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Abstract: In advancing battery technologies, primary attention is paid to developing and optimizing
low-cost electrode materials capable of fast reversible ion insertion and extraction with good cycling
ability. Sodium-ion batteries stand out due to their inexpensive price and comparable operating
principle to lithium-ion batteries. To achieve this target, various graphene-based nanocomposites
fabricate strategies have been proposed to help realize the nanostructured electrode for high elec-
trochemical performance sodium-ion batteries. In this review, the graphene-based nanocomposites
were introduced according to the following main categories: graphene surface modification and
doping, three-dimensional structured graphene, graphene coated on the surface of active materials,
and the intercalation layer stacked graphene. Through one or more of the above strategies, graphene
is compounded with active substances to prepare the nanocomposite electrode, which is applied
as the anode or cathode to sodium-ion batteries. The recent research progress of graphene-based
nanocomposites for SIBs is also summarized in this study based on the above categories, especially
for nanocomposite fabricate methods, the structural characteristics of electrodes as well as the in-
fluence of graphene on the performance of the SIBs. In addition, the relevant mechanism is also
within the scope of this discussion, such as synergistic effect of graphene with active substances, the
insertion/deintercalation process of sodium ions in different kinds of nanocomposites, and electro-
chemical reaction mechanism in the energy storage. At the end of this study, a series of strategies
are summarized to address the challenges of graphene-based nanocomposites and several critical
research prospects of SIBs that provide insights for future investigations.

Keywords: graphene; nanocomposites; sodium-ion battery; electrochemical analysis; energy storage
mechanism

1. Introduction

Lithium-ion batteries (LIBs) are a kind of high-specific energy secondary battery that
are important and widely used in commercial applications nowadays. However, due to
the limitation of lithium resources, the cost of lithium-ion batteries has greatly increased
recently, which will become a serious constraint for its future massive applications [1].
Therefore, sodium ion batteries (SIBs), have many advantages such as rich resources, low-
cost, high-energy conversion efficiency, no over discharge characteristics, compatible with
aluminum foil that make it have great application potential in new energy field [2,3]. In
addition to partially replacing the highly polluting lead-acid batteries, the most significant
potential application of sodium-ion batteries can also focus on balancing the peak and
valley of electricity from the wind or solar power, as shown in Figure 1 [4]. People started
the research on SIBs as early as the 1970s and it has witnessed a spurt of growth with
the development of material science in the recent year [5]. The working principle of SIBs
is similar to that of LIBs [6,7]. Its internal structure mainly contains four parts: Positive,
negative, electrolyte, separator. Normally, both anode and cathode electrodes are composed
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of active material powders, adhesives and conductive additives in proportion and separated
using a porous separator usually made of glass fibers or porous polymers that allows ions
to pass through but prevents electrons that achieve short circuit prevention [6].
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The working principle of sodium-ion battery is schematically shown in Figure 2. In
essence, sodium-ion battery is an electrode with a concentration difference in ion con-
centration. In the process of charging the battery, the sodium ions are detached from
the positive electrode, pass through the electrolyte, the separator, and transferred to the
negative electrode material, the same time the electrons generated by the formation of
sodium ions are passed from the outer circuit to the negative electrode, forming a closed
circuit. During the discharge of the battery, the sodium ions are detached from the negative
electrode and transferred to the positive through the electrolyte and separator, the electrons
are also re-transferred from the negative electrode to the positive electrode of the battery
through the external circuit, forming a closed loop road, to achieve charge conservation
of positive and negative electrodes [8]. However, compared with lithium ion, sodium
ion has a stronger solvation with the size of 1.02 Å (0.76 Å for the lithium ion) and the
electrochemical potential of sodium-ion (−2.71 V, Na+/Na) is higher than that of lithium
ion (−3.04 V, Li+/Li). Therefore, the electrode material of sodium-ion batteries will produce
more remarkable volume changes in the charge and discharge process, resulting in more
severe problems, including collapse and crushing of electrode structure. At the same time,
from the perspective of dynamics, the insertion and extraction speed of larger sodium ions
in electrode materials is slower than that of lithium ions, which makes sodium-ion batteries
have more significant challenges in cycle life and rate capability performance [9,10].
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Up to now, to solve the above limitations, an effective method has been proved
for designing nanoscale structured materials, such as nanodots [11], nanosheets [12],
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nanotubes [13], nanorods [14,15], nanospheres [16], and nanocomposite structure
composed of two or more of the above materials [17–19]. Considering the advantages
of unique physicochemical properties, lots of exploration has triggered to realize
the nanocomposites for functional energy storage applications. According to recent
research, 0D nanosphere/nanoparticles, 1D nanowires/nanoneedles, 2D nanoplates/
nanosheets and multi-level architectures of nanocomposite architectures have been
established and shown to enhance the specific surface area, accessible pore channels,
more expose active sites, and promoted ion and electron transfer [19–22]. Meanwhile,
the nanocomposites have distinctive advantages such as facilitating the penetration of
electrolytes, shortening the ion diffusion lengths and increasing the loading amount
of active substances, resulting in improved rate ability, energy density and power
density [19]. Li, M. et al., reported the nanocomposite of MnO2 ultrathin nanosheet
fabricated on TiN nanowires modified carbon cloth to produce the core–shell binder-
free flexible electrodes for ultra-fast supercapacitor and SIBs with high voltage window.
The MnO2/TiN/CC electrode showed a discharge time of 120.2 s at a current density
of 2 mA cm−2, while 35 s and 34.8 s for the electrode of TiN/CC and MnO2/CC,
respectively. According to the above galvanostatic charge/discharge (GCD) results,
MnO2/TiN/CC electrode obtained a specific capacity of 318.41 F g−1 at 2 mA cm−2,
which is 2.7 times larger than that of MnO2/CC (120.5 F g−1). However, although
the high porosity of the nanocomposites alleviated the volume expansion effect of
materials caused by chemical reactions during the energy storage process to a certain
extent, sodium ions have a larger ionic radius; this put forward a higher request
for the structural stability of the composites [17,23]. Moreover, many active sodium
storage materials, such as bimetallic oxides, have poor electrical conductivity [24];
organic compounds, have voltage platform and poor conductivity [25]; Prussian blue
derivatives, have low coulomb efficiency and poor conductivity [26]; polyanionic
compounds, have low reversible capacity ratio and some contain toxic elements [27];
which further affect the overall performance of SIBs. Therefore, nanocomposites
with the advantages of avoiding the shortcomings of active materials are proposed
to improve the overall electrochemical performance of SIBs. Nongkynrih J. et al.,
used sonochemically assisted sol gel followed by ball milling method constructed W-
doped Na3V2(PO4)2F3@C as cathode material in sodium ion batteries [28]. Yi, T.F. et al.,
studied NiCo2S4-based nanocomposites for energy storage [29]. Sandwich architecture
of graphene/MoS2composite were synthesized successfully by Yang, Z. et al., used
a simple evaporation and hydrothermal reaction method as anodes for enhanced
reversible lithium and sodium storage [30].

Due to the advantages such as low price, environmental friendliness, ion storability
and high conductivity, carbon materials have become the optimal selection in the range of
potential SIBs electrode materials [31]. Carbon materials manifest themselves as various
hybridized forms of sp, sp2, and sp3 that produce many allotropes with different physic-
ochemical properties [31–34]. Graphene, the typical representative of the sp2-hybridized
carbon materials composed of six-membered rings with a honeycomb structure, shows a
broad application in catalysis, sensor, energy storage and other fields [35–38]. Graphene
and its derivatives are widely studied. Graphene can be prepared by mechanical strip-
ping, vapor deposition, epitaxial growth, redox and other methods [39–42]. The main
preparation methods of graphene oxide include Brodie method, Staudenmaier method
and Hummers method, which are all prepared by the oxidation of graphite by strong
oxidizing agent in concentrated acid medium [43]. The Brodie method prepared graphene
by using fuming HNO3 and KClO3, the Staudenmaier method modified Brodie’s method
by replacing about two-thirds of the fuming HNO3 with concentrated H2SO4, and the
Hummers method used concentrated H2SO4, NaNO3 and KMnO4 to react with graphite
to produce graphite oxide. The preparation methods of redox graphene mainly include
chemical reduction, electrochemical reduction, thermal reduction, etc. [44–46]. Benefitting
from the excellent electrical conductivity, high specific surface area, structure controllable
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and good compatibility with other materials, graphene and its derived structures, such
as graphene aerogel, stacked graphene layers and graphene foam have been used as the
electrode for SIBs [47]. However, the pristine graphene has certain limitations in energy
storage and insertion/deintercalation of sodium ions process because it does not provide
sufficient active sites and the ideal amount of functional groups for enough interaction
with sodium ions [31,48,49].

To solve the above problems, compatible the above-introduced nanoscale active ma-
terials with graphene is a feasible way to simultaneously stimulate the storage of energy
properties of both active and carbon materials, thus ensuring fast ion/electron transfer
and utilization rate of the active substance with excellent conductivity. More importantly,
graphene functions as physical barrier that further buffers volume expansion and con-
traction of nanomaterials during the sodiation/desodiation. In addition, the synergis-
tic effect confinements between graphene and nanoscale active materials can efficiently
suppress the aggregation of both the energy storage nanomaterials and graphene dur-
ing the process of material synthesis and energy storage process [18]. For instance, Ma,
J.Y. et al., constructed the nanocomposite of TiO2/MoS2 nanoflake linking with reduced
graphene oxide (TiO2/MoS2/RGO). Compared with MoS2 (200 mA h g−1 at 5 A g−1) and
TiO2/MoS2 (250 mA h g−1 at 5 A g−1), the nanocomposite showed a high specific capacity
of 310 mA h g−1 at a current density of 2 A g−1 and ultrahigh structural integrity after
350 cycles [50]. The synergistic effect among RGO, MoS2 and TiO2 provides effective ion
diffusion and electron transfer spaces and promotes insertion/deintercalation of Na ions
that lead to the high performance of SIBs [50].

Therefore, to achieve the practical applications of sodium ion storage, various graphene-
based nanocomposites fabricate stargates have been explored and can be mainly divided
into the following categories according to the characteristics of the nanocomposites’ struc-
ture: graphene surface modification and doping [51,52], three-dimensional structured
graphene [53], graphene coated on the surface of active materials [54], the intercalation
stacked two-dimensional graphene [55,56], as shown in Figure 3. Through one or more
of the above strategies, graphene is compounded with active substances to prepare the
nanocomposite electrode, which is applied as the anode or cathode for SIBs. In this
study, the progress of graphene-based nanocomposites for SIBs is reviewed, especially for
nanocomposites fabricate methods, the structural characteristics of nanocomposites as well
as the influence of graphene on the performance of the SIBs based on the above categories.
In addition, the relevant mechanism is also within the scope of discussion, such as the Na+

storage process in different kinds of nanocomposites, the synergistic effect of graphene and
active substances, electrochemical characteristics in the energy storage process. At the end
of the overview, a series of strategies are summarized to address the challenges of SIBs
and several possible research directions on graphene-based nanocomposites that provide
insights for future investigations.
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2. Literature Review According to the Structure of Graphene-Based Nanocomposites
2.1. Graphene Surface Modification and Doping

The preparation of materials and structural design is fundamental aspects that should
be paid attention to enhance electrochemical performance for SIBs. The active particle size,
electrode porosity, conductivity and electrolyte choices together primarily determined the
rate capability, energy density and cycling ability of the electrode materials [24]. There-
fore, graphene as the electrically conductive and morphologically controllable functional
material, which is very helpful for facilitating rapid electron and ion transportation by
constructing an excellent conductive 2D layer or 3D network throughout the electrode [61].
The introduction of atoms such as N, S, P and B as active dopant sites into the graphene as
the functional groups improved the chemical and electrical characteristics of the electrode
and promoted practical energy storage applications [62,63]. Furthermore, the electrochemi-
cal abilities of SIBs can be further enhanced by uniformly depositing and bonding the active
substance of nanoparticles on the interface or layer of graphene that modified the chemical
properties of electrode. Hence, based on combining the graphene treatment methods of
doping and surface modification with active materials, the conductivity accommodates the
volume expansion ability, and the electrochemical performances of the nanocomposite can
be enhanced through the synergistic effects [64].

Chong, S.K. et al. deposited the ultrathin MoSe2 nanosheets perpendicularly onto the
surface of reduced graphene oxide (MoSe2@rGO) hydrothermally as the anode for SIBs [65].
By regulating the quality radio of graphene as 1, 5, 10, and 20% in the nanocomposite, the
effects of graphene on the performance of SIBs were compared in this study. Figure 4 shows
the process of preparing MoSe2 and MoSe2@rGO composites by hydrothermal method with
selenium powder as selenium source and sodium molybdate as molybdenum source [65].
This unique heterogeneous composite of MoSe2@rGO has a strong C−O−Mo and C−Mo
interfacial bonding connection, so that the distance of crystal between MoSe2 layers is
expanded to 7.9 Å, which facilitates stability of structure from considerable volume changes
and obtained fast electron and alkaline ion transport capability.
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The electrochemical performance of graphene based MoSe2 SIBs were assessed from
0.01 to 3.0 V. As shown in Figure 5a, MoSe2@5%rGO as a representative for cyclic voltam-
metry (CV) tests to investigate the electrochemical reversibility and redox process for
SIBs. During the initial CV process, five prominent peaks can be observed, among which
the peaks at 1.88, 1.35, and 0.80 V corresponding to the Na+ ions insertion into the layer
of MoSe2 to produce NaxMoSe2, which is further transformed into Mo and Na2Se [66].
The peaks at 1.07 and 0.46 V correspond to solid state interphase (SEI) film formation
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and electrolyte decomposition [66]. The anodic peaks from the first to third cycle and
the cathodic peaks from the second to third cycle remain at almost the same voltages,
indicating excellent chemical and structural stability of the lamellar composites [66].
Figure 5b reflects the galvanostatic charge/discharge (GCD) curves of MoSe2@5% GO
at 100 mA·g−1 in which the plateaus match well with the CV results and the GCD curves
are well overlapping after the first GCD test that manifests the reversible electrochemical
properties. The first discharge/charge specific capacity of MoSe2@5%rGO can be achieved
to 712.7/458.3 mAh g−1 with the Coulombic efficiency of 64.3%, which is better than the
specific capacity of MoSe2 (622.3/338.1 mAh g−1), MoSe2@1%rGO (798.9/495.8 mAh g−1)
and MoSe2@10%rGO (716.9/355.2 mAh·g−1). It also indicates that the composite mate-
rials possess highly reversible specific capacities and a good cyclic stability. Figure 5c
depicts that the MoSe2@5%rGO achieved the largest retention value of 383.6 mAh·g−1

after 50 cycles, which is better than the cycling stability of other rGO content. Compared
with the other rGO mass content radio in Figure 5d, under the current density of 200, 500,
1000, 2000, and 5000 mA g−1, the MoSe2@5%rGO shows the best rate capability with the
capacities of 447.4, 390.0, 348.5, 306.9, and 251.3 mAh g−1, respectively. In addition, after
the above GCD rate capability tests, the MoSe2@5%rGO maintained an excellent reversible
capacity of 435.3 mAh g−1 when the current density came back to 100 mA g−1. Therefore,
MoSe2@5%rGO exhibits the optimal Na-ion storage performances by taking advantage of
great kinetics and alleviating volume expansion effect from graphene and high capacity
from MoSe2 [65].
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Wang, S.H. et al., fabricated the Fe2O3 nanoparticles on the surface of S, N co-doped
reduced graphene oxide (denoted as SNRGO) (Fe2O3/SNRGO) as the SIBs anode by
microwave-assisted method [56]. The nanocomposites prepared through the microwave-
assisted method have some advantages, such as low cost, Fe2O3 combined closely with
graphene and high preparation efficiency, which makes it possible to produce the electrode
on large scale [56]. Figure 6a,b clearly show that Fe2O3 nanoparticles with a diameter of
around 30–80 nm is uniformly distributed on the interface of SNRGO that prevent the
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agglomeration of Fe2O3 nanoparticles and further reducing the volume change of Fe2O3
during the Na+ insertion/extraction [67]. Consistent with SEM images, the TEM images
of Fe2O3/SNRGO nanocomposite in Figure 6c,d confirmed that Fe2O3 nanoparticles are
deposited on the surface of SNRGO nanosheets tightly, which should be the main reason
result in excellent cycle performance of SIBs.
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The electrochemical behavior, including CV, GCD, rate capability performance and
cycling stability of Fe2O3/SNRGO electrode was investigated through a half cell config-
uration. The CV curves of Fe2O3/SNRGO were carried out with a voltage window of
0.01–3 V under the scanning rate of 0.1 mV s−1 in the initial four cycles (Figure 7a). The two
irreversible reduction peaks of 0.5 V and 1.1 V at the CV curves in the first negative scan of
Fe2O3/SNRGO correspond to the irreversible formation of the SEI layer [68], meanwhile
the reduction peak at about 0.01 V attributed to Fe3+→Fe0 [69]. In the following three
CV scans, the two reduction peaks have moved to 0.63 V and 0.92 V, and in the oxidation
direction, two peaks can be found at 0.66 V and 1.4 V that correspond to the reversible
redox reaction of Fe3+↔Fe2+ and Fe2+↔ Fe0 [70,71]. Moreover, the CV curves are well
overlapping after the first CV cycle that manifests the reversible electrochemical behavior
of the Fe2O3/SNRGO electrode. The typical GCD curves of 1st, 10th, 20th, 30th, 40th and
50th of Fe2O3/SNRGO based half-cell can be found in Figure 7b. In the first GCD curve, the
as-prepared sample manifests a large irreversible capacity with the Coulombic efficiency of
only 29.0%, which can be explained as the formation of the SEI layer due to the irreversible
insertion of Na+ into the lattice [72]. It is worth noting that no obvious discharge platform
has been found in the GCD curve, which is consistent with the voltage trend of the other
typical Fe2O3 based reports [67,72,73].
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2.2. The Three-Dimensional Structured Graphene for SIBs

Recently, three-dimensional structured graphene as the current collector [57] com-
patible with the energy storage active materials [74] were used as SIBs electrode that
demonstrates excellent electrochemical performance due to the synergistic effect and large
surface area. The traditional process is common and uses two-dimensional materials such
as copper foil and aluminum foil as the substrate, on which the active substances are
coated for SIBs electrodes. Thus, in order to bind the active substances tightly on the
two-dimensional foil surface, the active substance is first mixed with carbon material and
binder to make slurry, and then coated on the foil [75]. Therefore, it is necessary to build
a three-dimensional structure on which the active material can be firmly deposited by
physical or chemical methods without the usage of binder to form the electrodes for rapid
ions and electrons transportation. Due to the plasticity of graphene, the 3D structured
architecture of graphene has been designed to reduce the restacking of graphene sheets
during the electrode fabrication and electrochemical process and keep the large contact
area with the electrolyte for enhancement of Na+ storage capacity with excellent cycling
stability [76]. In addition, additive-free composite not only can enhance conductivity, sim-
plify the preparation process, reduce the cost [77], but also can meet the requirements of
large specific surface area for energy storage, higher capacity, and mechanical strength [78].

Therefore, an additive-free composite of the energy storage substances with a large
specific surface of three-dimensional graphene current collectors for sodium-ion storage
is an ideal method to realize the next generation of high-performance SIBs with higher
capacity and mechanical intensity [57].

Figure 8a depicted the fabrication procedure of hierarchical periodic thickness ad-
justable microlattice with micrometer pores and submillimeter filaments/channels carried
out by Yan, J. et al., through a simple 3D printing method using reduced graphene ox-
ide/carbon nanotube (rGO/CNT) aerogel [47]. As shown in Figure 8b–d, the 3D rGO/CNT
microlattice aerogel has a strong electrical conductivity and abundant active nucleation
sites for Na plating/stripping with a reduced current density, resulting in uniform sodium
deposition to overcome the issues of dendrite. Moreover, the ion transportation rate also
greatly improved due to the ordered microchannels that existed in the artificial periodic
microlattice that facilitate the electrolyte permeation into the microlattice and promote the
contact between active substance and electrolyte. Intrinsically, the CNTs were stable scaf-
folds by the rGO that improved the surface kinetics and overall conductivity synergistically,
further improve the distribution of energy storage substances uniformity as well as the
overall performance of the composite electrodes.
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To evaluate the practical performance of rGO/CNTs microlattice aerogel for SIBs, Na
metal were electrodeposition on the surface of rGO/CNT as the anode (Na@rGO/CNT) and
Na3V2(PO4)3 mixed with carbon on rGO (NVP@C-rGO) as the cathode were assembled
into a full sodium ion battery (Figure 9a). Figure 9b depicted that under the current
density of 100 mA g−1, the NVP@C-rGO cathode achieved a charge/discharge capacity
of 98.8/91.1 mA h g−1. The performance of SIBs was also evaluated within the potential
window of 2.0–3.8 V and the charge/discharge capacities of the full battery are calculated
to be 101.3 mA h g−1/93.1 mA h g−1 at the 7th cycle (Figure 9c,d). After the active process
of the first five cycles at 20 mA g−1, the cycling performance was carried out at 100 mA g−1

and delivered good cyclic stability during 100 cycles. The long-term cycling stability
of the Na@rGO/CNT//NVP@C-rGO SIBs demonstrate that the 3D printed rGO/CNT
microlattice has a great potential for practical application.

Wu, D.J. et al., reported the multi-layer nanostructured graphene modified 3D macro-
porous electrically conductive network (n-MECN) as the sodium ion battery substrate with
superior electrochemical performance [24,79,80]. As described in the previous report and
illustrated in Figure 10, the multilayer nanographene was prepared on the surface and
inter-channel of MECN by solvothermal carburization method, from which the ordered
porous-rich electrode substrate of n-MECN was realized [81]. In addition, then the self-
branching MnCo2O4 was hydrothermally in situ growth on the surface and inter-channel
of n-MECE at 180 ◦C to fabricate the MnCo2O4@n-MECN electrode. The special ordered
structure with micro-channel of n-MECN not only acts as the skeleton in the electrochemical
energy storage process and facilitate the transfer of electrolyte but is also compatible with
the microelectronic process for the micro energy storage devices.
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Figure 9. (a) Structure diagram of SIBs composite of cathode (NVP@C-rGO) and anode
(Na@rGO/CNT); (b) GCD curves of the cathode (NVP@C-rGO, blue lines) and anode (Na@rGO/CNT,
dark lines) half cells; (c) GCD curves of Na@rGO/CNT//NVP@C-rGO battery at 100 mA g−1; (d) The
specific capacity change with the cycle number at the current density of 100 mA g−1. Reproduced
with permission [47]. Copyright 2020, Royal Society of Chemistry.
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Figure 10. Schematic illustration of preparation steps of the MnCo2O4 deposit on the nanographene
modified MECN for Na-ion batteries. Reproduced with permission [79]. Copyright 2020, Elsevier.

Figure 11a,b reveal that the nanographene layers on the surface of MECN have a
large number of ripples and wrinkles with a lateral size of 50–200 nm to realize the 3D
electronic conductivity substrate. The 3D interconnected structure of n-MECN inherited
from MECN improved the electronic conductivity and the specific surface area to facilitate
electrochemical reactions. The self-branching MnCo2O4 nano-architecture is incorporated
into the surface (Figure 11c,d) and cross-sectional (Figure 11e,f) of n-MECN with a diameter
around 50 nm, indicating that the MnCo2O4/n-MECN was successfully prepared.
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Figure 11. (a,b) Top view of n-MECN with different magnification; the SEM images of (c,d) Sur-
face of MnCo2O4@n-MECN electrode with different magnification; (e,f) Cross-sectional images of
MnCo2O4@n-MECN with different magnification. Reproduced with permission [79]. Copyright
2020, Elsevier.

To evaluate the practical application of the materials and structure design strategy, the
MnCo2O4@n-MECN served as the anode in SIBs. In the cathodic process of the first CV
curves cycle shown in Figure 12a, the two reduction peaks can be found at 0.25 V and 0.87 V,
which are related to the irreversible formation of the SEI layer and the process of Mn2+ to
Mn, Co3+ to Co2+, Co2+ to Co [82]. The two broad peaks related to metallic Mn to Mn2+ and
Co to Co2+, Co2+ to Co3+ are anodic oxidation processes at 0.84 V and 1.59 V [83–85]. After
the first CV cycles, the CV curves are well overlapping and the moves of the cathodic peak
to 0.87 V related to the formation of the NaxMnCo2O4 phase, demonstrating reversible
electrochemical behavior of MnCo2O4@n-MECN electrode [86]. Figure 12b shows the 1st,
2nd, 3rd, and 50th GCD curves of the sodium ion battery at 50 mA g−1. A noticeable
discharging plateau at ~0.45 V can be found in the GCD curves corresponding to the
reduction of MnCo2O4 nanoarrays which is in accordance with the morphologies of CV
curves [87]. The charging/discharging specific capacity calculate from the 1st GCD curve
of MnCo2O4@n-MECN reaches 614.7/1120.0 mAh g−1 with the Coulombic efficiency of
75.1% [88,89]. Figure 12c reflected that MnCo2O4@n-MECN based SIBs show the specific
capacities of 541.2, 200.5, 150.1, 110.0, and 70.5 mAh g−1 at the current densities of 50,
100, 200, 400, and 800 mA g−1, respectively, and the reversible capacity is maintained
when the current density back to 50 mA·g−1. As shown in Figure 12d, the SIBs reflected a
good cycling ability of 100 cycles under different current densities after 1st cycle as well
as the morphology and structure of MnCo2O4@n-MECN in SIBs are maintained after 100
cycles. Figure 12e depicted that the b value of MnCo2O4@n-MECN based SIBs is 0.81
at the cathodic peak indicating that the energy storage mechanism of the SIBs involves
both faradic and non-faradic processes and the capacitive-controlled process makes the
main contribution to the energy storage characteristics of MnCo2O4@n-MECN. With the
increase of the scan rates the contribution of capacitive-controlled gradually increased,
when scan rates from 0.2 mv s−1 to 1.0 mv s−1, the capacitive contribution improved from
52% to 73%, and when the scanning speed is greater than 0.8 mv s−1, the capacitance
contribution rate hovers around 70% (Figure 12f). This study fully demonstrates that
the three-dimensional structured graphene exhibits excellent electrochemical properties,
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optimizing ion and electron transport, and improves the utilization of active material so as
to increase the rate capability ability of the SIBs [85–87].
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Figure 12. Electrochemical properties of the MnCo2O4@n-MECN based SIBs: (a) CV curves; (b) 1st,
2nd, 3rd, and 50th GCD curves at 50 mA g−1; (c) Rate capability performance and Coulombic
efficiency from 50 mA g−1 to 800 mA g−1; (d) Cycling stability at 50, 100, and 200 mA g−1;
(e) Relationship between log scanning rates and log cathodic peak currents; (f) Normalized con-
tribution ratio at different scan rates. Reproduced with permission [79]. Copyright 2020, Elsevier.

Jo, M.S. et al. described an electrode of graphene-based nanofibers entangled with
bamboo-shaped N-CNTs containing CoSe2 nanocrystals at each node (N-CNT/rGO/CoSe2
NF) through the heat treatment process of electrospinning nanofibers [90]. Figure 13
describes the detailed formation mechanism and fabrication steps of this nanostructured
electrode. An electrospinning process (Figure 13(a 1©)) was used to fabricate the precursor
nanofibers that were composed of graphene oxide (GO), Co salt, poly (vinyl alcohol)
(PVA), and PS nanobeads (40 nm). Next, the highly integrated structure of mesopores
rGO nanosheets mixed with carbon-covered Co nanometals structure (Figure 13(a 2©))
were formed through the initial step of the first heat treatment of the precursor nanofibers
with DCDA at 400 ◦C under N2 atmosphere. This step initially produced Co nanometals
surrounding with carbon formed by PVA decomposition that prevents the aggregation
of Co nanometals. Meanwhile, during the initial step of the first heat treatment step,
the uniform mesopores between the GO sheets were formed due to the decomposition
of PS nanobeads distributed in the GO matrix and the GO matrix was reduced to rGO
at the same time. The uniform-sized Co nanoparticles were uniformly formed in the
structured mesopores when the reducing gas penetrates into the depth of the structure
from the mesopores.

As shown in Figure 13(a 2©), the further step of the first heat treatment was carried out
at 800 ◦C under the CHx and NH3 gases atmosphere and the bamboo-like N-CNTs were
grown in the inner and outer parts of the rGO matrixed nanofibers by using the metallic
Co nanocrystals in the mesopores as catalysts via catalytic chemical vapor deposition [91].
Interestingly, N-CNTs formed by aggregation of the C and N atoms from CHx and NH3
gases that adsorbed and dissolved on the surface of the Co nanoparticles and the Co
nanoparticles move forward by the force arising from the growth of CNTs, so that Co
nanoparticles were uniformly distributed at the nodes of bamboo-like N-CNTs. Since
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H2Se gas cannot penetrate the C layer of CNTs, it is difficult to convert the CNTs coated
Co nanoparticles into CoSe2 directly by high temperature gas phase method, as shown
in Figure 13b. Therefore, part of the CNT walls surrounding the Co nanoparticles were
thermally etched during the second heat treatment step at 300 ◦C for 30 min in an air
atmosphere (Figure 13(a 3©)), although Co metal partially oxidized into Co3O4 during
this step, that was ignorable and inconsequential. Finally, in the third heat treatment
step, Co and Co3O4 nanoparticles inside the N-CNTs were selenization at 350 ◦C under
H2Se gas atmosphere to form the CoSe2 nanoparticles (Figure 13(a 4©)). Via the above
steps, the electrode of graphene-based nanofibers entangled with bamboo-shaped N-CNTs
containing CoSe2 nanocrystals at each node (N-CNT/rGO/CoSe2 NF) was successfully
obtained. As shown in Figure 13b, selenization of Co nanocrystals captured in the walls of
carbon nanotubes is very difficult because H2Se gas used for selenization cannot penetrate
the thick carbon nanotube walls. Therefore, the gas diffusion process and CO phase change
can be achieved by introducing the defect part into the CNT wall during the intermediate
heat treatment to achieve the goal of successfully generating CoSe2.
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entangled with bamboo-like N-CNTs containing CoSe2 nanocrystals at each node and (b) efficient con-
version of Co to CoSe2 by partial etching strategy of N-CNT wall. Reproduced with permission [90].
Copyright 2019, Wiley-VCH.

As shown in Figure 14a–c, the FE-SEM image of N-CNT/rGO/CoSe2 NF was well-
maintained throughout, even after multi-step fabrication. From the HR-TEM image of
Figure 14d,e, the authors found that the diameters of the nodes in the bamboo-like N-CNTs
were around 5–10 nm. The lattice spacings of 0.22 nm match well with the (111) crystal
planes of CoSe2 in N-CNTs (Figure 14e) [92] and the specific peaks of the XRD pattern
of N-CNT/rGO/CoSe2 NF match well with the PDF#53-0449 of CoSe2 (Figure 14f) that
indicating the complete selenization of Co and Co3O4 into CoSe2 [92,93].
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tions, (f) XRD pattern. Reproduced with permission [90]. Copyright 2019, Wiley-VCH.

In Figure 15, the electrochemical performance of the two electrodes of N-CNT/rGO/CoSe2
NF and CoSe2-filled NF as the anode for SIBs were compared using carbonate-based elec-
trolytes. At a scanning rate of 0.1 mV s−1, the initial five CV cycles of the two SIBs were carried
out under the potential window of 0.001–3.0 V (Figure 14a,b). For the above two samples in
the first cycle, the peak of ≈0.78 V in discharging process owing to the formation of metallic
Co nanocrystals and Na2Se from the conversion reaction between the Na+ and CoSe2 as well
as the anodic peaks at 1.84 and 1.96 V owing to the restoration of metallic Co and Na2Se into
CoSe2 nanocrystals in the charging process [90,92,94]. Moreover, after the first CV cycle, the
insertion of Na+ into CoSe2 corresponded to the cathodic peaks at 1.41 and 1.11 V, and due
to the formation of ultrafine CoSe2 nanocrystals, the peak shift to higher potential from the
second cycle [90,92,94]. Moreover, the conversion reaction with further Na+ insertion was
manifest at the cathodic peak of 0.7 V in the consequence CV cycles [90,94]. Figure 15c,d show
the GCD curves of the N-CNT/rGO/CoSe2 NF and bare CoSe2-filled NF based SIBs at a cur-
rent density of 0.5 A g−1 for the 1st and 2nd cycles. Typically, anode materials with crystalline
materials exhibit flat plateaus and ultrafine nanocrystals or amorphous phases exhibit sloped
charge/discharge profiles [95,96]. In the first discharge curve, the N-CNT/rGO/CoSe2 NF
manifested a comparatively short plateau at ≈0.89 V with a sloped charge/discharge profile
due to the ultrafine crystallite size of the CoSe2. While the bare CoSe2-filled NF showed a
lower and flatter plateau compared with CNT/rGO/CoSe2 NF composite electrode due to
the crystalline materials of CoSe2 in CoSe2-filled NF. Bare CoSe2-filled NF shows the increase
of resistance in the electrolyte due to the polarization from slow Na+ ion diffusion, while the
nanostructure of N-CNT/rGO/CoSe2 NF has an increased Na+ ion diffusion rate results a
more easily Na+ insertion/desertion reactions [97,98]. The initial discharge capacities of the
N-CNT/rGO/CoSe2 NF was 645 mA h g−1 with Coulombic efficiencies of 72.4%, while the
bare CoSe2-filled NF was 531 mA h g−1 with the Coulombic efficiencies of 83.5%, although
the active materials in N-CNT/rGO/CoSe2 NF were smaller than the bare one.
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Figure 15. Electrochemical characteristics of N-CNT/rGO/CoSe2 NF and bare CoSe2-filled NF for
SIBs assembled using carbonate-based electrolytes: (a,b) CV curves, (c,d) GCD curves at 0.5 A g−1,
(e) Cycle ability at 0.5 A g−1, and (f) Rate properties. Reproduced with permission [90]. Copyright
2019, Wiley-VCH.

In order to investigate the long performance of the SIBs based on N-CNT/rGO/CoSe2
NF and bare CoSe2-filled NF, the cycling performance was carried out at a current density
of 0.5 A g−1 (Figure 15e). The bare CoSe2 based SIBs exhibited a significate capacity fading
that only 34 mA h g−1 after the 100th cycle because of volume change and structural
destruction of CoSe2 during repeated insertion/extractions of Na+ ion. In contrast, the N-
CNT/rGO/CoSe2 NF based SIBs showed the discharge capacities of 512 and 400 mA h g−1

at 2nd and 100th cycles, indicating the constant cycling ability up to 100th cycles. Due
to the involvement of graphene, the vertical interconnection between graphene sheets
and N-CNTs embedded with CoSe2 nanoparticles both restrained the aggregation and
buffered the volume expansion of CoSe2 nanoparticles during the cycling. To investigate
the rate capacity of the nanocomposite, at current densities of 0.5, 1, 2, 5, 10, and 20 A g−1,
the N-CNT/rGO/CoSe2 NF achieved the discharge capacities of 516, 470, 420, 341, 318,
and 215 mA h g−1, respectively (Figure 15f). Furthermore, the discharge capacity was
maintained at 512 mA h g−1 when the current density back to 0.5 A g−1 after 60 cycles. In
contrast, as the increased of current density from 0.5 to 20.0 A g−1, the discharge capacity
of the bare CoSe2-filled NF decreased from 388 mA h g−1 to almost zero.
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2.3. Graphene Coated on the Surface of Active Materials

In recent years, nanomaterials uniformly encapsulated by graphene as the Na-ion
battery electrodes with shortened diffusion lengths of electrons/sodium ions have been
widely studied and the graphene network formed the shell enables a highly conduc-
tive matrix. The graphene shell also provides enough physical space for the volume
expansion of coated nanoparticles and at the same time constrains the nanoparticles
within the conductive graphene shell for stable working conditions [99]. As expected,
the fabricated nanocomposites manifest outstanding electrochemical performance with
both remarkable rate ability and long cycling ability. Additionally, the carbonaceous
conductive graphene materials provide the pathways for electron transport that fa-
cilitate the reaction kinetics, increasing the Coulombic efficiency and stabilizing the
electrode-electrolyte interfaces [58,100,101].

Tan, X.Y. et al., reported a nanocomposite based on Sn4P3 nanoparticles coated with
porous graphene tubes (GT) as the Sn4P3/GT for the anode of SIBs [58]. The graphene
tube is composed of two layers of graphene, the inner layer is nitrogen doped hydrophilic
graphene tube and the outer layer is un-doped hydrophobic graphene tubes that provide
the accommodation for the volume expansion of the coated Sn4P3 nanoparticles. N-doping
not only increases the hydrophilicity contributes to the directional growth of nanomaterials
and improves the electron transfer kinetic performance, but also the synergistic effect of N
and graphene keeps the electrode structure stable and further improves the electrochemical
performance. As illustrate in Figure 16, the graphene tubes are firstly dispersed in the
aqueous solution containing tin precursor and the aqueous solution can penetrate into the
hydrophilic layer of graphene tube easily. After that, the SnO2 nanoparticles prepared in
the inside of the graphene tubes by selective growth of hydrothermal method and then a
phosphidation process was used to forming the Sn4P3/GT.
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Figure 16. The fabrication steps the nanocomposite of Sn4P3/GT. The schematic illustration shows
that the SnO2 nanoparticles were firstly prepared in the inside of the graphene tube by selective
growth of hydrothermal method and then a phosphidation process was used to form Sn4P3/GT;
the following three diagrams depict the sodiation/desodiation process of Sn4P3. Reproduced with
permission [58]. Copyright 2021, Wiley-VCH.

Figure 17a depicted that in the voltage window of 0.01–2 V (versus Na/Na+) at
0.5 A g−1, the electrode of Sn4P3/GT shows a first GCD curve of charge/discharge capaci-
ties of 1002 mA h g−1/722 mA h g−1 with a Coulombic efficiency of 72.2%. The formation of
SEI film is the main reason for the irreversible capacity during the first GCD cycle [102,103].
To realize the real application of the Sn4P3 based nanocomposite electrode, optimization
of electrolyte and further exploring SEI composition should be carried out to reduce the
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initial irreversible loss for a higher Coulombic efficiency beyond 90% [104]. A capacity
of 713 mA h g−1 has been realized after 500 cycles with well overlapping GCD curves,
indicating the reversible electrochemical behavior of the Sn4P3/GT electrode.
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Figure 17. (a) GCD curves of Sn4P3/GT for the 1st, 2nd, 5th, 50th, 250th, and 500th cycles with
the voltage window of 0.01–2 V versus Na/Na+ at 0.5 A g−1; the comparison of electrochemical
properties between the electrode of Sn4P3/GT and bare Sn4P3: (b) GCD cycling tests at 0.5 A g−1,
(c) rate capability under different current densities for 500 cycles, (d) Nyquist plot, Inset of (d) shows
the relationship between ω–1/2 (where ω is the angular frequency in the low-frequency region,
ω = 2πf) and the real part of the impedance spectra (Zre), (e) Utilization radio of the active material
at different GCD current densities. Reproduced with permission [58]. Copyright 2021, Wiley-VCH.

Figure 17c depicted that the Sn4P3/GT electrode showed a good rate performance
with the discharge capacities of 821, 722, 636, 547, 435, 386 and 326 mA g h−1 at current
densities of 0.2, 0.5, 1, 2, 5, 10 and 20 A g−1, respectively. Additionally, the discharge
capacity is maintained of 808 mA h g−1 when the current density is back to 0.5 A g−1

that indicating the recoverability of the electrode. In contrast, the discharge capacity
decreased from ~650 mA h g−1 to almost zero of the bare Sn4P3 as the current density
increased from 0.2 to 20.0 A g−1. The electrochemical impedance spectroscopy (EIS)
was employed to further explore the performance of Sn4P3/GT and bare Sn4P3 electrode
with the frequency from 0.01 Hz to 10 MHz and a perturbation amplitude of 10 mV.
From the Nyquist plot of Figure 17d, the Sn4P3/GT electrode shows a much smaller
diameter of semicircle compare with bare Sn4P3 electrode which indicate that the Sn4P3/GT
composite electrode has a lower interfacial resistance as well as better kinetics and higher
ion-diffusion rate during the process of sodiation/desodiation [105,106]. The active material
utilization rate versus charge-discharge current density of the Sn4P3/GT and bare Sn4P3
electrode were investigated. As shown in Figure 17e, the utilization rate of the active
material in Sn4P3/GT decreases with the current density, which is 88%, 77%, and 67%
at 0.5 A g−1, 1 A g−1 and 2 A g−1, respectively. In contrast, the bare Sn4P3 electrode
shows the active material utilization rate of 79%, 28%, and 3% at 0.5 A g−1, 1 A g−1 and
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2 A g−1, respectively. All of the above electrochemical properties indicate that the overall
performance of Sn4P3/GT was significantly improved by the introduction of graphene
tubes on the surface of Sn4P3 nanoparticles.

As shown in the outline in Figure 18a, the graphene-coated Na2.4Fe1.8(SO4)3 (denoted
as NFS) nanograins (NFS@rGO microspheres) was successfully fabricated by Fang Y.J. et al.,
the 3D graphene microsphere network via a spray-drying route [99]. From the SEM
images of Figure 18b–d, the Na2.4Fe1.8 (SO4)3 nanoparticles are homogeneously distributed
between layers of 3D spherical graphene and the porous in 3D graphene network are well
preserved. The overall electrochemical performance of the nanocomposite of NFS@rGO
was improved because of the synergistic effect between surface coated 3D graphene and
Na2.4Fe1.8(SO4)3 nanograins [99].
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Figure 18. (a) The fabrication steps of NFS@rGO microspheres; (b–d) SEM images of graphene coated
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Copyright 2021, Elsevier.

To evaluate the sodium-storage behaviors of the materials and structure design strat-
egy, the NFS@rGO microspheres were investigated by assembling 2016-type coin cells. As
shown in Figure 19a, during the initial CV cycle, two pairs of distinct peaks can be found,
while in the subsequent cycles, three pairs of peaks appeared, and the above phenomenon
matches well with the previous study [107–109]. Figure 19b reflects the 1st to 4th cycles
of the GCD curves of NFS@rGO microspheres at 0.05 C and the 1st charge curve shows
a different shape compared to other curves, which agrees well with the CV in Figure 19a
and previous research [107,108]. The reversible specific capacity of NFS@rGO electrode
reaches 100 mAh g−1 with the average working potential of 3.75 V, obtaining an energy
density of 375 Wh kg−1 for the corresponding full cell. Similar to CV curves, the GCD
curves are almost overlapped after the initial cycle that manifests the electrode’s reversible
electrochemical behavior in subsequent cycles. Furthermore, it may be due to the formation
of the cathode electrolyte interface layer and the irreversible decomposition of electrolyte,
the Coulombic efficiency of the NFS@rGO has a certain reduction in the subsequent few
cycles compared with the initial Coulombic efficiency of 89% [110].
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Figure 19c depicted that the SIBs full cell demonstrates a superior rate performance
compared with the previous works that the reversible discharge capacities of 100, 90, 84, 80,
76, 72, 67, 64, 60, 54 and 45 mAh g−1 at current rate of 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 30
and 50 C, respectively [107,111–113]. Additionally, the discharge plateaus of the NFS@rGO
dropped with the increase of current rate, while the working potentials are still maintained
above 3 V at a current rate even up to 30 C, better than most of the relative Fe-based
cathodes, such as FePO4 [114], NaFePO4 [115], NaFePO4F [116], and Na2FeP2O7 [117].

2.4. Intercalation Layer Stacked Graphene

As a promising carbon material, graphene has a series of advantages, such as high
conductivity, large surface area and exceptional mechanical strength [118]. Therefore, a kind
of intercalation layer stacked graphene embedded in active materials between graphene
layer was designed to achieve a shortened electron/Na+ transport distance with improved
reaction kinetics [59]. The graphene layer act as the conducting pathway for electrons and
mechanical support for nanomaterials that are confirmed to have a strong affinity to active
materials, thereby mitigating the fragmentation of substances during the reaction [119]. The
graphene layer and the active materials formed a sandwich electrode have a mechanically
robust “nest” between the graphene layer to induce uniform deposition of active materials,
therefore, inducing a strong surface capacitive contribution with high-rate capability [119].
Additionally, in the traditional electrode preparing process, polymer binders of insulation
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were used to adhesion the active nanomaterials on the surface metal Cu or Al current
collector, which limited the rate capability, flexibility and energy density of the active
materials [3,120]. Furthermore, the interfacial bonding of the traditional electrode between
active materials and metal current collectors have many limitations during the repeated
sodiation/desodiation process that will cause damage to the electrode under the long-term
volume expansion [118,121,122]. Therefore, constructing binder-free and freestanding
electrode with layer stacked graphene sheets will obtain the mechanical flexibility, high
lightweight and electrical conductivity electrodes that will effectively improve the overall
performance of SIBs.

Liu, M.K. et al., designed and developed a 3D architecture by CNFs directly penetrat-
ing into graphene sheets (CNFIG) as the electrically conductive template and then the MoS2
nanoflakes were in situ deposited on the surface of the CNFIG aerogel as the MoS2@CNFIG
hybrid for the anode of SIBs (Figure 20a) [118]. A versatile interfacial method was first car-
ried out to depose the MoS2 on the surface of CNFIG and then high-temperature treatment
of the product of the first step to obtain the MoS2@CNFIG anode. As shown in Figure 20d–f,
the layered MoS2 nanoflakes were uniformly grown on both graphene layers and the
CNF bridges that increasing the loading amount of the active substance. The vertically
aligned channels in the inter of MoS2@CNFIG nanocomposite accelerate the penetration
of electrolyte and facilitate the rapid transfer of sodium ions (Figure 20b). Since CNFIG is
composed of carbon materials that provide an efficient path for rapid electron transport,
facilitates the insertion/extraction ability of sodium ions.
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The SEM image and corresponding EDX elemental mappings (C, Na, Mo, and S) of 
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porous of the MoS2@CNFIG were preserved, so that the ionic diffusion path and the 

Figure 20. Schematic illustration of (a) homogeneous deposition of MoS2 nanoflakes on layered
CNFIG matrix, (b) The mechanism of porous morphology of MoS2@CNFIG nanocomposite acceler-
ates the penetration of electrolyte and (c) the mechanism of electrically conductive MoS2@CNFIG
facilitates the quick sodiation/desodiation ability and rapid transfer of sodium ions; SEM images of
the MoS2@CNFIG nanocomposite: (d) overall structure with a scale bar of 50µm and (e) cross section
with scale bars of 5µm; (f) MoS2 layers uniformly deposition on the graphene layer and CNF bridges
with a scale bar of 2µm. Reproduced with permission [118]. Copyright 2019, Springer Nature.
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The SEM image and corresponding EDX elemental mappings (C, Na, Mo, and S)
of MoS2@CNFIG anode after 1000 cycles were applied to investigate the structural and
element integrity of the MoS2@CNFIG anode. From the SEM image of Figure 21a, the
porous of the MoS2@CNFIG were preserved, so that the ionic diffusion path and the volume
expansion space for MoS2 nanoflakes can be guaranteed during the long-time cycling. All of
the above properties undoubtedly contribute to the quick sodiation/desodiation ability and
rapid transfer of sodium ions. The EDX elemental mappings of C, Na, Mo, and S elements
can be detected in MoS2@CNFIG anode after 1000 cycles proving that the composition
of the anode was well maintained, and some sodium ions were adsorbed by the anode
during the chemical redox reactions. Figure 21c shows three assembled full cells based on
MoS2@CNFIG anode in parallel powering the 12 LEDs which demonstrate the potential
applications of the MoS2@CNFIG nanocomposite.
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Figure 21. (a) SEM image (scale bar = 50µm) and (b) corresponding EDX elemental mappings (C,
Na, Mo, and S) of MoS2@CNFIG anode after 1000 cycles; (c) Three assembled full cells based on
MoS2@CNFIG anodes in parallel powering the 12 LEDs; (d) Long-term cycling ability and Coulomb
efficiency of the full cell at 1 and 10 A g−1; (e) Nyquist plots of the full cell after 2 and 1000 cycles;
(f) TEM image of the full cell after 1000 cycles with the scale bar of 50 nm and 2 nm (inset in (f));
(g) Schematic illustration of porous space of CNFIG provided the volume expansion space for MoS2

nanoflakes. Reproduced with permission [118]. Copyright 2019, Springer Nature.
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To evaluate the rate ability and long-term cycling ability (Figure 21d), the MoS2@CNFIG
anode was cycled firstly under the current density of 1 A g−1 for 300 cycles and then 10 A g−1 for
400 cycles with high Coulombic efficiencies approaching ~100%. The MoS2@CNFIG anode pro-
vides a capacity of 322 mA h g−1 after 300 cycles at 10 A g−1 and 303 mAh g−1 in the 700th
cycle. Additionally, the specific capacity was maintained at 421 mA h g−1 when the current
density back to 1 A g−1 and can continue the cycle of 300 times, which indicates the recov-
ery ability of the electrode. The excellent rate ability and cycling ability of MoS2@CNFIG
nanocomposite may be ascribed to its structural stability, excellent conductive of CNFIG
and the high utilization efficiency of MoS2 nanoflakes with large specific surface area. The
Nyquist plots of the full cell were investigated after being cycled 2 and 1000 cycles and
presented in Figure 21e. The EIS spectra of the MoS2@CNFIG anode were obtained after
being cycled two and 1000 times. The Rct value reflects the diameter of the semicircle in
Figure 21e represents the charge-transfer resistance. The MoS2@CNFIG hybrid at 2nd cycle
shows a smaller Rct value of 100 Ω compared with the Rct value of 162.3 Ω at the 1000th,
indicating that the initial electrode has a lower interfacial resistance as well as better kinetics
and higher ion-diffusion rate during the sodiation/desodiation process. Furthermore, the
slope of the low-frequency region does not decrease much with the increase of GCD cycles,
implying that the electrochemical performance of the electrode has not change significantly.
From the TEM images in Figure 21f, the MoS2@CNFIG also shows clear lattice fringes with
flake-like MoS2 structures (inset of Figure 21f) after long-time cycles. Finally, the author
attributes the excellent electrochemical storage ability of the SIBs to the 3D nested structures
of MoS2@CNFIG producing nanoreservoirs between adjacent MoS2 nanoflakes [121], the
vertically aligned channels in CNFIG [122] and the MoS2 anchored tightly on the surface of
CNFIG with good electrical contact (Figure 21g).

Yang, Z.X. et al., reported the hierarchically structured graphene/MoS2 composites
hybrid sandwich structure (3DG-MoS2) synthesized by solution evaporation followed the
hydrothermal reaction method [30]. At the synthesis stage of the sample, NH2CSNH2
to the system, under hydrothermal conditions, releases H2S gas through the reaction of
NH2CSNH2 + 2H2O→ 2NH3 + H2S +CO2. After the reaction with H2S, the molybdate in
G/MCu nanocomposite was converted into MoS2 nanosheets [123]. In order to improve
the sodium storage ability, the 3DG-MoS2 nanocomposite was fabricated by embedding
the Cu2O nanoparticles on the surface of graphene sheets (G/MCu) and then assembling
MoS2 nanosheets further on the surface of graphene sheets by hydrothermal reaction
(Figure 22a) [30,124,125]. Figure 22b indicated the FE-SEM image of as-prepared G/MCu,
from which we can find that the Cu2O nanoparticles have been embedded into the graphene
layer with the formation of the rough surface. The cross-section FE-SEM images of G/MCu
further indicated that Cu2O as the tiny particles distributed uniformly among the layers
of graphene. After the hydrothermal reaction with thiourea, the molybdate in G/MCu
nanocomposite was converted into MoS2 nanosheets that formed the sandwich layer
structure of 3DG-MoS2, as shown in Figure 22d,e. The particular architecture of layer
structured graphene accelerated the penetration of electrolyte (NaClO4 (1 mol/L) in DEC:
EC (1:1 v/v) solution) and improved the specific surface of active material that facilitates
the overall performance of SIBs.

As shown in Figure 23, the author further investigated the electrochemical performance
of the 3DG-MoS2 electrode under different conditions. Na storage ability of the 3DG-MoS2
electrode was initially evaluated through CV curves of the 3DG-MoS2 electrode at the
voltage range of 0.0 to 3.0 V versus Na/Na+ under the scan rate of 0.5 mVs−1. As shown in
Figure 23A, a wide peak of 0.8 V can be observed in the first cycle that may be related to
the insertion of sodium ions into MoS2 and the irreversible formation of SEI layer [126,127].
Furthermore, the CV curves are well overlapping after the initial cycle, demonstrating
excellent reversible electrochemical behavior of 3DG-MoS2 electrode. Figure 23B reflects
the 1st, 2nd, 5th, 10th, 50th and 100th cycles of the GCD curves of 3DG-MoS2 electrode at
a current density of 0.5 A g−1 and the 1st charge curve shows a different shape compare
with other curves, which match well with the CV in Figure 23A. The different shapes of the
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first GCD curve may represent the capacity loss due to the irreversible formation of the
SEI layer.
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Figure 22. (a) Schematic illustration of the fabrication processes of 3DG-MoS2; (b) FE-SEM images of
section of G/MCu and schematic structure of G/MCu (insert of (b)); (c) Cross-section FE-SEM images
of G/MCu and further amplification of c (Insert of (c)); (d) FE-SEM images of 3DG-MoS2 surface and
schematic structure of 3DG-MoS2 (Insert (d)); (e) Cross-section FE-SEM images of 3DG-MoS2 with
different magnifications. Reproduced with permission [30]. Copyright 2020, John Wiley and Sons.
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To evaluate the long-term cycling ability (Figure 23C), the 3DG-MoS2 electrode pro-
vides a specific capacity of 524 mAh g−1 under the current density of 0.5 A g−1 after
100 cycles (the slight increase of capacity with cycling may be due to activation process),
which higher than that of the G/MoS2 and MoS2 electrodes of 320 and 284 mAh g−1, re-
spectively. In the author’s opinion, the improvement of the cycling ability of the 3DG-MoS2
electrode is mainly ascribed to the structure of the strong G/MoS2 thin layers existing
in 3DG/MoS2 electrode, which prevents the damage caused by the volume expansion
of active material. In order to further investigate the overall performance of 3DG-MoS2
electrode, further 300 long-term cycling ability and Coulomb efficiency evaluations of
the 3DG-MoS2 electrode were carried out at a current density of 1 A g−1 in Figure 23D.
Obviously, the 3DG-MoS2 electrode still provides a capacity up to 479 mA h g−1 even after
300 cycles and exhibits the coulombic efficiency of ~100% in the whole 300 cycles except for
the first one.

3. Discussion and Prospects

Although the graphene-based nanocomposites have been well developed in the
field of new energy, there are still several key problems that should be solved to achieve
high performance sodium-ion batteries for practical applications. Firstly, although
a relatively comprehensive structural system of SIBs has been developed based on
graphene, it is necessary to carry out the research based on more positive materials
with high energy density and power density, as well as negative materials with small
volume change in the process of circulation [128]. Furthermore, further improving
the cycle stability of the batteries are not only an important strategy to improve the
performance of sodium ion batteries, but also the critical point to realize the large-scale
application of sodium ion batteries for commercial application [129]. In addition, at
present, the cost of graphene-based electrodes is relatively high, and the synthesis
methods of composite electrode materials are relatively complicated. More efficient
strategies for combining graphene with active substances should be developed and
the theoretical model of SIBs materials should be established in accordance with the
development of graphene-based composite electrodes [130]. With the progress of the
above technologies, sodium ion batteries can first replace the lead-acid batteries with
high pollution and low energy density, and then play a greater role in more aspects.
From a macro and pragmatic perspective, more research efforts of SIBs should be
focused on the following four points as the prospects of this review:

(1) In-depth knowledge of Na+ storage mechanism

At present, the mechanism of sodium storage is still inconclusive and needs further
study, especially on low pressure platforms, ultrafine pore and closed pore filling [131].
Further studies using in/ex situ techniques [132], as well as theoretical calculations and sim-
ulations [133], are needed to better understand the role of pore size distribution, openings
and closures, surface functional groups, structural defects, and pseudo graphitic domains
in the sodium/desulphurization process. Developing a deeper understanding of interac-
tion mechanism between graphene and active materials is helpful to design more novel
graphene-based nanomaterials with special structures and high capacity for SIBs [134].

(2) Reasonable structure and process design of electrodes

In order to further improve the performance of the anodes, methods such as physical
and chemical activation can be used. Such as: graded pore structure, microwave activa-
tion [135], H2 reduction [136] and high current pretreatment [137], heteroatom doping [138],
metallic NPs (or allowable materials) synthesis of nano-composite materials [139]. Some
efforts should be exerted on investigating the effects of morphology, porosity, size, and
defects of graphene-based electrodes to achieve better electrochemical performance [134].
Of course, in addition to some anode materials introduced in the article, it is also important
to explore more efficient cathode materials and composite method of graphene based
electrodes, such as NaxMO2 (M = Co, Mn, Ni) [140–142], V2O5 [143], V2O5·nH2O [144],
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MoO3 [145], Na3V2(PO4)3 (NVP [146,147], Na2MP2O7 (M = Fe, Co, Mn) [148–150] and
NaFe(SO4)2 [151].

(3) Environmental, economic, and scaling-up aspects

By implementing low-energy processes and avoiding the use of expensive and/or
hazardous chemicals, in other words, at relatively mild temperatures, SIBs can be promoted
closer to commercialization by using cheaper and sustainable sources (even waste streams)
such as heteroatom doping [152]. The achievement of high-quality, mass-produced, and
low-cost graphene through facile methods is hard but urgent. In addition, the modification
of the graphene with higher utilization efficiency should not be ignored [131]. The initial
coulombic efficiency (ICE) of SIBs for both anode and cathode materials, is a key parameter
for high performance SIBs, and the point is to increase the transport rate of the Na+ ions.
Therefore, developing SIBs with high ICE and rate performance becomes vital to boost
the commercialization of SIBs [153]. Improving initial coulombic efficiency (ICE) is due
to some decomposition of electrolyte and also to the capture of irreversible sodium in
pore, functional group and interlayer space. Optimizing the formulation of electrolyte
and binder [141], HC engineering defects, surface area and functional groups [154], and a
thorough understanding of the formation and function of SEI are essential to promoting a
rational and effective electrode design [155].

(4) Full cell fabrication and commercialization of SIBs

Full-SIB devices assembled from graphene-based anodes or cathodes show promising
prospects in practical applications and related performance [156–166]. Full batteries with
graphene-based anodes have lower average discharge voltage when they have large capac-
ity [156–160]. In contrast, a full battery consisting of graphene-based cathodes yields higher
voltage, but its capacity and cycle capacity are unsatisfactory [165,166]. In future studies, it
is worth considering the balance between voltage and capacity of all SIB based on graphene.
Anodes and cathodes with high capacity, stability and suitable voltage can all achieve
high performance SIBs. Further research on the application of excellent electrochemical
properties in semi-batteries to full batteries and hybrid capacitors is very popular. In the
case where the cathode does not provide unlimited sodium ions, it is necessary to study
the anode in the full battery to evaluate its actual performance. In addition, electrolytes
and additives are particularly related to the compatibility of anode and cathode materials.
Building flexible SIBs is a trend of graphene-based materials [131].

4. Conclusions

This review systematically introduces the combination of graphene with active
substances as the nanocomposite electrodes for sodium ion electrochemical energy stor-
age. To achieve this target, four categories of graphene-based nanocomposites fabricate
stargates have been introduced in this article. Based on those categories and the re-
search results of recent years, this review focus on the fabricate methods and structural
characteristics of the graphene-based nanocomposites and the influence of graphene
and morphology on the performance of the SIBs. With the development of nanotech-
nology as well as the excellent conductivity and plasticity of graphene, nanocomposite
fabricates methods needed to be extended and expanded to stimulate the development
and application of electrochemical energy storage in a benign direction. The discussion
on research frontiers and applications in the field of graphene-based SIBs provide
evidence that the application of graphene in advanced electrode materials is still a
research hotspot, and more ingenious structure design and energy storage mechanism
analysis will be the future development on the direction of nanocomposites for SIBs.
Although graphene-based materials have been widely studied in SIBs and show good
development prospects, their practical applications still face enormous challenges. In
the first place, high-quality, large-scale production and low-cost graphene by simple
methods are the basis for the production of graphene-based sodium ion batteries and
should be further studied. In another, modification of graphene with higher utilization
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efficiency and better understanding of the mechanism of interaction between graphene
and active materials is the basis of designing new electrodes. Studying the relation-
ship of the performance of SIBs between the morphology, porosity, size and defect of
graphene-based composite electrode is the key to improve the cycle life, high Coulomb
efficiency and high energy efficiency of SIBs, which is the key to the marketization of
SIBs. Furthermore, reaction mechanisms and theoretical analysis associated with Na+

insertion/depletion need further exploration.
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