λ = 532 nm) laser. During meas-
urements, the laser spot was focused on an area with a diameter of ~1 μm using a 100 × 
objective (NA = 0.9) and optical pumping was used to adjust the laser power in a range of 
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to an α—to—β phase transition [19]. It should be noted that at pump power of 2 mW, the 
film is locally destroyed (burned out). Figure 2 shows the Raman spectra measured at a 

Figure 1. Schematic cross section of the investigated α-Sn/Ge quantum wells heterostructures.
(a,b) Single (left) and double (right) α-Sn/Ge quantum wells were composed of Ge and α-Sn layers
nanolayers, grown on 300 nm thick SiO2 surface on a Si substrate. (c,d) AFM topography images and
the corresponding linescan topography profiles (e,f) of the investigated single and double α-Sn/Ge
quantum wells heterostructures. Topography profiles were taken from the regions marked by white
dashed lines in (c,d).

To further corroborate the presence of α-Sn and to determine its charge carrier mobility
µ, electrical resistivity measurements were performed on a single α-Sn/Ge quantum well
heterostructure across a temperature range of 4.7–300 K both in zero (0 T) and applied
(0.67 T) magnetic fields, see Figure 3a. Electrical resistivity was measured using a standard
linear 4-probe technique with DC current. The electrical drift bias was eliminated by
reversing the current direction during the measurements. The base temperature of 4.7 K was
obtained using a Sumitomo pulsed tube cryostat, and the magnetic fields were generated
using a permanent disc-shaped magnet. The value of the magnetic field was determined
using an external Hall probe at room temperature. The magnetic field was varied by
adjusting the distance between the magnet and the sample. The study was carried out
both while decreasing and increasing the temperature, and no thermal hysteresis was seen.
Nominally, the α—to—β Sn phase transition would lead to a step like anomaly in the
resistivity with thermal hysteresis but this was not observed. The temperature dependence
of the resistivity remains monotonic and without step-like anomalies throughout the
investigated temperature range. This further verifies that our fabricated α-Sn/Ge quantum
well heterostructures contain α-Sn at room temperature.
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Figure 2. Raman spectra of a double α-Sn/Ge quantum well heterostructure. The studies were
carried out at 40 µW (black line), 0.4 mW (red line) and 1 mW (blue line) laser power. The spectra
show peaks corresponding to the Si substrate (521 cm−1), the nanocrystalline Ge (277.7 ± 0.2 cm−1)
and the Ge–Sn shoulder mode (251 ± 3 cm−1). The α-Sn mode (210 ± 1 cm−1) is only visible at the
lower laser power of 40 µW and disappears with heating.
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Figure 3. (a) Electrical resistivity ρxx as a function of the logarithm of temperature in a single
α-Sn/Ge quantum well heterostructure in 0T (black line) and 0.65T (red line). The temperature
dependence of ρxx does not manifest any step-like anomalies indicative of a α—to—β Sn phase
transition across the investigated temperature range. The resistivity behavior shows a logarithmic
temperature dependence >200 K which may be consistent with the Altshuler–Aronov (AA) regime.
By comparing the zero and applied magnetic field resistivities at a fixed temperature the charge
carrier mobility µ can be extracted. (b) IV characterization curve for a single α-Sn/Ge quantum well
heterostructure in 0 T, signifying the presence of the ohmic regime in the system.
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Additionally, the in-plane resistivity ρxx for the α-Sn/Ge quantum well heterostructure
demonstrates a metallic behavior across the entire temperature range (both at 0 T and at
0.65 T). While conventionally bulk α-Sn resistivity is expected to follow semiconducting
temperature dependence above 200 K [23], the behavior may manifest differently on the
nanometer scale in α-Sn thin films. Moreover, the behavior also differs from that recently
observed in the α-Sn/InSb (001) films acting as three-dimensional Dirac semimetals [24].
In-depth analysis of the electrical resistivity ρxx at high temperatures (>200 K) reveals an
Altshuler–Aronov (AA) regime, where electron–electron interactions (EEI) dominate the
scattering properties. This behavior is notably signified by a logarithmic T dependence in
the electrical resistivity described by the equation:

ρxx = ρ0

[
1 + A

ρ0e2

2π2h̄

(
µ2B2 − 1

)
ln
(

kBτT
h̄

)]
(1)

where ρ0 is the residual resistivity, A ≤ 1 is a constant, e is the electron charge, T is the
temperature, µ is the charge carrier mobility, B is the magnetic field and τ is the transport
momentum relaxation time [25]. The logarithmic regime, as given by Equation (1), is
highlighted with the purple and blue dashed lines for the zero-field (B = 0 T) and in-
field (B = 0.65 T) measurements, respectively, see Figure 3a. Thus, it becomes possible to
extract the charge carrier mobility µ and the relaxation time τ by comparing the zero-field
and in-field resistivities as described by Equation (1) directly. No other input parameters
are needed, and it is not necessary to know the value of the constant A. In the present
case for a single α-Sn/Ge quantum well heterostructure, the mobility was calculated as
µ = 2500± 100 cm2 V−1 s−1 and the relaxation time was estimated as τ = 2600± 100 fs.
The obtained mobility is comparable with the values for the InSb/α-Sn/AlOx 3DTI, where
µ = 3180 cm2 V−1 s−1 [26]. IV characterization curves signify that α-Sn/Ge quantum
well heterostructures are in the ohmic regime, see Figure 3b. No hysteresis behavior was
observed as the direction of the current was reversed. The IV response was measured
using a 6221 Keithley current source and a 2182 Keithley nanovoltmeter, covering the
ranges −10 mA to 10 mA and −2 V to 2 V for current and voltage, respectively. Note
that the AA regime is absent in metallic Sn. Furthermore, any contributions from disorder
effects (barring those from magnetic impurities) are invariant in an applied magnetic field,
or provide positive magnetoresistance. When some metallic droplets are separated, e.g.,
droplets of β-Sn in α-Sn, there arises a large positive extraordinary magnetoresistance.
See Refs. [27,28] for detailed discussions on these issues. Note that here we observe slight
negative magnetoresistances, see Figure 3a. Similarly, the presence of disorder leads
to very low mobilities, which is in contrast to what we observe. Thus, the combined
results of logarithmic temperature dependence terms in the electrical resistivity, negative
magnetoresistances and high mobilities suggest that the reason for the observed metallicity
in the α-Sn/Ge quantum well heterostructures may be topological in nature.

The optical and THz generation properties of the α-Sn/Ge quantum well heterostruc-
tures were probed using THz time-resolved spectroscopy. During the optical studies, the
samples were excited by ultrashort femtosecond laser pulses, and the waveform of the
generated THz pulses was recorded and analyzed. As sources of optical radiation, two
types of Ti:Sapphire lasers with diode pumping were used; specifically, MaiTai—for ~100 fs
pulses in the wavelength range 710–950 nm at a repetition frequency of 80 MHz, average
optical power ~1.5 W; Synergy—for radiation with a wavelength of ~800 nm and a pulse
duration of ~15 fs at a repetition frequency of 76 MHz, average optical power ~0.5 W.
Registration of the generated photocurrent by the contact method was measured by the
Lock-in Amplifier Signal Recovery 7265 (in current mode) between the Ti electrodes on the
sample surface, as well as the registration of THz radiation generated by photocurrents by
THz time-domain spectroscopy.

The schematic diagram of the experimental setup for THz generation detection is
shown in Figure 4, outlining the key steps in the measurement process. The main optical
pulse of linearly polarized radiation (from the Ti:Sapphire laser) is divided into pump and
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probe pulses by means of the light splitting plate (BS). The pump pulse is mechanically
modulated at a ~1 kHz frequency by the chopper. Modulation of the optical pumping is
used to reduce the noise in the signal detection. The modulated pump pulse then passes
through the optical delay line (ODL) and is focused on a selected area of the sample with
an angle of incidence of 45 degrees. As a result of the excitation of the sample by the pump
pulse, coherent THz radiation is generated, which is collected by gold sputtered parabolic
mirrors (P1 and P2) and directed to the non-linear optical crystal (ZnTe). The probe pulse
is sent directly to the ZnTe crystal through a hole in P2. The interaction between the THz
radiation and the pump pulse in the ZnTe crystal induces birefringence and causes a change
in light polarization from linear to elliptical, known as the Pockels effect. (Without the THz
field the optical pulse passes through ZnTe unchanged). The change in light polarization
is detected by an optical circuit including a λ/4 quarter-wave plate, a Wollaston prism
(WP), and a photodiode balance detector (BPD). For a linearly polarized incident signal,
the λ/4 quarter-wave plate adds circular polarization, and the WP splits the signal into
two mutually perpendicularly polarized pulses arriving at the BPD. Thus, in the case of
linearly polarized radiation, the illumination intensities detected by the two photodiodes
in the BPD are the same. In the presence of the THz field, the light entering the λ/4
quarter-wave plate is elliptically polarized. Therefore, the photodiodes in the BPD detect
different intensities, resulting in an output signal. The output signal from the BPD is fed
into the lock-in amplifier (Signal Recovery 7265) synchronized with the modulated pump
pulse, which allows the separation of the THz signal. The data from the lock-in amplifier is
analyzed in a specially programmed LabView environment on the PC, which also controls
the movement of the ODL to introduce further time delay between the pump and probe
pulses. Thus, within one setup, it is possible to resolve the time dependence of the THz field
by obtaining the relationship between the BPD output signal and the time delay between
the pump and probe pulses. The THz spectrometer setup is designed to operate at room
temperature. During the experiment, the Ge/Sn samples have been fixed to a holder made
from copper (Cu). Cu has extremely high thermal conductivity, so the temperature was
considered to be constant throughout the experiment and no temperature controller was
used. All measurements were conducted at room temperature. Recently, we have also made
the same THz measurements at liquid nitrogen temperatures. The results are qualitatively
the same, while the efficiency of the THz radiation emission has been increased.

Initially, we have studied the generation of THz radiation in thin films of Ge (~50 nm
thick) deposited on a SiO2/Si substrate. The Ge samples were excited with two different
light polarizations: TM(p-like) and TE(s-like). The results are summarized in Figure 5,
where the THz waveforms produced by TM and TE radiation are shown in black and red,
respectively. Interestingly, the THz pulses generated by TM and TE light have the same
phase. Here, the phase of the electric field of the THz pulse corresponds to the movement
of electrons in the same direction as the vector component of light lying in the plane of the
sample. In other words, the direction of the electric vector of the THz field remains the
same when the polarization of incident light is changed. The amplitude of the THz field is
smaller for TE polarization compared with TM. The phase calibration was performed using
a bulk InAs semiconductor crystal. Based on the results, we postulate that the mechanism
for THz generation in Ge thin films may be associated with ambipolar diffusion current of
nonequilibrium charge carriers generated during interband transitions in Ge, similar to
those found in semiconductors such as InAs [29].

Interestingly, studies of THz generation in samples containing α-Sn/Ge quantum
wells lead to markedly different results, see Figure 6, where the THz waveforms produced
by TM and TE radiation are shown in black and red, respectively. Specifically, the THz
pulses generated by TM and TE light have the opposite phase. This means that when the
polarization of incident light changes from TM to TE, the direction of the THz electric field
vector reverses. In other words, when the single and double α-Sn/Ge quantum wells are
excited by TM polarized pulses to generate a THz field, the electrons begin moving in the
opposite direction as the vector component of light lying in the plane of the sample—a



Nanomaterials 2022, 12, 2892 8 of 13

result in sharp contrast with previous experiments on Ge thin films. Our findings imply
that the mechanism for THz generation in single and double α-Sn/Ge quantum wells
samples would be significantly different to those found in conventional semiconductors.
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Figure 4. The THz spectrometer setup: femtosecond laser Synergy—pulse duration ~15 fs; P1 and
P2—off-axis paraboloids—parabolic mirrors; WP—Wollaston prism; BPD—balance photodetector;
λ/4—quarter-wave plate; ZnTe—non-linear optical crystal; ODL—optical delay line; Chopper—light
modulator; Lock-in amplifier—Signal Recovery 7265 (current mode); THz emitter—sample; BS—light
splitter (2% for probe and 98% for pump); F is a filter of the transmitted THz radiation, removing IR
radiation tail; L1 and L2 are lenses focusing the optical radiation; λ/2—half-wave plate; PC—personal
computer. The THz generated current pulse is analyzed in a specially designed LabView program.

Additional optical experiments on single and double α-Sn/Ge quantum wells samples
have revealed that the amplitude of the generated THz fields demonstrates substantial
dependence on the angle of rotation of the polarization of incident light (see, Figure 7).
Specifically, it was shown that the dependence of the electric field strength of the THz
pulse (or its amplitude) on the angle of rotation of the light polarization is sinusoidal. For
the TM (p-like) induced THz field, it is proportional to cos2ϕ, with amplitude maxima
occurring at 0, 90, 180 and 270 degrees. While for the TE (s-like) induced THz field, the
amplitude maxima vary as sin2ϕ—with antinodes found at 45, 135, 225 and 315 degrees
(see Figure 7). The dependence of the maximum amplitude of the THz pulse on the intensity
of the incident light was linear.
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Figure 5. THz pulse waveform generated by a Ge film on a SiO2/Si substrate with 90 mW average
optical power. The responses to TM (p-like) and TE (s-like) polarized light are shown in black and
red, respectively. The THz pulses have the same phase in both polarizations, but the amplitude is
lower for TE excitation compared with TM.
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Figure 6. THz pulse waveforms generated by a double α-Sn/Ge quantum well heterostructure with
100 mW average optical power. The responses to TM (p-like) and TE (s-like) polarized light are
shown in black and red, respectively. Notably, when the polarization of the excitation light changes
from TM to TE, the generated THz pulses have the opposite phase, which indicates that the electric
vector of the THz field changes direction.

Studies of photocurrent generation by the contact method on single and double
α-Sn/Ge quantum well samples mirrored the trends found in all other experiments. In ad-
dition, a sign inversion of the photocurrent was observed when the angle of light incidence
was changed from 45◦ to−45◦. Notably, Ge thin film samples showed a significant decrease
in the efficiency of THz generation and, accordingly, a substantially lower photocurrent
compared to samples containing α-Sn/Ge quantum wells.
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Figure 7. The dependence of the amplitude of the THz pulses generated by a double α-Sn/Ge
quantum wells with 100 mW average optical power on the angle of rotation of light polarization ϕ.
The responses to TM (p-like) and TE (s-like) polarized light are shown in black and red, respectively.
The angle of light incidence on the sample was 45 degrees. The angle between the direction of the
THz electric field and the normal to the surface of the sample was 90 degrees. The amplitude maxima
for the THz field in TE polarization were found at 0, 90, 180 and 270 degrees. While the amplitude
maxima for the THz field in TM polarization were found at 45, 135, 225 and 315 degrees.

The origin for the experimentally observed dependences of the photocurrent in single
and double α-Sn/Ge quantum well heterostructures on light angle of polarization, wave
vector and intensity may be explained by photon drag current mechanism. In general, the
photon drag current is determined by the fourth-order tensor and can be written in the
following form [30]:

ji= χijklEjEkql (2)

where Ej is the j component of the electric field of the light wave, ql—l is the component of
the wave vector of light.

For an isotropic medium, the photon drag current will be determined by two inde-
pendent components of this nonlinear tensor. For the experimental geometry shown in the
inset in Figure 4, the projections of the current on the coordinate axes will be determined by:

jx= sin θ(a + 2bcos 2θ+ 2bcos2 θ cos 2ϕ)

jy= bsin2θ sin 2ϕ
(3)

where ϕ is the angle between the y-axis and the plane passing through the wave vector of
the excitation light and its polarization vector, θ is the angle of incidence of the light, a and
b are optical constants.

From Equation (3), it follows that the dependence of the photocurrent on the angle of
rotation of the polarization vector of light is sinusoidal. For the longitudinal component
of the photocurrent (leading to the generation of the TM component of the THz field),
the photocurrent angle dependence is proportional to cos2ϕ. While for the transverse
component of the photocurrent (leading to the generation of TE-components of the THz
field), the photocurrent varies as sin2ϕ with the angle (see Figure 4). Exactly this behavior
is observed experimentally (see Figure 7). In addition, in the presented formalism, it
is expected that the transverse photocurrent is zero for excitation light of both TM and
TE polarizations, which is also consistent with experiments. Therefore, our combined
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experimental results indicate that the mechanisms for photocurrent generation in α-Sn/Ge
quantum well heterostructures are quite unusual. At the microscopic level, the nature of
the processes for THz radiation generation in the α-Sn/Ge quantum wells samples may be
due to the appearance of asymmetry in the momentum space arising from nonequilibrium
electronic interband transitions, induced by the photon drag currents.

In addition, the significant increase in the efficiency of THz radiation generation in
samples with Ge—α-Sn quantum wells may be related to an increase in the mobility of
charge carriers µ = 2500± 100 cm2 V−1 s−1. Moreover, the metallic behaviors of the tem-
perature dependence of the resistivity in α-Sn/Ge quantum well heterostructures indicate
a substantially different electronic system compared to pure Ge thin films and conventional
semiconductors. The electronic band structures found in α-Sn/Ge quantum wells may
contain a linear spectrum of two-dimensional electronic dispersion with massless charge
carriers forming at the interface between Ge and α-Sn [4]. It is interesting that in an anal-
ogous system with a linear Dirac spectrum such as epitaxial graphene grown on 6H-SiC
(0001) there are also remarkable photo-responses [31]. There the resistance shows also loga-
rithmic temperature dependences which may be attributed to an Altshuler–Aronov effect.
Note that the effect can be further enhanced by interface roughness or superlattice design,
as noted for the harmonic conversion efficiency in semiconductor superlattices [32–34]
or in graphene chips [35,36]. However, further in-depth studies are required to properly
determine the mechanisms for the observed effects and to ascertain the role of α-Sn and
topologically inverted band structures for THz generation and photocurrents.

3. Conclusions

In summary, we have prepared α-Sn/Ge quantum well heterostructures and con-
firmed the presence of α-Sn phase via Raman spectroscopy temperature dependence of
the electrical resistivity. We have investigated the photocurrent and THz radiation gener-
ation in the α-Sn/Ge quantum well heterostructures. Our findings demonstrate that the
mechanism for photocurrent generation in such systems is substantially different to those
found in conventional thin-film semiconductors. We show that the angular dependence of
the photocurrents (as well as the THz pulse amplitudes) may be explained by a photon
drag current model. At the microscopic level, the origin of the THz radiation generation
in this material may be linked to nonequilibrium electronic interband transitions induced
by photon drag currents. These processes generate an asymmetry in phase space, which,
combined with linear two-dimensional band dispersion and the mutually inverted band
structure arising at the α-Sn/Ge interface, may acquire a topological character. Therefore,
we postulate that the α-Sn/Ge quantum well heterostructures possibly represent a new
kind of two-dimensional electronic system, which may give foundation to a novel type
of two-dimensional topological insulator. However, further experimental and theoretical
investigations are needed to properly clarify the underlying effects that determine the
electronic properties in such systems.
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