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Abstract: In this paper, rod-shaped, cuboid-shaped, and irregular WO3 nanocrystals with different
co-exposed crystal facets were prepared for the first time by a simple hydrothermal treatment of
tungstic acid colloidal suspension with desired pH values. The crystal structure, morphology, specific
surface area, pore size distribution, chemical composition, electronic states of the elements, optical
properties, and charge migration behavior of as-obtained WO3 products were characterized by
powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission
electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray pho-
toelectron spectroscopy (XPS), fully automatic specific surface area and porosity analyzer, UV–vis
absorption spectra, photoluminescence (PL) spectra, and electrochemical impedance spectroscopy
(EIS). The photocatalytic performances of the synthesized pHx-WO3 nanocrystals (x = 0.0, 1.5, 3.0,
5.0, and 7.0) were evaluated and compared with the commercial WO3 (CM-WO3) nanocrystals. The
pH7.0-WO3 nanocrystals with co-exposed {202} and {020} facets exhibited highest photocatalytic
activity for the degradation of methylene blue solution, which can be attributed to the synergistic ef-
fects of the largest specific surface area, the weakest luminescence peak intensity and the smallest arc
radius diameter.

Keywords: tungsten trioxide; co-exposed crystal facets; photocatalytic activity; synergistic effect

1. Introduction

Transition metal oxide nanocrystals with tailored shapes and reactive facets have
sparked intense research interest over the past two decades due to their many intrinsic
morphology and crystal plane-dependent properties [1]. Among many transition metal
oxides, tungsten trioxide (WO3) is a typical narrow band gap (2.4~2.8 eV) n-type 5d0 transi-
tion metal oxide semiconductor, which plays a key role in many applications such as gas
sensors, photoelectrochemical water splitting, electrochromic and photochromic devices,
and photocatalytic systems [2,3]. Generally, WO3 nanocrystals are formed by sharing the
corners and edges of WO6 octahedra, which exists in five polymorphs namely ε-WO3
(monoclinic II, space group Pc, stable temperature <−43 ◦C), δ-WO3 (triclinic, space group

P
−
1, stable temperature −43~17 ◦C), γ-WO3 (monoclinic I, space group P21/n, 17~330 ◦C),

β-WO3 (orthorhombic, space group Pmnb, transition temperature 330~740 ◦C), and α-WO3
(tetragonal, space group P4/nmm, stable temperature > 740 ◦C) [4,5]. Among the five
different crystalline phases of WO3, the γ-WO3 is the most thermodynamically stable phase
at room temperature [5]. Therefore, the commonly mentioned WO3 refers specifically to γ-
WO3. WO3 has been considered a promising visible-light-driven photocatalyst not only due
to its high hole mobility and moderate hole diffusion length, but also due to its photosensi-
tivity, inherently good electron transport properties, resistibility to photocorrosion, and low
cost [6,7]. However, the low conduction band level of WO3 inhibits its ability to react with
electron acceptors and increases the recombination of photogenerated electron–hole pairs,
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resulting in poor photocatalytic activity for the degradation of organic pollutants [8,9].
Therefore, strenuous efforts have been made to improve the photocatalytic activity of WO3
materials, such as controlling the particle size, crystal structure, crystal morphology, crystal
surface exposure, crystal composition, etc. [10–12]. In particular, the morphology and
exposed crystal surface of WO3 material have an important influence on photocatalytic
performance. In view of this, extensive research work has been carried out to synthesize
numerous morphological WO3 materials with specific exposed crystal surfaces via different
methods. For instance, Xie et al. [13] synthesized a quasicubic-like monoclinic WO3 crys-
tal with co-exposed {002}, {200} and {020} facets, and a rectangular sheet-like monoclinic
WO3 crystal with predominant {002} facet via a simple solvothermal synthesis method.
Han et al. [14] synthesized monodisperse triclinic WO3 nanoparticles with co-exposed {001},
{100} and {010} facets via a simple hydrothermal method. D’Arienzo et al. [15] synthesized
WO3 nanocrystals with tailored morphology (rectangular nanocrystals, square-like platelets,
and rectangular platelets) and definite prominent surfaces (co-exposed high-energy {020}
and {002} facets) via a simple hydrothermal synthesis method. Dirany et al. [16] syn-
thesized a well-crystallized orthorhombic quadrangular WO3 nanoplates with dominant
exposed {020} facets via free template aqueous mineralization processes. Bu et al. [17] fabri-
cated a well-defined hierarchical WO3 nanoflower-like thin film photoanode composed of
WO3 nanoflakes with mismatched {002} and {020} facets exposed via a complex template
assistant method.

In this study, rod-shaped WO3 nanocrystals with co-exposed {002}, {020} and {200}
facets and growing along the [002] direction (pH0.0-WO3, pH1.5-WO3, and pH3.0-WO3),
cuboid-shaped WO3 nanocrystals with co-exposed {020} and {200} facets (pH1.5-WO3
and pH3.0-WO3), irregular WO3 nanocrystals with co-exposed {110} and {002} facets
(pH5.0-WO3) and {202) and {020} crystal facets (pH7.0-WO3), were successfully synthe-
sized by using the exfoliated white tungstic acid colloidal suspension as precursor via a
mild hydrothermal method. A series of techniques were used to characterize the crystal
structure, morphology, macrostructure and analyze the chemical composition, electronic
states of the elements, optical properties, and charge migration behavior of as-obtained
WO3 products. The photocatalytic activity of the as-prepared pHx-WO3 nanocrystals was
investigated. Compared to CM-WO3 nanocrystals, the irregular pH7.0-WO3 nanocrystals
with co-exposed {202} and {020} crystal facets showed higher photocatalytic activity.

2. Materials and Methods
2.1. Materials

Sodium tungstate dihydrate (Na2WO4·2H2O, 99.5%), nitric acid (HNO3, 65–68%), and
tetramethylammonium hydroxide (TMAOH, 96%) were purchased from Shanghai Macklin
Biochemical Co., Ltd. (Shanghai, China), Damao Chemical Reagent Factory (Tianjin, China),
and Dubai Biological Technology Co., Ltd. (Shanghai, China), respectively. The above three
chemical reagents were used as received without further purification.

2.2. Synthesis of WO3 Nanocrystals

The WO3 nanocrystals were synthesized by a mild hydrothermal method. Briefly,
20.0 g of the white Na2WO4·2H2O powders were dissolved in 2.0 L of 1.0 mol/L HNO3
with stirring for 3 days at room temperature, while the HNO3 solution was replaced daily
with a fresh solution of equal volume and equal concentration, to prepare the white tungstic
acid monohydrate (H2WO4·H2O) powders. 14.0 g of H2WO4·H2O and 18.2 g of TMAOH
were dissolved in 140 mL of deionized water with stirring for 15 min and then transferred
into two 100 mL of Teflon-lined autoclave on average. After adequate sealing, the two
autoclaves were fixed in a homogeneous reactor and heated at 85 ◦C for 24 h with constant
stirring to prepare a TMA+-intercalated tungstic acid compound and then cooled to ambient
temperature. The above compound was dispersed in 500 mL of deionized water and stirred
at room temperature for 3 days to obtain a white tungstic acid colloidal suspension. An
amount of 65 mL of the precursor colloidal suspension was transferred into a 100 mL
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Teflon-lined autoclave, and then adjusted to the set pH value (pH = 0.0, 1.5, 3.0, 5.0, and
7.0) under stirring conditions. After the autoclaves were tightly sealed, they were put
into the constant temperature blast drying oven for a reaction at 180 ◦C for 24 h. Yellow
WO3 products (pH0.0-WO3, pH1.5-WO3, pH3.0-WO3, pH5.0-WO3, and pH7.0-WO3) were
obtained by centrifuge after multiple times washing with deionized water and drying
at room temperature for longer than 24 h, and then calcined in a high-temperature box
furnace at 500 ◦C for 4 h.

2.3. Sample Characterization

Powder X-ray diffraction analysis was carried out using an XRD-6100 (Shimadzu,
Kyoto, Japan) with monochromated Cu Kα radiation (λ = 0.15406 nm). The morphology
of the precursor Na2WO4·2H2O, H2WO4·H2O, and the synthesized WO3 samples were
observed using a field emission scanning electron microscopy (FESEM, Hitachi SU8100,
Tokyo, Japan). Transmission electron microscopy (TEM) and high-resolution transmission
electron microscopy (HRTEM) images were obtained by using an FEI TALO F200S (Portland,
OR, USA) at an operating voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) was
performed on a K-Alpha instrument (Thermo Fisher Scientific, New York, NY, USA) and
calibrated by the binding energy of C 1s 284.6 eV. The Brunauer–Emmett–Teller surface
areas were obtained by using a micromeritics ASAP 2020 nitrogen adsorption instrument
(Micromeritics Instrument Corp., Atlanta, GA, USA) at 77 K. Ultraviolet–visible (UV–Vis)
absorption spectra of the WO3 samples were recorded with a UV–Vis spectrophotometer
(UV-2600, Shimadzu, Kyoto, Japan). Photoluminescence analysis of the WO3 samples was
measured on a fluorescence spectrometer (PL, HORIBA Fluoromax-4, HORIBA Instruments
Inc., Kyoto, Japan) and the emission spectrum were excited at a wavelength of 325 nm. The
electrical measurements were performed using electrochemical impedance spectroscopy
(EIS, CHI600E, Shanghai Chenhua Instrument Co., Ltd., Shanghai, China) with indium-tin
oxide glass, platinum plate (opening area: 1 cm2), and Ag/AgCl (saturated KCl solution)
as the working electrode, counter electrode, and reference electrode, respectively, under the
irradiation of a 300 W xenon lamp. The EIS were performed in a 0.2 mol/L Na2SO4 solution
with a frequency range from 0.01 Hz to 100 kHz under open circuit potential conditions.
The working electrode was prepared by a simple method as follows: 25 mg of WO3 was
dispersed in 1 mL of 5% polyvinylidene fluoride (PVDF) solution and stirred for 60 min to
form uniform WO3 slurry. Then, 20 µL of the slurry was dripped on the ITO glass with a
3 cm × 1 cm area and dried at 80 ◦C for 12 h.

2.4. Photocatalytic Experiments

Photocatalytic activities of the synthesized pHx-WO3 samples were evaluated for
the decolorization of methylene blue (MB) aqueous solution with a 175 W low-pressure
mercury lamp at ambient temperature. Typically, 150 mg of the WO3 sample (pH0.0-WO3,
pH1.5-WO3, pH3.0-WO3, pH5.0-WO3, pH7.0-WO3, and CM-WO3) was dispersed in 150 mL
of 15 mg/L MB aqueous solution (4.07 × 10−5 mol/L). Before the sample was exposed to
ultraviolet–visible light irradiation, the suspension was magnetically stirred in the dark
for 2 h to ensure the adsorption–desorption equilibrium of the MB dye on the surfaces of
WO3 sample. Then, at given time of irradiation, 3 mL of suspension was taken out and
the WO3 sample was immediately centrifuged to analyze the supernatant liquor by an
ultraviolet-visible spectrophotometer (TU 1901, Beijing Purkinje General Instrument Co.,
Ltd., Beijing, China).

3. Results
3.1. XRD Analysis

The commercial precursor, orthorhombic Na2WO4·2H2O, is confirmed by the powder
X-ray diffraction (XRD) pattern (JCPDS no. 47-0064, a = 10.592, b = 13.858, and c = 8.479),
as shown in Figure 1a. The existence of the main diffraction peaks of (020), (040), and
(060), and the corresponding d values are 0.685, 0.344, and 0.229 nm, respectively, indicate
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that the precursor Na2WO4·2H2O belongs to layered compounds. After the precursor
Na2WO4·2H2O was treated with 1.0 mol/L HNO3 for 3 days at room temperature, mono-
clinic H2WO4·H2O (JCPDS no. 18-1420, a = 0.750, b = 0.693, c = 0.370 nm, and β = 90.5◦)
were obtained (Figure 1b). The diffraction peaks of H2WO4·H2O at 2θ = 12.92◦, 25.90◦, and
39.28◦ correspond to the (010), (020), and (030) crystal planes and the crystal plane spacing
is 0.685, 0.344, and 0.229 nm, respectively, indicating that the H2WO4·H2O sample also has
a layered structure.
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Figure 1. XRD patterns of (a) commercial Na2WO4·2H2O precursor and (b) prepared H2WO4·H2O sample.

Figure 2 shows the XRD patterns of WO3 samples synthesized by hydrothermal
treatment tungstic acid colloidal suspension with different pH values (0.0–7.0) and the
commercial WO3 (CM-WO3) sample. The diffraction peaks of the pH0.0-WO3, pH1.5-WO3,
pH3.0-WO3, pH5.0-WO3, pH7.0-WO3, and CM-WO3 samples at 2θ values of 23.32◦, 23.80◦,
24.54◦, 26.78◦, 28.92◦, 33.46◦, 34.34◦, 35.64◦, 41.92◦, 47.44◦, 48.48◦, 50.12◦, and 56.10◦ can be
indexed to (002), (020), (200), (120), (112), (022), (202), (122), (222), (004), (040), (140), and
(420) planes of the monoclinic structure of WO3 (space group: P21/n(14)) with the standard
card JCPDS no. 43-1035, indicating that the samples have high crystallographic purity. The
strong and sharp reflection peaks and very horizontal baselines in Figure 2a–e indicate the
high crystallinity and purity in the as-synthesized WO3 powder samples [3]. The relative
intensities of the (002), (020), and (200) diffraction peaks of the as-synthesized WO3 powder
samples are different, indicating that different controlling agents may adjust the different
exposed facets [2].

3.2. FESEM and TEM Analysis

The morphology of the Na2WO4, H2WO4, and the as-synthesized pHx-WO3 samples
were characterized by FESEM. Figure 3a illustrates a typical FESEM image of Na2WO4
sample. It can be seen that most of the samples exhibit square rod-like morphology with
wide size distributions (length ranges from hundreds of nanometers to several micrometers
and width ranges from 0.1 to 0.5 µm). After the ion exchange reaction, the obtained H2WO4
sample exhibits irregular rod-like morphology with wide size distributions (length ranges
from 0.1 to 1.5 µm and width ranges from 0.1 to 0.5 µm) (Figure 3b), which is probably
caused by the fracture of the rod-like Na2WO4 particles under the condition of intense
agitation. Figure 3c shows a typical FESEM image of pH0.0-WO3 product prepared by
hydrothermal treatment of TMA+-intercalated tungstic acid colloidal suspension in pH
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value of 0.0. Most of the products exhibit irregular rod-like morphology with wide size
distributions (length is from 0.1 to 1.5 µm and width is from 30 to 230 nm). Figure 3d
shows that when the pH value of colloidal suspension is 1.5, the pH1.5-WO3 product
exhibits a discordant rod-like shape with a length of about 0.2~2.2 µm and a width of about
50~30 nm, and several irregular particles. Some discordant rod-like nanoparticles with
70~350 nm in length and 30~70 nm in width and many irregular nanoparticles with wide
size distributions are observed when the pH value of colloidal suspension is 3.0, as shown
in Figure 3e,f. As shown in Figure 3g,h, the pH5.0-WO3 and pH7.0-WO3 samples consist
of large amounts of cuboid, spherical and irregular nanoparticles with an average size of
34.8 nm and 37.9 nm, respectively. CM-WO3 sample consists of large amounts of irregular
nanoparticles with an average size of 137 nm, as shown in Figure 3i.
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colloidal suspension with different pH values (0.0–7.0): (a) pH0.0-WO3, (b) pH1.5-WO3, (c) pH3.0-
WO3, (d) pH5.0-WO3, (e) pH7.0-WO3, and (f) the commercial WO3 (CM-WO3) sample.

The structure of the as-synthesized pHx-WO3 samples was characterized by TEM, as
shown in Figures 4 and 5. Figure 4a shows the TEM image of the prepared pH0.0-WO3
crystals derived from the hydrothermal treatment of the TMA+-intercalated tungstic acid
colloidal suspension at 180 ◦C with a reaction time of 24 h. The rod-shaped nanocrystals
with a length of 200–700 nm and a width of 30–130 nm were observed. Figure 4b,c shows the
corresponding HRTEM image of an individual pH0.0-WO3 nanorod taken from the marked
area of the TEM images, revealing that the nanorod possesses the single-crystal structure.
The lattice spacing of around 0.375 and 0.384 nm (or 0.377 and 0.383 nm) correspond the
d spacing of WO3 (020) and (002) crystal planes, and the interfacial angle of 90◦ between
them matches well with the theoretical value. Furthermore, the WO3 (020) and (002) crystal
planes parallel to the sides and tops of the nanorod, respectively, and the longitudinal axis
direction corresponds to the (002) crystal planes of WO3, indicating that the co-exposed
facets of pH0.0-WO3 nanocrystals are {002}, {020} and {200} facets and the elongation of the
nanorod is parallel to [002] direction. Rod-shaped WO3 crystals with a length of 0.3–1.5 µm
and a width of 45–240 nm and cuboid-shaped WO3 crystals with a length of 250–800 nm
were observed in the TEM image of pH1.5-WO3 crystals (Figure 4d). The corresponding
HRTEM images (Figure 4e,f) showed the perpendicular (020) and (002) atomic planes of the
rod-shaped and the cuboid-shaped WO3 crystals with a lattice spacing of 0.377 (or 0.375)
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and 0.384 (or 0.385) nm, respectively, and the (020) and (002) crystal planes parallel to the
two sets of surfaces of rod-shaped (or cuboid-shaped) WO3 crystals, respectively, indicating
that the co-exposed facets of pH1.5-WO3 crystals are {002}, {020} and {200} facets. Rod-
shaped WO3 crystals with a length of 240–540 nm and a width of 40–110 nm were observed
in the TEM image of pH3.0-WO3 crystals (Figure 4g). Figure 4h shows the HRTEM image
of an individual pH3.0-WO3 nanorod taken from the marked area of the TEM images,
revealing that the nanorod possesses a single-crystal structure and the lattice spacing
of around 0.379 and 0.389 nm along the horizontal axis and longitudinal axis direction
correspond to the d spacing of WO3 (020) and (002) crystal planes. The above analysis
results further indicate that the co-exposed facets of pH3.0-WO3 nanocrystals are {002},
{020} and {200} facets, and the growth direction of the nanorod is along the [002] direction.
The HRTEM image (Figure 4i) shows that the interplanar spacing of cuboid-shaped WO3
crystals are 0.379 and 0.271 nm with an interfacial angle of 44.4◦, corresponding to the (200)
and (022) planes of monoclinic WO3, respectively, which indicates that the corresponding
set of side facets is {020} facets, and the predominant facets of the cuboid-shaped WO3
crystal is {200} crystal facets.
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Figure 3. FESEM images for: (a) Na2WO4, (b) H2WO4, (c) pH0.0-WO3, (d) pH1.5-WO3, (e,f) pH3.0-
WO3, (g) pH5.0-WO3, (h) pH7.0-WO3, and (i) CM-WO3.

The pH5.0-WO3 sample consists of a large amount of irregular morphology nanocrys-
tals with a size of 18~106 nm, as shown in Figure 5a. The corresponding HRTEM images
(Figure 5b,c) show that the distances of the visible lattice fringes over a large area were
measured to be 0.525, 0.389, and 0.375 (or 0.378) nm, which are in agreement with the lattice
spacing of (110), (002) and (020) atomic planes of the monoclinic structure of WO3. In
addition, the (110) and (002) crystal planes parallel to the sides of the irregular nanocrystal
with an interfacial angle of 89.3◦, indicating that the irregular nanocrystal with co-exposed
of {110} and {002} facets on its sides, as shown in Figure 5b. Irregular-shaped WO3 nanocrys-
tals with a size of 18–86 nm were observed in the TEM image of the pH7.0-WO3 sample,
as shown in Figure 5d. The HRTEM images (Figure 5e,f) show that the distances of the
visible lattice fringes over a large area were measured to be 0.263 and 0.375 nm, which are
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in agreement with the lattice spacing of (202) and (020) atomic planes of the monoclinic
structure of WO3. Furthermore, the interfacial angle between (202) and (020) crystal planes
is 90◦, which is consistent with the theoretical value. Since the crystal planes perpendicular
to (202) and (020) at the same time cannot be determined, there are no specific exposed
crystal facets on the base surface of the pH7.0-WO3 nanocrystals with irregular morphology.
The (202) and (020) crystal planes are parallel to the sides of the irregular nanocrystal, so the
{202} and {020} crystal facets are co-exposed on the sides. Compressed hexagonal prismatic
and irregular-shaped WO3 nanocrystals with a size of 55–730 nm were observed in the
CM-WO3 sample, as shown in Figure 5g. The lattice spacings of 0.375 and 0.383 with an
interfacial angle of 90◦ can be indexed to the (020) and (002) crystal planes, respectively
(Figure 5h). Furthermore, the (020) and (002) crystal planes are parallel to the sides of
the compressed hexagonal prism, indicating that the co-exposed crystal facets of the com-
pressed hexagonal prism are {020}, {002} and {200} facets. The lattice spacing of 0.310, 0.313,
and 0.367 with an interfacial angle of 50◦, 65◦, and 65◦ can be indexed to the (112), (−112),
and (200) crystal planes, respectively (Figure 5i). Furthermore, the (−112) crystal plane
parallels to the side of irregular nanocrystal, indicating that the side exposes {−112} crystal
facets. Similar, since the crystal planes perpendicular to (112), (−112), and (200) at the same
time cannot be determined, there is no specific crystal facets on the base surface of the
CM-WO3 nanocrystals with irregular morphology.
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3.3. Nitrogen Adsorption–Desorption Isotherms Analysis

The Brunauer–Emmett–Teller (BET) surface area and pore size of the as-prepared pHx-
WO3 (x = 0.0, 1.5, 3.0, 5.0, 7.0) and the commercial CM-WO3 samples were characterized
using the nitrogen adsorption–desorption isotherms shown in Figure 6. It can be seen
from Figure 6a–c, the adsorption isotherms of the as-prepared pHx-WO3 and CM-WO3
are type IV (BDDT classification) with type H3 hysteresis loops at relatively high pressure
between 0.8 and 1.0, corresponding to slit-shaped pores, which are in accordance with the
characteristic of nitrogen adsorption on macroporous absorbents [18]. Figure 6d shows
the pore size distributions of the as-prepared pHx-WO3 and the commercial CM-WO3
samples. As shown in Figure 6d, there is no obvious pore size peak on the pore size
distribution curves of pH0.0-WO3, pH1.5-WO3, and CM-WO3, which indicates that these
particles do not exhibit intrinsic porosity [19]. However, the pH3.0-WO3, pH5.0-WO3, and
pH7.0-WO3 samples present a relatively wide range of pore size distribution from 7.0 to
113.8 nm, 3.5 to 160.0 nm, and 5.3 to151 nm, respectively [20]. The BET surface areas of
the as-prepared pH0.0-WO3, pH1.5-WO3, pH3.0-WO3, pH5.0-WO3, pH7.0-WO3 as well
as CM-WO3 are determined to be 6.4, 5.4, 7.7, 13.7, 14.3, and 2.6 m2/g, respectively. That
is, the BET surface area decreases in the following order: pH7.0-WO3 > pH5.0-WO3 >
pH3.0-WO3 > pH0.0-WO3 > pH1.5-WO3 > CM-WO3. The pH7.0-WO3 exhibits the largest
BET surface area among the samples, being 5.50, 2.23, 2.65, 1.86, and 1.04 times higher
than that of CM-WO3, pH0.0-WO3, pH1.5-WO3, pH3.0-WO3, and pH5.0-WO3, respectively.
The increased BET surface areas of the WO3 sample can provide more adsorption and
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reaction sites for the organic dye in the photocatalytic process, which may be beneficial to
improving the photocatalytic activity [21].
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3.4. X-ray Photoelectron Spectroscopy Analysis

To complete the previous analysis, X-ray photoelectron spectroscopy (XPS) analysis
reveals the surface chemical composition and electronic states of the elements of the
Na2WO4, H2WO4, as-prepared pHx-WO3 and CM-WO3 samples (Figure 7). The C 1s
peak at 284.88 eV observed in the survey scan is due to carbon contamination used to
calibrate the binding energy [22]. The full wide-scan spectra of the Na2WO4, H2WO4,
as-prepared pHx-WO3, and CM-WO3 samples are presented in Figure 7a, from which we
observe clearly characteristic peaks of Na (exists only in Na2WO4), W, O and C elements.
The high-resolution W 4f spectrum in Figure 4b, displays two peaks with binding energy
values of 37.08~38.08 and 34.98~35.88 eV for W 4f5/2 and W 4f7/2 indicating the W(VI)
oxidation state of Na2WO4, H2WO4, as-prepared pHx-WO3 and CM-WO3 samples [23].
The O 1s peak (Figure 4c) at 530.18~530.68 eV matches well with oxygen species in the
Na2WO4, H2WO4, as-prepared pHx-WO3, and CM-WO3 samples, which can be assigned
to typical surface lattice oxygen [23]. The Na 1s peak (Figure 4d) at 1071.08 eV matches well
with sodium species in the Na2WO4 sample. No peak of Na 1s was observed in H2WO4,
further indicating that Na+ ions in Na2WO4 were well displaced by H+ ions.
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3.5. Optical Properties

The comparison of the UV–vis absorption spectra and PL spectra of the as-prepared
pHx-WO3 and the CM-WO3 samples are presented in Figure 8. As demonstrated in
Figure 8a, the as-prepared pHx-WO3 and the CM-WO3 samples have similar adsorption
spectra, and the absorption edge is at ~475 nm. The light adsorption intensity of the
as-prepared pHx-WO3 and the CM-WO3 samples decreases in the order of pH3.0-WO3 >
pH1.5-WO3 > pH0.0-WO3 > pH5.0-WO3 > CM-WO3 > pH7.0-WO3. Using the concept of the
edge at the intersection of wavelength through extrapolation of the horizontal and sharply
rising portions of the curves, the absorption peak for pH0.0-WO3, pH1.5-WO3, pH3.0-WO3,
pH5.0-WO3, pH7.0-WO3, and CM-WO3 was determined at 466, 470, 475, 476, 475, and
476 nm, respectively [24,25]. Using the formula Band gap = 1240/Wave length [24,25], 2.66,
2.64, 2.61, 2.60, 2.61, and 2.60 eV was calculated as band gap energy for pH0.0-WO3, pH1.5-
WO3, pH3.0-WO3, pH5.0-WO3, pH7.0-WO3, and CM-WO3 samples, respectively, which are
consistent with the energy gap of monoclinic WO3 (2.6–2.8 eV), indicating that the pH value
had little effect on the band gap of WO3 [26]. The photocatalytic activity is related to the
charge migration and the recombination rate of photogenerated carriers [9]. Therefore, in
order to determine the charge migration and degree of recombination of electron–hole pairs,
that is, the separation ability of electron–hole pairs, the photoluminescence (PL) spectra of
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the as-prepared pHx-WO3 and the CM-WO3 samples was studied as shown in Figure 8b.
As shown in Figure 8b, the photoluminescence intensity of the as-prepared pHx-WO3 and
the CM-WO3 samples decreases in the order of CM-WO3 > pH5.0-WO3 > pH0.0-WO3 >
pH3.0-WO3 > pH1.5-WO3 > pH7.0-WO3. Generally speaking, the recombination rate of
electron–hole pairs is related to the intensity of the luminescence peak. The sample with
strong luminescence peak intensity indicates the faster recombination rate of electron–hole
pairs, whereas the sample with weak luminescence peak intensity indicates the lower
recombination rate of electron–hole pairs. Therefore, the high intensity of the luminescence
peaks for CM-WO3 corresponds to higher charge carrier recombination. Among all the
WO3 samples, the pH7.0-WO3 exhibits the weakest luminescence peak intensity, indicating
the lowest charge carrier recombination rate in pH7.0-WO3, that is, the pH7.0-WO3 offers
an excellent photocatalytic activity.
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3.6. Electrochemical Impedance Spectra Analysis

Electrochemical impedance spectra (EIS) measurement was employed to investigate
the charge migration behavior between the photoinduced electrons and holes [27]. The
EIS Nyquist plots of electrodes based on as-prepared pHx-WO3 and the CM-WO3 are
shown in Figure 9. The ideal Nyquist plot will show three semicircles in the high-frequency,
medium-frequency, and low-frequency ranges, corresponding to the charge transfer at
the counter electrode–electrolyte interface, the charge transfer at the oxide–electrolyte
interface (Rct), and the diffusion of ions through the electrolyte, respectively [28]. Under
illumination, the photoinduced electron–hole pairs are separated by the applied potential,
resulting in the reduction of the Rct and the enhancement of the electronic conductivity
of the WO3 electrode [29]. The diameter of arc radius on the EIS Nyquist plot of the
pH7.0-WO3 is smaller than that of pH0.0-WO3, pH1.5-WO3, pH3.0-WO3, pH5.0-WO3,
and CM-WO3, indicating that the pH7.0-WO3 has the lowest electric resistance and the
highest conductivity. As we all know that the rapid separation of photoexcited electron–
hole pairs is essential to improving photocatalytic activity [30]. The high conductivity of
pH7.0-WO3 is also conducive to the transfer of electrons, thus promoting an effective charge
separation [30]. The Nyquist plots of pH0.0-WO3, pH1.5-WO3, pH5.0-WO3, and CM-WO3
have similar trends, and no typical semicircle is observed at high frequency, indicating the
lower electron–hole separation efficiency. The diameter of arc radius on the EIS Nyquist
plot of the pH3.0-WO3 is bigger than that of other WO3, suggesting that the pH3.0-WO3
has the highest electric resistance. No typical semicircle is observed on the EIS Nyquist plot
of pH3.0-WO3, indicating that the charge separation efficiency of pH3.0-WO3 is also very
low and lower than that of other WO3 samples.
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3.7. Photocatalytic Activity Analysis

The photocatalytic activities of WO3 samples prepared by adjusting the pH value in
the hydrothermal tungstic acid colloidal suspension were evaluated by the decolorization
of the MB solution. The adsorption values [mol(MB)/g(WO3)] of MB on the surface of
WO3 samples were 9.57 × 10−5, 5.72 × 10−5, 1.11 × 10−4, 1.13 × 10−4, 1.57 × 10−4, and
8.88 × 10−5 mol/g for the pH0.0-WO3, pH1.5-WO3, pH3.0-WO3, pH5.0-WO3, pH7.0-WO3,
and CM-WO3 samples, respectively. These results indicated that the enhancement order of
adsorption binding of MB to WO3 was pH1.5-WO3 < CM-WO3 < pH0.0-WO3 < pH3.0-WO3
< pH5.0-WO3 < pH7.0-WO3 and that the strong anchoring of MB onto the surface of pH7.0-
WO3 could improve the photocatalytic activity [31]. As shown in Figure 10a, under UV
light irradiation for 90 min, the photodegradation efficiency of MB increased in the order of
blank (5.8%) < CM-WO3 (45.7%) < pH0.0-WO3 (56.4%) < pH1.5-WO3 (59.5%) < pH3.0-WO3
(66.6%) < pH5.0-WO3 (90.5%) < pH7.0-WO3 (95.0%). That is, pH7.0-WO3 shows the highest
photocatalytic activity for the degradation of MB solution, and its degradation efficiency
is 1.05, 1.43, 1.60, 1.68, 2.08, and 16.38 times that of pH5.0-WO3, pH3.0-WO3, pH1.5-WO3,
pH0.0-WO3, CM-WO3, and blank samples, respectively. To quantitatively investigate the
photocatalytic reaction kinetics, the experimental data of the MB degradation were fitted by
a first-order model as expressed by the formula: ln(c0/ct) = kt, where c0/ct is the ratio of the
concentration dye at adsorption−desorption equilibrium and after various intervals of time
and k is the apparent first-order rate constant [27]. It can be seen from Figure 10b that there
is a linear relationship between ln(c0/ct) and t, which indicates that the photodegradation
reactions follow pseudo-first-order kinetics with apparent rate constants 0.0008, 0.0065,
0.009, 0.0099, 0.0121, 0.0281, and 0.0347 min−1 for blank, CM-WO3, pH0.0-WO3, pH1.5-
WO3, pH3.0-WO3, pH5.0-WO3, and pH7.0-WO3, respectively. Obviously, pH7.0-WO3 has
the largest degradation rate constant, which is 1.23, 2.87, 3.51, 3.86, 5.34, and 43.38 times
that of pH5.0-WO3, pH3.0-WO3, pH1.5-WO3, pH0.0-WO3, CM-WO3, and blank samples,
respectively. All the pHx-WO3 samples display higher performance in degrading MB
than CM-WO3. Moreover, for the pHx-WO3 samples, the photocatalytic performance is
enhanced with the increase in pH value of the suspension, and the photocatalytic activity
of pH7.0-WO3 is the highest, which is 3.86 times that of pH0.0-WO3.
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It is well known that the photocatalytic activity of photocatalysts is related to the
crystalline phase, crystal morphology, grain size, specific surface area, and exposed crystal
facets [32]. The crystalline phase of pHx-WO3 and CM-WO3 samples is the same, so the
crystalline phase is not the main factor affecting their photocatalytic activities. Based on
the previous analysis, it can be seen that the co-exposed crystal facets of pH5.0-WO3 ({110}
and {002} facets) and pH7.0-WO3 ({202} and {020} facets) nanocrystals with irregular mor-
phology are different from those of pH0.0-WO3, pH1.5-WO3, and pH3.0-WO3 nanocrystals
({002}, {020}, and {200} facets) with rod-shaped morphology. Generally speaking, the high-
energy {020} and {002} facets can provide more reactive sites, resulting in the enhanced
photocatalytic activity of WO3 [15]. However, compared with pH0.0-WO3, pH1.5-WO3,
and pH3.0-WO3 nanocrystals, the proportion of high-energy {020} and {002} crystal planes
in pH5.0-WO3 and pH7.0-WO3 nanocrystals is less, so the exposure of crystal planes is not
the main factor affecting their photocatalytic activities.

The particle size of the crystal is inversely proportional to the specific surface area.
Generally speaking, in photochemical reaction, a smaller particle size (enhancing redox
capacity) is conducive to the acceleration of the migration rate of photogenerated electrons
and holes and the deceleration of the recombination rate [33], and a larger specific surface
area (providing more adsorption sites) is conducive to the adsorption of dye molecules
on the surface of the catalyst [34], thereby improving the photocatalytic activity of the
catalyst. Based on the above discussion, the specific surface area ranks in the order of
pH7.0-WO3 (14.3 m2/g) > pH5.0-WO3 (13.7 m2/g) > pH3.0-WO3 (7.7 m2/g) > pH0.0-
WO3 (6.4 m2/g) > pH1.5-WO3 (5.4 m2/g) > CM-WO3 (2.6 m2/g). The increasing order
of photocatalytic activity is blank < CM-WO3 < pH0.0-WO3 < pH1.5-WO3 < pH3.0-WO3
< pH5.0-WO3 < pH7.0-WO3, which is almost the same as that of specific surface area.
Moreover, according to the previous PL and EIS analysis, pH7.0-WO3 has the weakest
luminescence peak intensity and the smallest arc radius diameter, indicating that the pH7.0-
WO3 has the highest separation and transfer efficiency and the lowest recombination rate
of photoinduced electron–hole pairs.

Multiple use evaluations of a photocatalyst can predict its long-term performance and
economic viability. The reusability of pH5.0-WO3 and pH7.0-WO3 for MB photocatalytic
degradation efficiency was examined, as shown in Figure 11. Filtered the methylene blue
solution containing solid catalyst after illumination to re-obtain pH5.0-WO3 or pH7.0-WO3
solid, and then dry it naturally for subsequent use. For pH5.0-WO3, 90.5% MB degradation
is found in the first run which decreases to 88.5% and 85.8% in the second and third
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run, respectively. For pH7.0-WO3, 95.0% MB degradation is found in the first run which
decreases to 92.7% and 89.6% in the second and third run, respectively. The photocatalytic
activity of pH5.0-WO3 and pH7.0-WO3 decreased only 4.7% and 5.4% for MB, respectively,
after three consecutive cycles, indicating that the pH5.0-WO3 and pH7.0-WO3 possessed
good reusability.
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Figure 11. Cyclic degradation curves of pH5.0-WO3 and pH7.0-WO3 for methylene blue solution.

Figure 12 is the XRD patterns of WO3 samples separated from methylene blue solution
after photocatalytic degradation. It can be seen from Figure 12 that the crystal structure
of pHx-WO3 and CM-WO3 has not changed after the photocatalytic reaction, indicating
that they are stable during the photocatalytic reaction. Compared with Figure 2, only the
crystallinity is reduced, which is caused by the dispersion of the agglomerated particles
under vigorous stirring conditions.
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Figure 12. XRD patterns of WO3 samples separated from methylene blue solution after photocatalytic
degradation: (a) pH0.0-WO3, (b) pH1.5-WO3, (c) pH3.0-WO3, (d) pH5.0-WO3, (e) pH7.0-WO3,
(f) CM-WO3,.

4. Conclusions

In summary, rod-shaped WO3 nanocrystals with co-exposed {002}, {020} and {200}
facets, cuboid-shaped WO3 nanocrystals with co-exposed {020} and {200} facets, and irreg-
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ular WO3 nanocrystals with co-exposed {110} and {002} facets (or {202) and {020} crystal
facets) were synthesized by a simple hydrothermal treatment of white tungstic acid col-
loidal suspension with desired pH values. The crystal structure, morphology, specific
surface area, pore size distribution, chemical composition, electronic states of the elements,
optical properties, and charge migration behavior of as-obtained WO3 products were
characterized by XRD, FESEM, TEM, HRTEM, XPS, fully automatic specific surface area
and porosity analyzer, UV–vis absorption spectra, PL spectra, and EIS. Photocatalytic
degradation of MB performance of the as-obtained WO3 nanocrystals was investigated
under ultraviolet irradiation. The increasing order of photocatalytic activity is blank <
CM-WO3 < pH0.0-WO3 < pH1.5-WO3 < pH3.0-WO3 < pH5.0-WO3 < pH7.0-WO3. The
highest photocatalytic activity of pH7.0-WO3 could be attributed to the synergistic effects of
the largest specific surface area, the weakest luminescence peak intensity, and the smallest
arc radius diameter in comparison with CM-WO3 and other pHx-WO3 nanocrystals.

Author Contributions: Conceptualization, Y.D. and X.N.; methodology, Y.D. and X.N.; formal
analysis, J.H. and X.L.; writing—original draft preparation, X.N. and Y.D.; writing—review and
editing, Y.D. and G.W.; funding acquisition, Y.D. and G.W. All authors have read and agreed to the
published version of the manuscript.
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the Jinzhong University “1331 Project” Key Innovation Team; Research Start-up Fee of Jinzhong
University; The 12th Batch of One Hundred Talent Plan Project in Shanxi Province (128. 129).
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