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Abstract: Multifunctional nanocomposites based on carbon nanotubes (CNT)-reinforced Surlyn,
which is a commercial ionomeric polymer, are manufactured by micro-compounding and hot-press
processes. Multifunctionality is studied in terms of electromechanical response and self-healing
abilities. The strain sensing analysis under tensile conditions shows ultra-high gauge factor (GF)
values from 10 to 20 at low strain levels up to 106 at high strain levels, and a decreasing sensitivity
as CNT content increases because of the reduction in the tunneling distance between neighboring
nanoparticles. The electromechanical response under consecutive tensile cycles demonstrated the
robustness of the proposed materials due to the repeatability of both responses. With regard to
mechanical properties, the addition of CNT induces a clear increase in Young’s modulus because the
nanoparticles enable uniform load distributions. Moreover, self-healing capabilities are improved
when 4 and 5 wt.% CNT are introduced because of the synergistic effect of the high thermal conductiv-
ity of CNT and their homogeneous distribution, promoting an increase in the thermal conductivity of
bulk nanocomposites. Thus, by comparing the measured functionalities, 4 and 5 wt.% CNT-reinforced
Surlyn nanocomposites showed a high potential for various applications due to their high degree
of multifunctionality.

Keywords: carbon nanotubes; structural health monitoring; self-healing; strain sensing;
multifunctionality

1. Introduction

Nowadays, there is an increasing interest in the development of multifunctional
nanocomposites. This type of nanocomposites is characterized by fulfilling two or more
different functionalities at the same time, typically, structural components with strain
sensing capabilities [1,2], energy storage capacity [3–5], self-healing properties [6,7], etc.

In recent years, new technologies of Structural Health Monitoring (SHM) have received
considerable interest because of their wide range of promising and unique properties. For
this purpose, different sensing technologies are used to collect data that will be processed
and interpreted to create a control system throughout the life cycle of an asset in terms of
detecting, locating, and quantifying the damage that can occur [8–10]. Some conventional
SHM techniques (acoustic emission, ultrasonic, Fiber Bragg, guided waves, etc.) are based
on extremely complex mathematical tools and do not provide completely on-line informa-
tion about the structure’s health, and, as a result, other options must be explored [11,12].
To solve this problem, polymeric nanocomposites doped with carbon nanoparticles such
as carbon nanotubes (CNT), carbon black (CB), or graphene nanoplatelets (GNP) have
emerged. The basis of this type of material lies in the fact that the addition of related
conducting nanoparticles promotes the creation of conducting networks inside the poly-
mer medium, which is electrically insulating. When above a critical volume fraction of
conductive nanoparticles, called the percolation threshold, a drastic increment of several
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orders of magnitude of the electrical conductivity is promoted [13–15]. The percolation
threshold depends on the characterized dimensions of conductive nanoparticles, ranging
from 0.01–1 wt.% for CNT to 5–15% for GNPs, due to their 1D or 2D nature. Therefore,
when damage or mechanical strain occurs, these electrical networks are affected, leading
to significant changes in the electrical behavior of the nanocomposite. Furthermore, this
type of nanocomposites should have high mechanical properties to act as a matrix in a
fiber-reinforced composite or as a surface sensor on a structural component [16,17]. For
this reason, GNP nanocomposites or flexible strain sensors are not suitable for these ap-
plications because of their poor mechanical behavior [18–23], despite the fact that new
functionalities such as self-healing, self-adhesive, or high-performance communications
have been achieved [24–27].

On the other hand, the investigation of strategies to develop self-healing functions
for polymeric materials is an emerging area of research. Self-healing materials have the
potential to significantly increase the working life and safety of structural components in a
variety of applications. Several self-healing concepts for polymeric materials have been
explored in the last 20 years, such as Diels–Alder reactions, ionomers, and supramolecular
polymers. These mechanisms are based on the ability of some polymers to recross or link
their chains. Typically, this mechanism needs an external stimulus to start, such as thermal,
photonic, or chemical activation [7,28]. In this regard, ionomeric polymers usually comprise
up to 20 mol.% of ionic species. The ionomer polymers are prepared in the form of chains
with ionic groups and add a sufficient counterion to the polymer matrix. The properties of
a self-healing ionomeric polymer can be altered by changing the ionic content. There are
many different types of ionomers available, each with a varying ratio and type of cations
used to neutralize acidic groups, such as sodium, magnesium, zinc, or lithium [29–31].

Therefore, this work is focused on the development of a multifunctional CNT-reinforced
Surlyn, which is an ionomeric commercial polymer. In this regard, strain sensing and
self-healing abilities have been explored. The electromechanical analysis allowed us to
determine the mechanical properties and the sensitivity of the electrical response under
applied strain, whereas the self-healing analysis indicated the influence of CNT on the vol-
umetric recovery percentage. Moreover, a strain cycling test was carried out to demonstrate
the repeatability of the electrical and mechanical responses and, thus, the robustness of the
proposed nanocomposites. Finally, a summary of the results obtained shows a comparative
study of the multifunctionality of the manufactured CNT-Surlyn nanocomposites to select
the optimal CNT content.

2. Materials and Methods
2.1. Materials

Nanocomposites were manufactured with CNTs embedded in an ionomeric ther-
moplastic matrix. The ionomeric thermoplastic matrix used for this investigation was
poly (ethylene-co-methacrylic acid) (EMAA) copolymer neutralized with 30 wt.% sodium,
which is a polymer with self-healing capabilities under the commercial name of Surlyn
8940® (DuPont, Wilmington, DE, USA). Surlyn have a density of 95 g/cm3, a melt flow
index of 2.8 g/10 min, and melting and freezing points measured by DSC of 94 ◦C and
63 ◦C, respectively. Multi-wall carbon nanotubes (MWCNTs) were produced via the Cat-
alytic Chemical Vapor Deposition (CCVD) process, under the commercial name NC7000
(Nanocyl®, Sambreville, Belgium). They have an average diameter of 9.5 nm, a surface area
of 250–300 m2/g, a length up to 1.5 µm, and a bulk density (EN DIN 60) of 66 kg/m3 with
a 90% of carbon purity.

2.2. Manufacturing of CNT-Reinforced Surlyn Nanocomposites

Surlyn-based nanocomposites reinforced with CNTs were manufactured in two steps:
first, CNTs were dispersed in Surlyn by the micro-compounding method; finally, their
pellets were hot-pressed in a mold with the final shape of samples. CNT contents (4, 5,
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6, and 7 wt.%) were selected to determine the degree of multifunctionality in terms of
mechanical properties, electrical conductivity, and self-healing capability.

On the one hand, CNTs were dispersed in Surlyn by the micro-compounding method
using an Xplore MC 15HT machine (Barcelona, Spain). In the micro-compounder chamber,
two counter-rotating conical screws were used to produce high shear forces on the mixture,
promoting the breakage of CNT agglomerates. Moreover, the screws had small notches to
induce certain reflux to favor CNT dispersion. Extruded filaments with a diameter of 3 mm
were manufactured at 250 ◦C with a screw turning speed of 50 rpm. A study of the influence
of compounding time on electrical conductivity measurements was carried out, taking
filaments for each CNT content at 2, 4, 6, 8, and 10 min. In this regard, 10 min was selected
as the optimal time to extract the filaments to manufacture the hot-pressed samples.

On the other hand, the extruded filaments were manually pelletized to a size of 3 mm
in length, and they were placed in the metallic mold with the final shape of the specimens
which was previously smeared with a layer of release agent based on polyvinyl alcohol
(Castro Composites). Finally, they were hot-pressed in a Fortijne Presses LPB 300 machine
(Delft, Netherlands), following the force/temperature cycle indicated in Figure 1.
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Figure 1. Hot-press force and temperature cycle for manufacturing bulk CNT–Surlyn nanocompo-
sites from their pellets. 
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micro-compounding method, the fracture surfaces under cryogenic conditions were ana-
lyzed by means of field-emission gun scanning electron microscopy (FEG-SEM), using an 
FEI TENEO machine (Thermo Fisher Scientific, Waltham, MA, USA). For proper charac-
terization, the nanocomposite cryofractures were coated with 7 nm of gold. 

2.3.2. Electrical Conductivity Characterization 

Figure 1. Hot-press force and temperature cycle for manufacturing bulk CNT–Surlyn nanocomposites
from their pellets.

2.3. Nanocomposite Characterization
2.3.1. Microstructural Characterization

To evaluate the dispersion state reached for CNT–Surlyn nanocomposites with the
micro-compounding method, the fracture surfaces under cryogenic conditions were ana-
lyzed by means of field-emission gun scanning electron microscopy (FEG-SEM), using an
FEI TENEO machine (Thermo Fisher Scientific, Waltham, MA, USA). For proper characteri-
zation, the nanocomposite cryofractures were coated with 7 nm of gold.

2.3.2. Electrical Conductivity Characterization

The electrical volume conductivity of extruded filaments and hot-pressed samples
was measured using a Keithley 2410 Source Meter Unit (Cleveland, OH, USA). It was deter-
mined by calculating the slope of the current-voltage curve at 0–100 V for extruded filaments
at low micro-compounding times, and at 0–10 V for extruded filaments at higher micro-
compounding times and hot-pressed samples, because of the higher electrical conductivity
expected in the last ones. Three specimens were evaluated for each condition, both extruded
filaments (length of 50 mm and diameter of 3 mm) and hot-pressed (35 × 16 × 2 mm3).
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Four electrodes made of copper wires were attached with silver ink to the sample to make
a four-probe measurement. Figure 2a,b show schemes of the placement of the electrodes in
the extruded filament and hot-pressed specimens, respectively.
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pressed samples, and (c) electromechanical tensile tests.

2.3.3. Electromechanical Tests

Electromechanical properties of CNT–Surlyn nanocomposites were evaluated under
tensile conditions using a ZWICK universal tensile machine (Ulm, Germany) equipped
with a load cell of 5 kN. At least three tensile hot-pressed specimens with 60 × 8 × 6 mm3

dimensions of each CNT content were tested at a cross head speed of 2 mm/min and a
preload of 25 N.

The electrical resistance was measured simultaneously with the mechanical test using
an Agilent DAQ970A (Santa Clara, CA, USA) data acquisition system with a DAQM902A
module. Two copper wire electrodes were placed in the center and around the nanocom-
posite surface for this purpose, with 15 mm between electrical contacts. To reduce contact
resistance, these electrodes were attached to the CNT–Surlyn nanocomposites with conduc-
tive silver ink, as shown in Figure 2c. Furthermore, samples were kept isolated from the
testing machine by applying an adhesive layer to the grips.

The gauge factor (GF) of the proposed sensors is an essential factor for characterizing
their electromechanical capabilities. It is a measure of electrical sensitivity to strain and
can be defined as the ratio of the normalized electrical resistance (∆R/R0) and strain (ε)
induced in the material given by the Equation (1):

GF =
∆R/R0

ε
(1)

where ∆R is the electrical resistance increment and denominated R0 is the initial electrical
resistance.

Moreover, to study the repeatability of the electromechanical response of the developed
nanocomposites, a tensile specimen of each CNT content was subjected to tensile cycling
for 200 cycles and up to 1% strain level, at a fixed rate of 20 mm/min.

2.3.4. Self-Healing Tests

The self-healing capabilities of nanocomposites were evaluated by comparing inden-
tation damage before and after the self-healing. Three surface indentation damages were
applied by a constant load of 10 kg for 15 s using the Shore D ASTM D2240-05 standard.
For this purpose, the volumetric recovery percentage, V, was calculated as indicated in
Equation (2):

V (%) =
V0 −Vf

V0
·100 (2)

where V0 is the initial volume of the indentation damage and Vf is the final volume after
the self-healing process that consisted of heating the sample with the damage indentation
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in an oven at 80 ◦C for 1 h. The temperature and duration of heating were chosen based
on previous investigations [32]. The different volumes were measured using a Zeta-20
Instruments 3D optical profilometer (Milpitas, CA, USA) which generated 3D micrographs.
These micrographs were obtained before and after the self-healing process and subsequently
processed with the Mountain Map Premium 7.1 software (Besancon, France).

3. Results and Discussion

The degree of multifunctionality of CNT-Surlyn nanocomposites were analyzed, in
terms of electrical, electromechanical, and self-healing capabilities. For this purpose, it is
very important to understand the role and the dispersion of CNT in Surlyn polymer matrix.

3.1. Electrical Conductivity Measurements

Figure 3 shows the values of electrical conductivity measurements for the different
CNT contents tested for extruded filaments at different compounding times and for hot-
pressed samples. The effect of both CNT content and compounding time can be analyzed.
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Figure 3. Electrical conductivity measurements of (a) extruded filaments at different compounding
times and (b) hot-pressed samples as function of CNT content.

First, as expected, it can be observed that an increasing amount of CNTs rebounded
into a higher electrical conductivity due to the creation of more electrical pathways within
the material, reaching values of near 10 S/m to 6 and 7 wt.% CNT. These values are higher
than those reported with a similar dispersion procedure and CNT content in thermoplastic
matrixes [33,34]. Furthermore, the electrical conductivity results proved that the percolation
threshold, that is, the minimum CNT fraction that allows the creation of electrical pathways,
was less than 4 wt.%. In this regard, it is important to note that samples with 3 wt.% CNT
were electrically unconducive with this processing.

Secondly, the higher the compounding time, the higher the electrical conductivity
values, as Figure 3a shows. This is because, in the micro-compounder chamber, two
counter-rotating conical screws were used to produce high shear forces on the mixture,
promoting the breakage of CNT agglomerates by rupture and erosion mechanism and,
thus, the higher electrical conductivity [35]. Moreover, nanocomposites needed a longer
compounding time to create effective electrical pathways when it comes to samples with a
lower concentration of CNT, as expected. For example, 7 wt.% of extruded filaments were
electrically conductive at 2 min in the chamber, whereas 4 wt.% started to show electrical
conductivity at 6 min. Here, 10 min was selected as the optimum compounding time
because the electrical conductivity values started to stabilize because the high shear forces
produced on the mixture also induced breakage of the CNTs themselves [36].
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On the other hand, similar electrical conductivity was observed when comparing
the extruded filaments (Figure 3a) with the hot-pressed samples (Figure 3b) for the same
CNT contents, which means that there were no important changes in the CNT distribution
during the hot-press process.

The good CNT dispersion of most of the samples was also confirmed by the FEG-SEM
analysis of cryofracture surfaces, as shown in Figure 4. Nanocomposites with lower contents
(4 and 5 wt.% shown in Figure 4a–f) promote a very homogeneous distribution, with the
absence of larger aggregates. However, nanocomposites with higher contents (6 and 7 wt.%
shown in Figure 4g–l) present some larger aggregates, as clearly shown in Figure 4l. The
right images showed a high-magnification detail of CNT-Surlyn nanocomposites, with
some individual CNT marked with orange circles. Despite the high CNT content (4–7 wt.%),
a homogeneous distribution of nanoparticles in the samples was reported.
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Figure 4. FEG-SEM images of the CNT–Surlyn nanocomposites at (a–c) 4, (d–f) 5, (g–i) 6, and (j–l) 7 wt.%
CNT. The left, center, and right images are at 1000, 6000, and 24,000 magnifications, respectively.
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3.2. Electromechanical Tests

Therefore, after analyzing the electrical properties of the CNT–Surlyn nanocomposites,
the electromechanical response was studied in detail. In this context, Figure 5 summarizes
some representative curves of the electromechanical behavior of the nanocomposites under
tensile load.
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(a) 4, (b) 5, (c) 6, and (d) 7 wt.% CNT.

When the electromechanical curves in Figure 5 were examined, the electrical resistance
exhibits a linear–exponential behavior with applied strain. This fact has been widely
reported [21,23], and it is related to the prevalence of tunneling mechanisms in the electrical
network formed in nanocomposites, in which migration of electrons between nanoparticles
takes place when there are two adjacent nanoparticles with a distance lower than 2 nm
inside an insulator media. According to Simmons [37], the electrical resistance associated
with the tunneling mechanism (Rtunnel) follows an exponential behavior with the tunneling
distance (t), that is the distance between adjacent nanoparticles, as shown in Equation (3).

Rtunnel =
h2t

Ae2
√

2mλ
exp

(
4πt

h

√
2mλ

)
(3)

where h is Planck’s constant, m and e are the electron mass and charge, A the cross-sectional
area of CNT nanoparticles, and λ the height barrier of the matrix.

In this regard, a pronounced exponential electrical response with the applied strain
can be observed for lower CNT contents (4 and 5 wt.%) in comparison with a more linear re-
sponse of higher CNT contents (6 and 7 wt.%), attributed to the prevalence of the tunneling
mechanism in detriment of the contact mechanism between nanoparticles [38]. The gauge
factor (GF) of the reported nanocomposites can be calculated using these electromechanical
curves, which is a typical measure of electrical sensitivity to strain. Figure 6 denotes the GF
obtained as a function of CNT content and applied strain.
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It can be observed that the GF increases with decreasing CNT content, as expected,
because the closer to the percolation threshold, the higher the sensitivity of the system [39].
Here, by increasing the CNT content (the number of nanoparticles), the average distance
between nanoparticles decreases and, therefore, the exponential variation in the electrical
resistance due to tunneling mechanisms is less prevalent, leading to lower electrical sensitiv-
ities, that is, lower GF. In this regard, 4 and 5 wt.% nanocomposites show an ultrasensitive
behavior, reaching a GF of 10–12 at ε = 0.01 and 104–106 at ε = 0.05, which are much higher
than those found in conventional metallic gauges for strain sensing purposes, which is
around 2. On the other hand, 6 and 7 wt.% nanocomposites have a much lower GF with
the applied strain, between 0.2 and 2.

Furthermore, Figure 7 shows the mechanical and electrical response of nanocomposites
under tensile cycling load at 1% strain levels. The goal is to demonstrate the repeatability
of the electrical and mechanical response and, as a result, the robustness of the proposed
nanocomposites. To prove their potential to detect low damage and strain, they were
tested at a cycling strain up to 1% strain level. Here, two significant facts can be stated:
on the one hand, the response under cyclic load is in agreement with the quasi-static
electric response previously reported and, the resistance changes decrease with increasing
CNT content, as expected; on the other hand, the sensitivity of the reported sensors is
constant over the 200 cycles because the change in the electrical resistance remains nearly
constant (distance between the peak and baseline) for each consecutive cycle. It denotes
that the electrical network is fully recovered after applying the load, with the absence
of microcracks. Moreover, although the sensitivity is maintained throughout the cycles,
the electrical curves shown in Figure 7b followed an initial downward trend that then
tended to stabilize, indicating that the resistance tends to decrease with the number of
cycles. This is because of the emergence of new conductive networks and their equilibrium
state after a period of adjustment, which is more prevalent with the higher CNT content,
as has been widely reported [40]. Therefore, the use of CNT–Surlyn nanocomposites for
Structural Health Monitoring purposes has been demonstrated since they can detect a
robust electromechanical response at low strains level.

In this type of nanocomposites, it is important to analyze the influence of CNT on
mechanical properties. Table 1 and Figure 5 show the values of mechanical properties
and stress–strain curves of nanocomposites, respectively. Here, the addition of CNT to
the Surlyn matrix causes a clear increase in Young’s modulus, a slight increase in tensile
strength, and a decrease in strain at failure. First, these results revealed no degradation
of the Surlyn polymer because of the double thermal procedure, i.e., filament extrusion
and hot-press procedure. The improvement of Young’s modulus and tensile strength can
be explained by the homogeneous CNT dispersion in 4 and 5 wt.% shown in Figure 4a–f,
which enables uniform load distributions and, thus, reduces the load concentration [41,42].
However, a slight reduction in strain at failure was observed with the higher CNT content,
which is accentuated in the 7 wt.% sample because it showed more CNT agglomerates
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(Figure 4g–l). These agglomerates promote the generation of free space between the matrix
and the reinforcement acting as a stress concentrator with the applied strain. This tendency
is in agreement with similarly reinforced nanocomposites [2,16,39].
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Table 1. Values of the mechanical and self-healing properties for neat Surlyn and CNT–Surlyn
nanocomposites.

Neat 4 wt.% CNT 5 wt.% CNT 6 wt.% CNT 7 wt.% CNT

E (GPa) 1.12 ± 0.07 1.22 ± 0.14 1.41 ± 0.16 1.50 ± 0.09 1.62 ± 0.20
σTS (MPa) 23.05 ± 2.70 21.37 ± 3.55 27.64 ± 4.45 28.09 ± 3.12 28.35 ± 4.98

εf 0.061 ± 0.005 0.059 ± 0.003 0.056 ± 0.007 0.058 ± 0.010 0.035 ± 0.009
V (%) 66 ± 2 73 ± 5 83 ± 2 65 ± 5 51 ± 11

E: Young’s modulus; σTS: tensile strength; εf: strain at failure; V: volumetric percentage of damage recovered.

3.3. Self-Healing Test

Figure 8 shows profilometer micrographs of the neat and reinforced Surlyn before and
after self-healing activated by convection heat in an oven at 80 ◦C for 1 h. Moreover, Table 1
indicates the volumetric percentage of damage recovered of the samples.

Here, it was corroborated that the volumetric recovery calculated for neat Surlyn
(66 ± 2%) coincided with that reported by the commercial manufacturer (68 ± 5%). In
this regard, the incorporation of CNT to the Surlyn matrix causes two different effects:
for low CNT contents (4 and 5 wt.%) a notable increase in self-healing was observed,
reaching values of up to 80 %; however, for high CNT contents (6 and 7 wt.%) a decrease
in the recovered volume was reported, even losing self-healing capacity with respect to
pure Surlyn.

On the one hand, the improvement in the self-healing values can be explained by the
synergistic effect of the high thermal conductivity of the CNTs (around 3000 W/mK) and
their homogeneous distribution, as reported in Figure 4a–f, promoting an increase in the
thermal conductivity of bulk nanocomposites and, therefore, in the volumetric recovery
percentage [43,44]. On the other hand, the decrease in the self-healing values is because the
increase in the number of nanoparticles and their tendency to agglomerate (as indicated in
the Figure 4g–l) can prevent the “ion hopping” and the elastic movement of the polymeric
chains, which are responsible for the self-healing process [6,24,42].
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3.4. Analysis of Optimum Conditions for Application

The selection of an optimum CNT–Surlyn nanocomposite depends on its multifunc-
tionality. The multifunctionality is studied in terms of electrical conductivity, electrical
sensitivity (Gauge Factor), mechanical properties (Young’s modulus), and self-healing prop-
erties (volumetric percentage of damage recovered). Here, a radar chart was constructed to
obtain a complete overview [45]. For this analysis, neat Surlyn is not considered, because it
is not multifunctional.

In this radar chart, each measured property has been rescaled from 0 to 1, with
1 denoting the best performance for that property. As a result, the “best” material will
have a factor of 1, whereas the rest of the conditions were rescaled based on the value
of this property. This reescalation follows a linear trend for the gauge factor, Young’s
modulus, and self-healing properties. However, because of the high sensitivity to small
variations in electrical conductivity, it has been rescaled using a logarithmic trend, with
1 symbolizing the highest measured electrical conductivity, and 0 denoting the conductivity
at the percolation threshold, which has been fixed at 10−5 S/m as observed in this work.

Figure 9 shows the calculated values of the mentioned properties. Here, the area
occupied by the curves gives an idea of the multifunctionality of nanocomposites. In this
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regard, the nanocomposites with 4 and 5 wt.% CNT show higher multifunctionality than
those containing 6 and 7 wt.% CNT. Surlyn reinforced with 4 and 5 wt.% CNT seems
to be a very promising solution for accomplishing all the analyzed functionalities, due
to the good balance conferred by a good CNT dispersion. Furthermore, depending on
whether electrical sensitivity or self-healing capability is prioritized, nanocomposites with
4 or 5 wt.% CNT can be selected for each final application, respectively. In any case, the
CNT–Surlyn nanocomposites showed a high potential for various applications due to their
high degree of multifunctionality.
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4. Conclusions

The electromechanical response and self-healing abilities of multifunctional nanocom-
posites made of CNT-reinforced Surlyn were investigated. The analysis of electrical con-
ductivity values showed that the percolation threshold was less than 4 wt.% CNT and the
extruded filaments reached similar conductivity to hot-pressed samples for the same CNT
content. The strain monitoring response under tensile conditions showed that an increase
in the CNT content leads to a decrease in the sensitivity because of the reduction in the
tunneling distance between neighboring nanoparticles, reaching a GF for 4 and 5 wt.%
CNT of 10–12 at ε = 0.01 and 104–106 at ε = 0.05, which are much higher than those found
in conventional metallic gauges for strain sensing purposes. Moreover, the electromechan-
ical response under tensile cycles demonstrated the robustness of nanocomposites. The
addition of CNT to the Surlyn matrix causes a clear increase in Young’s modulus and a
slight increase in tensile strength, explained by the good CNT distribution which enables
uniform load distributions. The improvement in the self-healing values when 4 and 5 wt.%
CNT are introduced can be explained by an increase in the thermal conductivity of bulk
nanocomposites. Therefore, by comparing the measured properties, Surlyn reinforced with
4 and 5 wt.% CNT seems to be a high potential solution for accomplishing all the analyzed
functionalities, selecting one content or another depending on which properties are most
critical in the final application.
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