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Abstract: Liquid crystal display (LCD)-based 3D printing, a facile and cost-effective manufacturing
technique, is often applied when fabricating objects with porcelain structures using photosensitive
resins (PSRs). Currently, 3D printed constructions are typically used as models for demonstration
purposes rather than industrial applications because of their poor performance. In this study, we
prepared nanocomposites by incorporating Ti3C2 MXene nanosheets to enhance the overall charac-
teristics of a PSR, including mechanical properties and thermal resistance. Notably, the designed
nanocomposites showed optimum performance at an MXene loading of 0.5% w/w. The mechanical
properties of the designed nanocomposites confirmed the enhanced ultimate tensile and flexural
strengths (by 32.1% and 42.7%, respectively), at 0.5% w/w MXene loading. Moreover, the incorpo-
rated MXene presented no substantial influence on the toughness of the PSR. The glass transition
and thermal degradation temperatures at 5% weight loss increased by 7.4 and 10.6 ◦C, respectively,
resulting predominantly from the hydrogen bonding between the PSR and MXene. Together, the
experimental results indicate that the designed PSR/MXene nanocomposites are expected to replace
pristine resins for LCD printing in various practical applications.

Keywords: 3D printing; photosensitive resin; mechanical property; thermal resistance

1. Introduction

Additive manufacturing (AM), also referred to as 3D printing, is a facile, rapid, and
cost-effective method for fabricating 3D objects with porcelain structures in a layer-by-layer
manner for personalized customization [1,2]. Owing to its unique advantages, 3D printing
has been employed in diverse applications, such as catalysis [3], electronic sensors [4],
aerospace [5], and tissue engineering [6,7]. Various 3D printing technologies have been
developed to meet different requirements, such as those for fused filament fabrication, digi-
tal light processing (DLP), stereolithography (SLA), liquid crystal display (LCD), selective
laser sintering, powder bed fusion, and inkjet printing. Among the various 3D printing
technologies available, vat polymerization, involving SLA, DLP, and LCD [8], is the most
widely applied technique because of the excellent surface finish quality and the precision
of the printed workpieces produced at high printing speed [9]. Specifically, the use of
LCD technology in imaging systems has garnered significant interest from researchers for
manufacturing inexpensive LCD printers [10].

Currently, 3D printed parts, which are predominantly used as prototypes, suffer from
poor performance, hindering their practical translation to the industrial scale. Therefore,
obtaining photosensitive resins (PSRs) with good overall properties for LCD 3D printing
is crucial. As the PSRs undergo selective UV-curable reactions during the printing pro-
cess [11], the strategy for enhancing the properties can be derived from the UV-curable
resins of other vat polymerization technologies. To enhance the properties of the UV-
curable resins, most efforts have focused on the molecular design of polymer chains [12]
and the introduction of nanofillers [13]. Fabricating effective nanocomposites involves
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combining various materials to obtain the desired properties, thereby overcoming the
performance limitations of the polymers in pristine materials. Several nanofillers that
enhance the mechanical properties and thermal resistance of 3D-printed workpieces from
vat polymerization have been investigated, including graphene [14], nanofibers [15], and
inorganic oxide nanoparticles [16].

Among the nanomaterials, transition metal carbides/nitrides (MXene) have recently
emerged as novel two-dimensional nanomaterials, which are of specific interest in engineering-
based applications [17]. MXene nanosheets have been verified to be promising nanofillers
for improving the thermal and mechanical properties of polymers. In a study by Shi et al. [18],
the prepared MXene/polypropylene nanocomposites enhanced the initial degradation
temperature (by 79.1 ◦C) and tensile strength (by 35.3%) compared with the pristine mate-
rial. Similarly, by introducing MXenes, the tensile strength of thermoplastic polyurethane
nanocomposites improved by 41.2% at 0.5 wt% filler loading, and the transfer of gas
molecules from the nanocomposites was hindered at high temperatures [19]. For 3D
printing, MXene has been used in supercapacitor preparation [20] and bone reconstruc-
tion [21,22]. However, the effects of MXene on UV-curable systems for 3D printing are of
less concern.

In this study, MXene-based PSR nanocomposites were prepared to explore the effect
of the MXene on LCD 3D printing. Initially, MXene was etched and exfoliated from
Ti3AlC2 and then characterized by transmission electron microscopy (TEM), atomic force
microscopy (AFM), and X-ray diffraction (XRD). Then, the PSR/MXene nanocomposites
were produced using a commercial LCD printer. Furthermore, the effects of MXene on the
mechanical and thermal performances of the designed nanocomposites were systematically
explored. The MXene-reinforced nanocomposites prepared in this work could pave the way
for novel PSRs and broaden the use of LCD 3D printing in extended industrial applications.

2. Materials and Methods
2.1. Materials

Urethane diacrylate oligomer (CN1964 NS) and (4) ethylene oxide pentaerythritol
tetraacrylate (SR494 NS) were provided by Sartomer Co., Ltd. (Guangzhou, China).
Diphenyl (2,4,6-trimethyl benzoyl) phosphine oxide (TPO), poly(ethylene glycol) diacrylate
(PEGDA-200, Mw ~200), and lithium fluoride (LiF, AR 99%) were obtained from Aladdin
Reagent Co., Ltd. (Shanghai, China). Ti3AlC2 (400 mesh) was supplied by XinXi Technol-
ogy Co., Ltd. (Foshan, China), and concentrated hydrochloric acid (HCl, 35–37% aq.) was
obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Preparation of the Exfoliated MXene Nanosheets

In a Teflon vial, 0.5 g of LiF and 10 mL of 9 M HCl were mixed at room temperature
for 20 min. Then, 0.5 g of Ti3AlC2 raw powder was gradually added to the vial under
stirring, and the mixture was heated to 35 ◦C for 35 h under magnetic agitation to etch the
Al interlayers. Further, the residual powders were washed with ultrapure water until the
pH of the supernatant exceeded 6. After that, the mixture was subjected to ultrasonication
for 45 min to obtain the exfoliated MXene nanosheets. The suspension was centrifuged at
4000 rpm for 10 min to separate the non-exfoliated Ti3C2, and the colloidal suspension with
the exfoliated MXene nanosheets was freeze-dried to obtain a few-layered MXene.

2.3. Preparation of the PSR/MXene Nanocomposites

In this study, the pure PSR comprised a mixture of 40 phr of CN1964 NS, 10 phr of
SR494 NS, 48 phr of PEGDA-200, and 2 phr of TPO. A specific loading of exfoliated dry
MXene nanosheets was dispersed in the diluents (PEGDA-200) via sonication in an ice bath
for 30 min. The remaining components of the PSR were then added, and the mixture was
stirred at 50 ◦C for 1 h in the dark. All the specimens were prepared using an LCD printing
apparatus (S100, Doumi, Xiamen, China). The thickness of each obtained layer was around
0.05 mm. The irradiation time intervals in the printing process for the base six layers and
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remaining layers for all the samples were 45 and 10 s, respectively. After 3D printing, the
samples were washed several times with ethanol until there was no residual liquid resin on
their surfaces.

2.4. Characterization

The TEM images were collected using an FEI transmission electron microscope (Hi-
tachi, Japan) operated with an acceleration voltage of 200 kV. In contrast, the AFM images
of the exfoliated MXene nanosheets were obtained using a Dimension FastScan atomic
force microscope (Bruker Dimension Icon, Hamburg, Germany). The XRD patterns of the
samples were obtained through an X-ray diffractometer (Bruker D8 Advance, Germany)
with assisted Cu-Kα radiation. The rheological studies were carried out using a rheometer
(Discovery Hybrid Rheometer-2, TA, New Castle, DE, USA) with a 40 mm parallel-plate
champ for a shear rate ranging from 0.1 to 100 s−1 at 25 ◦C, and the gap between the clamps
was 0.5 mm. The mechanical properties, including tensile, flexural, and fracture behaviors
of the pure PSR and PSR/MXene nanocomposites, were investigated using a universal ma-
terial testing machine (AGX-100 plus, Shimadzu, Kyoto, Japan) following the ISO 527, ISO
604, and ASTM 5045 standards. The test speed in tension and flexure was 2 mm/min, and
fracture tests were conducted at 10 mm/min. The Izod impact strengths of the pure PSR
and PSR/MXene were measured by a Charpy tester (CEAST 9050, Torino, Italy) according
to ISO 180. At least five specimens were tested to obtain the average value in mechanical
tests, and the tests were performed under conditions of 25 ± 2 ◦C and 50 ± 5% relative
humidity. The nanoindentation analysis was conducted using a nanoindenter (Hysitron
Inc., Tribo Indenter 750, Minneapolis, MN, USA) by exploring a matrix of 6 × 6 indentations
with a 50 µm distance in each sample. The dispersion of MXene in the PSR matrix was inves-
tigated using TEM for observing the ultrathin nanocomposites from an ultrathin microtome
machine (EM UC7, Leica, Bensheim, Germany). The microstructure of Ti3AlC2 before and
after etching and the fracture surfaces of the samples after the tensile tests was observed by
scanning electron microscopy (SEM, SU 5000, Hitachi, Tokyo, Japan). The samples were
covered with a gold layer before observation to improve conductivity. Dynamic mechanical
analysis (DMA) of the pristine PSR and PSR/MXene nanocomposites was carried out using
a dynamic mechanical analyzer (242E, Netzsch, Bavaria, Germany) in a single cantilever
pattern at temperatures ranging from 30 to 180 ◦C at a heating rate of 3 ◦C·min−1. The
test frequency was set to 1 Hz, and the test amplitude was 10 µm. Each specimen was of
35 × 13 × 3 mm in dimensions, and at least three specimens were tested for each material.
Thermogravimetric analysis (TGA) was performed using STA449F3 (Netzsch, Bavaria,
Germany) from 30 to 800 ◦C at a 10 ◦C·min−1 heating rate in an air atmosphere.

3. Results
3.1. Morphology of the MXene Nanosheets

A schematic of the as-prepared exfoliated MXene nanosheets is shown in Figure 1a,
which depicts a two-step process. To study the etching effect, the morphologies of Ti3AlC2
and Ti3C2 were investigated by SEM. Bulk Ti3AlC2 raw powders with metallic and cova-
lent/ionic bonds [23] showed a compact layered structure (Figure 1b). After etching with
LiF and HCl, the microstructure of Ti3C2 showed a loosely stacked multilayer structure and
a wrinkle-like morphology (Figure 1c). The resultant gaps could be attributed to removing
the Al atoms between the interlayers. The morphological features of a single-layer MXene
nanosheet were observed using TEM, which indicated excellent transparency (Figure 1d).
The high-resolution TEM images (Figure S1) showed that the exfoliated MXene nanosheets
formed of a single- or few-layered feature. From the AFM results, the thickness of the
exfoliated MXene nanosheets was approximately 2 nm (Figure 1e,f), indicating that the
few-layered MXene nanosheets were obtained after the ultrasonication-assisted exfoliation.
In the XRD patterns curves (Figure 1g), the peak at the 2θ angle of 39◦ could be attributed
to the (104) lattice plane of Ti3AlC2, nearly disappearing in the curve of exfoliated Ti3C2
and stemming from the vanished Al layers [24]. Furthermore, it was observed that the (002)
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peak moved to a lower 2θ angle, demonstrating a more considerable interlayer distance in
the exfoliated Ti3C2 and providing substantial evidence of the successful formation of the
MXene nanosheets.
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Figure 1. (a) Schematic of the synthesis of the MXene nanosheets. SEM images of the Ti3AlC2

powders (b) before and (c) after etching. (d) TEM and (e) AFM images of the MXene nanosheets.
(f) The corresponding height curve of the exfoliated MXene nanosheets. (g) XRD patterns of Ti3AlC2

and the exfoliated Ti3C2 nanosheets.

3.2. 3D Printing and Rheological Studies

The exfoliated MXene nanosheets were added to the liquid resin for UV 3D printing;
the liquid PAR/MXene could be stable for 36 h at 25 ◦C without any visible sedimentation
(Figure S2). These nanocomposites were fabricated using a commercial LCD 3D printer
(Figure 2a). In this LCD-based 3D printing process, the photoinitiator was applied to induce
the oligomer and monomer polymerization, after which the MXene nanosheets were shack-
led in the cured PSR network. Several objects with elaborate structures were manufactured
from the PSR/MXene nanocomposites containing 0.50% w/w MXene (Figure 2b). It should
be noted that the rheological properties of the liquid resins are crucial for vat polymeriza-
tion [25]. Nevertheless, the changes in the viscosity and shear behavior after the absorption
of MXene into the PSR are inevitable. As presented in Figure 2c, a slight increase in the
viscosity of the PSR/MXene nanocomposites was observed compared to the pure PSR at the
same shear rate. Moreover, an increase in the viscosity of the nanocomposites was observed
with an increase in the loading of MXene in the nanocomposites. However, the increase in
the viscosity was insignificant because of the small amounts of fillers added. Compared to
other UV-curable resins for LCD printing [26,27], the viscosity of PSR/MXene used in this
study was within the acceptable range. Moreover, no change in the viscosity of pristine
PSR was observed for the shear rates ranging from 0.1 to 100 rad·s−1, demonstrating the
pure PSR to be a Newtonian fluid. At lower values of MXene loading (≤0.5% w/w), the
PSR/MXene nanocomposites showed minimal changes in their viscosities with the shear
rate. The rheological characteristics of the slurry, such as thixotropy and shear thinning,
were observed at relatively higher shear rates and 0.75% w/w MXene, suggesting that
incorporating large amounts of MXene changed the PSR fluid type. The shear-thinning
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behavior in vat photopolymerization 3D printing was in agreement with the literature [28].
Accordingly, the designed PSR/MXene nanocomposites exhibited potential for current
commercial LCD 3D printers.
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shear rate.

3.3. Mechanical Properties

Various industrial applications require diverse 3D printed parts with different me-
chanical properties: soft to hard or rigid to tough. The tensile behaviors of the 3D-printed
samples were investigated, and the actual stress–strain curves from the tensile tests of the
pure PSR and PSR/MXene nanocomposites are plotted in Figure 3a. To evaluate the tensile
performances of the samples, the ultimate tensile strength, Young’s modulus, and elonga-
tion at break were investigated (Figure 3b and Table 1). A certain degree of improvement
in the tensile properties of the samples was observed with the incorporation of the MXene
nanosheets. The ultimate tensile strength of the nanocomposites initially increased and
then deteriorated as the amount of MXene increased. The nanocomposites with 0.5% w/w
MXene exhibited the highest tensile strength (∼32% increase). At 0.75% w/w MXene, the
tensile strength (21.8 MPa) of the nanocomposites decreased, but retained a slightly higher
value than that of the pure PSR (19.3 MPa). It was observed that Young’s modulus of
each the PSR/MXene nanocomposites was enhanced with increasing MXene concentration,
which could be attributed to the high stiffness of MXene compared with that of the polymer
matrix. Interestingly, the improvements in the tensile strength and modulus were not
associated with a significant reduction in the elongation at break. A slight decline in the
elongation at a break of 5.5% was observed in the nanocomposites containing 0.5% w/w
MXene. This may be attributed to the lamellar barrier effect of MXene, which would restrict
the polymeric segmental relaxation and cause a decrease in strain to a certain degree [29].
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However, due to the breakdown of the hydrogen bond, the interface debonding slightly
enhanced the elongation at break [30], leading to slight strain degeneration.
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Table 1. Detailed tensile data of the pure PSR and PSR/MXene nanocomposites.

Sample Tensile
Strength (MPa)

Tensile
Modulus (MPa)

Elongation at
Break (%)

Improved
Strength (%)

PSR 19.3 ± 1.1 510 ± 20 7.3 ± 0.2 –
0.25% w/w MXene 22.0 ± 1.3 565 ± 16 7.2 ± 0.1 14.0
0.50% w/w MXene 25.5 ± 1.6 650 ± 21 6.9 ± 0.2 32.1
0.75% w/w MXene 21.8 ± 2.2 712 ± 28 4.6 ± 0.3 12.9

In addition to the tensile behavior, the flexibility of the as-prepared PSR/MXene
nanocomposites was explored to further determine the effect of MXene. The stress–
strain curves of the flexural behavior of the PSR/MXene nanocomposites are displayed
in Figure 3c, and the detailed data, including the ultimate flexural strength, modulus, and
strain at break, are listed in Figure 3d and Table 2. Although the tri-functional monomer
(SR494 NS) introduced in this study could improve the flexural strength by increasing
the crosslinking density in the PSR, the flexural strength (33.0 MPa) of the pristine PSR
was extremely low, and impractical for meeting application requirements. Similarly to
the tensile behavior, the flexural strength of the PSR/MXene nanocomposites tended to
increase and then decrease as the MXene loading increased. As expected, the flexural
fracture strength of the nanocomposites containing 0.5% w/w MXene reached the optimal
value of 46.4 MPa, an improvement of 42.7%. With the introduction of MXene, the strain
at a break of the nanocomposites gradually decreased as the loading increased (≤0.5%
w/w) and significantly reduced at 0.75% w/w MXene. The experimental results suggest
that an optimal amount of MXene would enhance the strength and modulus (including the
tensile and flexural properties) of the PSR while maintaining the strain at break, indicating
constant toughness.
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Table 2. Detailed data of the pure PSR and PSR/MXene nanocomposites from the flexural tests.

Sample Flexural
Strength (MPa)

Flexural
Modulus (GPa)

Strain at
Break (%)

Improved
Strength (%)

PSR 32.8 ± 2.2 1.1 ± 0.1 5.6 ± 0.1 –
0.25% w/w MXene 40.6 ± 1.7 1.5 ± 0.1 5.5 ± 0.2 23.8
0.50% w/w MXene 46.8 ± 2.0 1.7 ± 0.1 5.2 ± 0.1 42.7
0.75% w/w MXene 43.1 ± 2.1 1.9 ± 0.1 3.3 ± 0.4 31.4

To evaluate and confirm the above inference, the toughness values of the pure PSR
and PSR/MXene nanocomposites were examined through single-edge notch three-point
bending (SENB) tests. The fracture toughness (KIC) was obtained from the SENB tests
(Figure 3e). The KIC of the PSR/MXene nanocomposites with 0.5% w/w was 2.85 MPa/m2;
compare that with the 2.23 MPa/m2 of the pure PSR: a 27.8% increase. The fracture
toughness of the nanocomposites decreased to 2.22 MPa/m2 at 0.75% w/w MXene, which
was approximately equal to that of the pure PSR, suggesting that incorporating MXene
would have no substantial influence on the toughness of the PSR. A similar result could be
observed for the Izod impact strength (Figure 3f).

To further explore the mechanistic effect of MXene on the nanocomposites, the frac-
tured surfaces obtained after tension were observed using SEM (Figure 4). The fracture
surfaces of the pure PSR were smooth and glassy (Figure 4a), which could have been
due to the uniform internal stress distribution in the absence of the nanofillers. During
the fracture process, cracks rapidly propagated along the interface vertical to the force
applied, leading to relatively low tensile strength (as observed from the tensile tests of
Figure 3a). The nanocomposites were comparatively coarser, having rougher fracture sur-
faces (Figure 4b–d), because of the several linear and nonlinear slits. Furthermore, the
fracture surfaces became more uneven and more wrinkled at higher MXene loadings.
Owing to the presence of MXene in the nanocomposites, which were considered stress
concentrators, the cracks were propagated along an obstructed path in the spatial direction,
leading to the formation of several microcracks during the fracture process. Hence, more
fracture energy could be absorbed in the nanocomposites, as reflected by the higher ten-
sile strength at the macro level. Moreover, several MXene nanosheets located in front of
the cracks (marked with arrows in Figure S3a,c) indicated that the incorporated MXene
effectively prevented the growth of the cracks in the PSR. The small holes in the fracture
(Figure S3b) indicated that the MXene nanosheets was pulled out from the PSR matrix
during the disruption, allowing for energy absorption. However, at 0.75% w/w MXene, it
became difficult to disperse the MXene mass uniformly in the PSR matrix. The agglom-
eration of the MXene caused the formation of microdefects (Figure S3d), resulting in the
deteriorated mechanical properties.

Based on the above analysis, incorporating MXene at an optimal amount of approx-
imately 0.5% w/w enhanced the mechanical performance of the PSR, which could be
attributed to the following two reasons. First, the strong interactions between the PSR and
MXene (the correlative schematic is shown in Figure 5a) in the form of hydrogen bonding
of the -OH groups of MXene with the oligomers or monomers in the PSR matrix [31]. More-
over, the strong interface interactions may allow the nanocomposites to effectively bear the
stress and adequately transfer the destructive energy to the nanocomposites (Figure 5b).
Second, the existence of MXene with a two-dimensional scale could restrict the movement
of the polymer chains [32,33]. In part, the physical crosslinking in the nanocomposites
could enhance mechanical strength. Nevertheless, a higher content of MXene (0.75% w/w)
would lead to its agglomeration in the PSR matrix (Figure S4b). Thus, the mass of the
nanofillers affected the photopolymerization of the polymer matrix, resulting in a lower
crosslinking density (observed in the DMA tests) and deterioration in the mechanical
strength of the nanocomposites.
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In addition to the macro-mechanical properties, micro-mechanical properties are often
required. To explore these aspects, nanoindentation analyses were carried out to investigate
the mechanical performances of the pure PSR and as-prepared nanocomposites at the
macroscale. The load against the depth of the indenter for the PSR/MXene nanocomposites
is plotted in Figure 6a, and the data are provided in Table 3. The maximum depths of the
nanocomposites were smaller than that of the pure PSR, indicating that the incorporation
of MXene effectively improved the micro-mechanical properties. Notably, this ability could
have originated from the higher stiffness of the MXene nanosheets than the polymer matrix.
However, unlike the overall mechanical properties, which initially increased and then
decreased with increasing nanofiller loading, the maximum depths in the nanoindentation
tests continued to increase as the MXene content increased (0.75% w/w); i.e., the trend at
the nanoscale test did not fluctuate as that in the macroscale. The reason behind this could
be that the micro-mechanical properties of the nanocomposites are not dependent on the
flocculation/dispersion of the MXene nanosheets. Moreover, the final depths of the inden-
tation in PSR decreased after absorbing MXene, demonstrating that the nanocomposites
have a stronger ability to inhibit plastic deformation. In this context, some additional pa-
rameters, such as hardness and reduced modulus, were obtained (Figure 6b). At up to 0.5%
w/w MXene, hardness and reduced modulus values markedly increased, but only slightly
increased at 0.75% w/w MXene (reduced modulus = 2.98 GPa and hardness = 0.16 GPa,
corresponding to improvements of 19.7% and 23.1%, respectively). Based on the afore-
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mentioned results, the incorporation of MXene would effectively enhance the mechanical
performances of pristine PSR.
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Figure 6. (a) Indentation load-depth curves for pristine PSR and its nanocomposites. (b) Reduced
modulus and hardness of the PSRs with varying MXene content.

Table 3. Detailed data of the pure PSR and PSR/MXene nanocomposites from nanoindentation analyses.

Sample Max Depth
(nm)

Final Depth
(nm)

Hardness
(GPa)

Reduced
Modulus (GPa)

PSR 659.3 ± 23.52 330.1 ± 17.51 0.13 ± 0.01 2.49 ± 0.1
0.25% w/w MXene 619.0 ± 25.53 259.5 ± 17.10 0.15 ± 0.01 2.68 ± 0.12
0.50% w/w MXene 605.8 ± 24.21 293.0 ± 18.23 0.16 ± 0.01 2.94 ± 0.13
0.75% w/w MXene 598.9 ± 22.40 289.8 ± 19.17 0.16 ± 0.01 2.98 ± 0.18

3.4. Thermal Properties

In addition to the comprehensive mechanical properties, the thermal analysis of the
printed objects is crucial for industrial applications. The thermal properties of the PSR and
PSR/MXene nanocomposites were determined using DMA. The results are presented in
Figure 7 and Table 4. As depicted in Figure 7a, the storage modulus increased from 1199.6
to 1526.5 MPa at 30 ◦C as the loading of MXene increased from 0 to 0.5% w/w. However, at
0.75% w/w MXene, the storage modulus slightly decreased to 1521.0 MPa. Since MXene
possessed a higher storage modulus than the pristine PSR, the stiffness of the nanocom-
posites improved. Meanwhile, arising from the uniform dispersion of a suitable amount
of MXene in the PSR (Figure S4a), a reinforced effect due to the nanofillers was achieved.
In addition, the strong interactions due to the hydrogen bonding hindered the mobility of
the polymer chain around MXene [34], which could have been associated with the higher
storage modulus of the nanocomposites. In addition, the crosslinking densities (υe) of the
pure PSR and PSR/MXene nanocomposites were calculated from the DMA tests [35]. The
nanocomposites demonstrated an increase in the crosslinking density compared with the
pure PSR (Table 4). However, the crosslinking density of the nanocomposites containing
0.75% w/w MXene became lower. In the PSR/MXene nanocomposite, the free volumes
were occupied by the MXene nanosheets, and the hydrogen bonding compressed the
polymer chains, leading to the increased crosslinking density. However, the agglomerated
MXene would hinder the polymerization of the PSR, resulting in a lowered crosslinking
density [36].

The glass transition temperature (Tg), corresponding to the temperature of the tan
δ peak, was also obtained from the DMA tests (Figure 7b). The pristine PSR without the
nanofillers exhibited a tan δ peak at 63.4 ◦C. By introducing 0.25 and 0.5% w/w MXene,
the Tg of the nanocomposites increased to 68.2 and 70.8 ◦C, respectively, which could be
attributed to the restricted motion of the polymer chain because of the MXene nanosheets.
In addition, the higher degree of hydrogen-bond-based crosslinking between MXene and
the polymer chain was beneficial for increasing the Tg [37]. At 0.75% w/w MXene, the Tg
value decreased to 69.4 ◦C, which might have been due to the poor dispersion of MXene at
higher loadings.
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Figure 7. (a) Storage modulus and (b) tan δ for the pure PSR and PSR/MXene nanocomposites. The
insets in (a,b) present the variation in the storage modulus at around 120 ◦C and Tg with varying
MXene content, respectively.

Table 4. The detailed data of the pristine PSR and PSR/MXene nanocomposites from the DMA study.

Sample
Storage Modulus

(MPa) Tan δ
Peak Height

Tg (◦C) υe (mol/m3)
30 (◦C) 140 (◦C)

PSR 1199.6 ± 5.4 111.9 ± 1.4 0.264 ± 0.012 63.4 ± 1.2 12,622.6
0.25% w/w MXene 1424.1 ± 7.2 123.9 ± 1.0 0.247 ± 0.015 68.2 ± 0.9 12,774.7
0.50% w/w MXene 1526.5 ± 6.3 124.0 ± 0.9 0.243 ± 0.010 70.8 ± 1.0 14,071.2
0.75% w/w MXene 1521.0 ± 3.1 124.2 ± 1.0 0.258 ± 0.012 69.4 ± 0.8 12,958.9

The thermal degradation behavior of the nanocomposites was evaluated using TGA.
The thermograms of the PSR and PAR/MXene nanocomposites are depicted in Figure 8.
The TGA data, including the temperature at 5% weight loss (T−5%), the temperature at 50%
weight loss (T−50%), and char residues at 800 ◦C, are displayed in Table 5. The thermal
stability of the PSR and its nanocomposites in terms of weight loss occurred in the range of
200–600 ◦C. The T−5% and T−50% of the pristine PSR were 295.6 and 383.2 ◦C, respectively.
By incorporating MXene at relatively lower loadings of 0.25% and 0.5% w/w, the T−5% and
T−50% values of the nanocomposite were significantly improved. The optimum value of
T−5% at 0.5% w/w of MXene was approximately 306.2 ◦C. In comparison, the maximum
T−50% was 396.9 ◦C in the nanocomposite containing 0.25% w/w MXene, indicating that
the motility of the polymer chains might be affected by the introduced MXene nanosheets
during thermal degradation. Further, MXene would hinder the diffusion of the volatile
components and heat transfer [38]. The strong interactions between MXene and the PSR
matrix delayed the scission of the polymer chains, resulting in improved thermal resistance
of the PSR/MXene nanocomposites. Comparatively, the T−5% and T−50% values decreased
at the concentration of 0.75% w/w MXene. In addition, compared to pure PSR, the char
yields of the nanocomposites increased with increasing MXene content. The presence of Ti
and C from MXene would have contributed to the char yield. In addition, a large amount
of titanium dioxide could be generated at high temperatures [39]. The addition of MXene
affected the thermal decomposition of residues of the PSR, leading to the attachment and
retention of the char yield, as previously reported [40,41].

Table 5. Detailed data of the pure PSR and PSR/MXene nanocomposites from TG.

Sample T−5% (◦C) T−50% (◦C) Residue (%)

PSR 295.6 383.2 0.38
0.25% w/w MXene 305.7 396.9 0.74
0.50% w/w MXene 306.2 391.8 0.77
0.75% w/w MXene 297.0 376.6 1.26
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4. Conclusions

In summary, the MXene-reinforced PSR nanocomposites for LCD 3D printing were
successfully prepared. The rheological investigations indicated that the incorporation
of MXene slightly increased the viscosity of the liquid resin matrix. The shear thinning
behavior was observed with a high loading of MXene at 0.75% w/w. The PSR/MXene
could have great potential for current commercial LCD printers. The incorporation of the
MXene nanosheets significantly improved the mechanical and thermal performances of the
PSR at the optimum loading of approximately 0.5% w/w. At even a higher MXene loading
(0.75% w/w), the performance of the PSR deteriorated, which could have been because
of the agglomeration of the excess MXene nanosheets. The PSR/MXene nanocomposites
could be considered a viable alternative to pure PSRs for a wide variety of applications
that warrant high-performing products. In conclusion, we firmly believe that the designed
composites would broaden the applications of vat-photopolymerization-based 3D printing.
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