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Abstract: Cancer theranostics is the combination of diagnosis and therapeutic approaches for cancer,
which is essential in personalized cancer treatment. The aims of the theranostics application of
nanoparticles in cancer detection and therapy are to reduce delays in treatment and hence improve
patient care. Recently, it has been found that the functionalization of nanoparticles can improve
the efficiency, performance, specificity and sensitivity of the structure, and increase stability in the
body and acidic environment. Moreover, functionalized nanoparticles have been found to possess
a remarkable theranostic ability and have revolutionized cancer treatment. Each cancer treatment
modality, such as MRI-guided gene therapy, MRI-guided thermal therapy, magnetic hyperthermia
treatment, MRI-guided chemotherapy, immunotherapy, photothermal and photodynamic therapy,
has its strengths and weaknesses, and combining modalities allows for a better platform for improved
cancer control. This is why cancer theranostics have been investigated thoroughly in recent years
and enabled by functionalized nanoparticles. In this topical review, we look at the recent advances
in cancer theranostics using functionalized nanoparticles. Through understanding and updating
the development of nanoparticle-based cancer theranostics, we find out the future challenges and
perspectives in this novel type of cancer treatment.

Keywords: functionalized nanoparticles; MRI-guided therapy; molecular imaging; biomedical imaging;
cancer therapy; cancer theranostics

1. Introduction

Cancer treatment has gained considerable attention in biomedical research over the
past few decades due to the serious threat it poses to human health. The mortality rate of
cancer increases every year, which leads to the need for the development of more efficient
cancer therapeutic strategies [1]. Even though there is a major advance in cancer therapy,
it continues to be a significant challenge due to tolerability and adherence [2]. Theranos-
tics is a term first used by John Funkhouser at the beginning of the 1990s. It is defined
as a combination of diagnostic tools that are the most suitable for specific diseases [3].
Theranostics portrays a close connection between diagnostics and the consequent therapy,
and the theranostic principle has attracted huge attention in personalized medicine, in
particular oncology. This allowed tumours at the advanced stage to be treated accurately
with fewer side effects. For decades theranostics have been used for the therapy of benign
and malignant thyroid diseases; however, recently, theranostics have been applied to other
malignancies [4]. Theranostics agents such as radioisotopes, liposomes, quantum dots and
plasmonic nanobubbles can be attached to anticancer drugs, imaging agents and cancer cell
markers with the support of imaging techniques, providing the potential to facilitate the
diagnosis, treatment and management of cancer patients [5]. The development of highly
sensitive imaging modalities such as SPECT and PET with the synthesis of novel radio-
labelled molecules specific for different biochemical targets promoted nuclear medicine
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into a new era [6]. These molecular imaging modalities have been applied in cardiology,
neuroscience, oncology, gene therapy and theranostics. Nanoparticles (NPs) have been
used as therapeutic or imaging agents that enhance the efficacy and control biodistribution
and reduce the toxicity of drugs. In 2014–2015, there were 51 FDA-approved nanomedicines
that met the definition of nanomedicines as therapeutic or imaging agents, and 77 products
in clinical trial [7]. One of the crucial characteristics of nanomaterials is their small size.
Their high affinity, high specificity, high thermal stability, low off-target accumulation and
good solubility are among many adventurous characteristics they possess in cancer therapy.
They can penetrate dense tissues of the tumour very well [8]. Nanotechnology in medicine
is currently developed for drug delivery, and many substances are under study for cancer
therapy. Solid NPs can be used for drug targeting when they reach the intended diseased
site in the body, and the toxicology of the drug nanocarriers has been evaluated [9]. Active
targeting is accomplished by conjugating tumour-specific ligands to the NPs’ surface. It
complements the enhanced permeability and retention effect (EPR). EPR is a universal
pathophysiological phenomenon and mechanism where macromolecules with certain sizes
above 40 kDa can progressively accumulate in the tumour vascularized area and achieve
targeted delivery and retention of the anticancer compound into the solid tumour [10].
Some of the particles that are used to functionalize NPs are antibodies or antibody frag-
ments, human transferrin protein, peptides, carbohydrates and vitamins. These biomarkers
are recognized by their representative targeting ligands such as epidermal growth factor,
human epidermal growth factor 2, Mucin-1, nucleolin, epithelial cell adhesion molecule
and platelet-derived growth factor receptor 2. For anticancer drug delivery, Fu et al. [11]
proposed to use aptamer-functionalized nanoparticles. This is because aptamers have
favourable features such as a small size, very low immunogenicity, low cost of production
and high affinity and specificity. The advantage of NPs as a theranostics agent is shown
below in Figure 1 [12].
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Figure 1. Advantages using nanoparticles in cancer theranostics.

A study of the functionalized NPs by wrapping them in the cancer cell membrane
showed that the resulting particle possesses an antigenic exterior closely resembling that
of the source cancer cells. These NPs allowed immunological adjuvant and membrane-
bound tumour-associated antigens to be efficiently delivered to the cancer cell and promote
an anticancer immune response [13]. Mesoporous silica NPs have a high potential in
theranostic applications. They have a wide array of formulations and have significant
in vivo efficacy for treating myriad malignant diseases in preclinical models [14]. The
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treatment of oral cancer is difficult and has a poor survival rate. Studies show that the
proper inhibition of GST by NPs is promising in reversing pingyangmycin and carboplatin
drug resistance in oral cancer, which improves the treatment outcome significantly [15].
One of the issues to keep in mind when using NPs is the formation of oxidative stress,
which can have life-threatening consequences [16].

As there are many advantages of using functionalized nanoparticles in cancer ther-
anostics, and there are various studies that have been carried out and are in progress,
organizing and reviewing the recent works are necessary to see the big picture. From the
current contributions in different aspects, we will be able to find out the future trends
of work.

2. Magnetic Resonance Imaging (MRI)

MRI is one of the most powerful means of clinical detection and prognosis observa-
tion [17]. MRI is an imaging modality that is non-invasive, and it provides comprehensive
multi-parametric information generally used for brain imaging [18]. MRI benefits from
the contrast agent that provides a more improved depiction of large and medium-sized
vassals and can provide dynamic vascular/perfusional properties of tissues. Gadolinium
(Gd)-based contrast agents are widely used in MRI [19,20]. MRI can be coupled with
other therapy to provide image-guided therapy for better treatment outcomes and tumour-
targeting ability [21]. A study synthesized a multifunctional Gd-DTPA-ONB lipid by adding
the Gd-DTPA contrast agent to an o-nitro-benzyl ester lipid. It combines the MRI tracking
ability with dual trigger release capabilities, which allow maximum sensitivity without
reducing the drug encapsulation rate. It can be activated by both PH-trigger hydrolysis and
photo treatment [22]. Another Gd nanocomposite was synthesized by decorating Gd NPs
onto the graphene oxide, and then functionalized with polyethylene glycol and folic acid.
It was used to load doxorubicin to accomplish targeted image-guided drug delivery with
MRI [23]. Liposomes are a useful class of NPs due to their tunable properties and multiple
liposomal drug formulation. They have been clinically approved for cancer treatment. A
vast number of Gd-based liposomal MRI contrast agents have been developed that can be
used for targeted image-guided drug delivery [24]. Chemical exchange saturation transfer
MRI has important advantages such as its ability to detect diamagnetic compounds that
are not detectable using conventional MRI. It makes a broad spectrum of bioorganic agents,
nanocarriers and natural compounds directly MRI detectable with a high resolution. It is
advantageous for image-guided drug delivery [25]. An in vivo study looked at amphiphilic
polymer-coated magnetic iron oxide NPs that were conjugated with near-infrared (NIR)
dye-labelled HER2 affibody and chemotherapy drugs. Cisplatin was the drug used as
the chemotherapy drug. MRI-guided therapy and the optical imaging detection of the
therapy-resistant tumour were examined in an orthotopic human ovarian cancer xenograft
model with a high level of HER2 expression. The result shows it significant inhibited
the primary tumour and peritoneal and lung metastases in the ovarian cancer model in
mice [26]. Another study looked at the NP with a unique morphology, which consists of a
superparamagnetic iron oxide core and star-shaped plasmonic shell with high aspect ratio
branches. Its strong near-infrared responsive plasmonic properties and magnetic properties
allow it to be used in multimodal quantitative imaging, which combines the advantageous
functions of MRI, magnetic particle imaging (MPI) and photoacoustic imaging. It can
be used for image-guided drug delivery with tunable drug release capacity [27]. Drug
resistance in chemotherapy has been a challenge for a long time in pancreatic cancer due to
the stomal barrier making it difficult to reach the tumour microenvironment. A study devel-
oped IGF1 receptor-directed multifunctional theragnostic NPs for the targeted delivery of
Dos into IGF1R-expressing drug-resistant tumour cells and tumour-associated stromal cells.
NPs were prepared by combining IGF1 with magnetic iron oxide NPs carrying dox. They
provided an excellent theranostics platform and showed good tumour control in an in vivo
study [28]. Superparamagnetic iron oxide NPs have also been widely used in MRI and
nanotheranostics. They can be coated with a biocompatible polymer such as polyethylene
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glycol or dextran, which allows chemical conjugation. They have a very high potential in
MRI-guided drug delivery [29]. Figure 2 shows superparamagnetic iron oxide NPs being
used in liver imaging and lymph node imaging [30].
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(A,B): T2-weighted MR image of a liver with a large hepatocellular carcinoma before (A) and after
(B) the administration of SPION. The lesion is demarcated with arrows. (C,D): Standard (C) and
SPION-based contrast-enhanced (D) MR imaging of liver metastasis in a patient with colorectal
cancer. After administration of ferumoxide SPION, a second metastasis becomes visible on T2-
weighted MR image. (E,H): Lymph node in left iliac region (arrow), with and without metastatic
infiltration. T2-weighted images before (E,G) and 24 h after (F,H) administration of ferumoxtran.
Lymph node (arrow) appears bright before injection of UPIO (E,G). One day after injection, a signal
loss in the lymph node (arrow) due to high UPIO macrophage uptake can be observed, thus indicating
functionality and no metastasis (F). Conversely, in the lower panel, the lymph node (arrow) stays
bright, indicating no trafficking of USPIO and thus metastatic colonization (H). Reprinted with
permission from Ref. [30]. Copyright 2020 Elsevier.

2.1. MRI-Guided NPs for Gene Therapy

Gene therapy has gained considerable attention over the years and the health commu-
nity has gained much more new information and knowledge regarding gene therapy [31].
Gene therapy is a form of engineered viruses carrying a therapeutic agent or containing
genetically modified cells such as when chimeric antigen receptors are introduced to the T
lymphocytes for cancer therapy such as for leukemia [32]. New gene therapy has shown its
potential to significantly improve the survival rate of cancer patients [33]. For cancer gene
therapy, the therapeutic agent generally requires a carrier such as an NP. MRI allows the
tracking of that carrier and allows image-guided therapy, which can significantly improve
the outcome [34]. A study looked at low molecular weight poly (ethylenimine)-poly (ethy-
lene glycol) nanogels loaded with transforming growth factor -β1 siRNA and ultra-small
iron oxide NPs for gene therapy and a T1-weighted MRI of tumour and tumour metas-
tasis in a mouse sarcoma model. The study result shows it enhances the MRI image and
effectively delivers the siRNA and inhibits tumour growth in the subcutaneous sarcoma
tumour model and lung metastasis by silencing the TGF-β1 gene [35]. Another study
investigated shaped, controlled magnetic mesoporous silica NPs and their performances in
magnetic resonance image-guided targeted hyperthermia-enhanced suicide gene therapy
of hepatocellular carcinoma. They had a higher loading capacity and better magnetic
hyperthermia properties. They also had decreased cytotoxicity [36]. A bowl-shaped Fe3O4



Nanomaterials 2022, 12, 2826 5 of 16

NP with a self-assembly concept and appropriately surface-functionalized was studied
with the aim for it to be used as a multifunctional carrier in combination therapy and gene
therapy. The in vivo result shows promising results in the mouse breast cancer model [37].
The catalytic deoxy ribozyme has great potential in gene therapy via gene regulation but
requires the carrier to reach the tumour target. A study showed polydopamine-Mn2+

NPs to be effective carriers and together they can be used as a photothermal agent and
contrast agent for photoacoustic and magnetic resonance imaging [38]. Another study
developed Fe3O4@PDA NPs to transport siRNA for gene therapy. The NPs were coated
with mesenchymal stem cells to form a membrane. The overall complex showed good
transport ability and photothermal functionality, and enhanced MRI capability [39].

2.2. MRI-Guided NPs for Thermal Therapy

Light-activated therapies have been introduced for cancer treatment for numerous
cancers. Two of the main methods are localizing chemical exchange on the tumour known
as photodynamic therapy (PDT) and localized thermal damage to the tumour, also known
as photothermal therapy (PTT) [40]. Inorganic NPs have gained significant attention in
image-guided thermal therapy in recent years, and the applications of inorganic NPs in
tumour imaging and therapy are shown in Figure 3. The NPs contain metal, a semiconduc-
tor, metal oxide, nanocrystal and lanthanide-doped up conversion NPs. They can generate
heat and reactive oxygen species, so they are ideal for image-guided PTT [41]. The thermal
energy also promotes the gasification of perfluoropentane to enable the visualization of
cancer tissue in ultrasound imaging, as well as enhances MRI imaging, and makes it ideal
for dual MRI ultrasound imaging [42]. Core/shell nanoparticles were investigated for MRI
imaging, magnetic hyperthermia and PTT due to their surface being coated with a porous
shell. It can entrap large quantities of water around the nanoparticles and allows enhanced
and efficient water exchange, which provides an improved magnetic resonance contrast
signal. It also helps with NIR absorbance of the core and can have an enhanced thermal
effect via synergistic PTT and magnetic hyperthermia. The nanoparticles investigated for
this purpose were MnFe2O4/PB [43]. Another study developed temperature-activated en-
gineered neutrophils by combining indocyanine green-loaded magnetic silica NIR sensitive
nanoparticles. It provides a platform for dual-targeted PTT. The combination of magnetic
targeting and neutrophil targeting provides an enhanced accumulation of the photothermal
agent at the tumour site [44]. A study wrapped together gadolinium-DTPA, indocyanine
green and perfluoropentane in a poly (lactic-co-glycolic) acid shell membrane by a double
emulsion approach. Under NIR the indocyanine green converts the optic energy into ther-
mal energy and converts oxygen to singlet oxygen, which destroys cancer cells through PTT
and PDT. Another nanotheranostics agent was prepared via the participation of hydrophilic
CuS nanoparticles, styrene, methacrylic acid, N-isopropylacrylamide and a polymerizable
rare earth complex. It had good biocompatibility with a high loading capacity for DOX-
HCI. Drug release can be activated via PH or high temperature. All these properties make
it ideal for PTT and chemotherapy. MRI can also be used on it for image-guided drug
delivery [45]. CuS material shows poor MRI ability but excellent photo absorption ability,
whereas Fe-based materials have good MRI ability. A study combined the two and made a
CuxFeySz sample that includes CuFeS2, FeS2 and Cu5FeS4 nanomaterials. The study result
shows it to have high potential in MRI-guided photothermal enhanced chemo dynamic
therapy [46].
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2.3. Magnetic Hyperthermia Treatment (MHT)

In cancer treatment, the use of a magnetic implant as a thermal seed exposed to the
alternating magnetic field is the primary principle behind magnetic hypothermia. Magnetic
hypothermia has been used for cancer treatment since the 1950s [47]. Traditionally, deep
tumour treatment via magnetic fluid hyperthermia was not possible due to the very low-
frequency excitation field being no longer than 100 m in vivo. Now it is possible due to NPs
and magnetic particle imaging [48]. In magnetic hyperthermia, the tumour is heated to a
moderate temperature of 40–30 ◦C to destroy cancer cells without the side effects associated
with conventional treatment. It can also be co-administered with conventional treatment
for better outcomes [49]. Iron oxide NPs have been employed as intra-tumour MTH
agents in brain and prostate tumour clinical trials [50]. A study looked at encapsulating
produced magnetic iron oxide nanocomposites due to their excellent magnetic saturation
and superior magnetic to thermal conversion efficiency with a specific absorption range. It
shows the good potential for magnetic hyperthermia therapy [51]. A side effect of magnetic
hypothermia is heating of the tumour’s surrounding tissue, which is aimed to be minimized
as much as possible [52]. Using NPs can localize the heat and minimizes the damage to the
tissue. One example is the release of heat due to the transfer of magnetic field energy into
heat by adding magnetic NPs to the tumour in a time-varying magnetic field. This heats
the cancer cells, whereas surrounding non-malignant tissues can be spared [53].

2.4. MRI-Guided Chemotherapy

NPs with magnetite composition and polymer encapsulation are used in many applica-
tions as theranostic agents for drug delivery and MRI [54]. MRI provides a high-resolution
image of structures in the body, and when combined with other imaging modalities, to-
gether they can provide complementary diagnostic information for more accurate tumour
characteristics identification and the precise guidance of anticancer therapy [55]. The appli-
cations of functionalized magnetic NPs in cancer nanotheranostics are shown in Figure 4.
Magnetic NPs can be functionalized and guided by a magnetic field. They allow advanced
MRI-guided gene and drug delivery, magnetic hyperthermia cancer therapy, cell tracking
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and bioseparation and tissue engineering [56]. Iron oxide NPs can be used in the diagnosis
of liver, inflammation and liver and vascular imaging via MRI. They are also used for ther-
apeutic applications such as iron supplementation in anaemia, macrophage polarization,
magnetic drug targeting and magnetic fluid hyperthermia. Due to these properties, they
are very useful in theranostic applications [30]. A multifunctional theranostic platform
was developed based on amphiphilic hyaluronan/poly-(N-ε-Carbobenzyloxy-L-lysine)
derivative (HA-g-PZLL) superparamagnetic iron oxide and aggregation-induced emission
(AIR) NPs for magnetic resonance and fluorescence dual-modal image-guided PDT [57].
Gadolinium-based NPs have high relaxivity, passive uptake in the tumour due to an en-
hanced permeability and retention effect, and adapted biodistribution. These properties
make them ideal contrast agents for positive MRI imaging. They can also act as an effective
radiosensitizer in radiotherapy, neutron therapy and hadron therapy [58]. Ultra-small gold
NPs have low toxicity, and they are non-immunogenic by nature. They have fast kidney
clearance and can be used in NIR resonant biomedical imaging modalities. They can be
used as an enhancer in MRI, photoacoustic imaging, X-ray and fluorescence imaging. They
can also be used to generate heat and local hyperthermia of cancer tissue in PTT. They can
also be functionalized to deliver the drug to the cancer cells. All these properties make them
ideal for theranostic applications [59]. Another study synthesized a polydopamine-coated
manganese oxide NP (FA-Mn3O4@PDA@PEG) conjugate for MRI-guided chemo (PTT). It
has a relaxivity of 14.47 mM−1 s−1, which makes it an excellent contrast agent for MRI [60].
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3. Immunotherapy

Cancer immunotherapy aims to improve the antitumour immune response, which
has advantages over chemotherapy such as fewer off-target effects [61]. T-cell checkpoint
inhibitors are crucial in the management of advanced cancers such as melanoma and
non-small cell lung cancer [62]. Immunotherapy needs to be personalized because of the
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variance in the immune response from patient to patient. Cancer immunotherapy includes
pharmaceuticals such as monoclonal antibodies, immune checkpoints, cell therapy and
vaccines. Programmed cell death is achieved in a combination of program cell death
protein 1 and programmed cell death protein ligand 1 drugs and other immune therapy
drugs such as antibody–drug conjugates, and other therapies such as chemotherapy and
radiation therapy [63]. Immunotherapy can also be conjugated with positron emission
tomography and single-photon emission computed tomography to evaluate the response
to immune checkpoint therapy [64]. Nano immunotherapy has three different mechanisms,
targeting cancer cells, targeting the peripheral immune system and targeting the tumour
microenvironment. When it is targeting the cancer cells, it aims to promote immunogenic
cell death by releasing the tumour antigens. When it is targeting the microenvironment, it
inhibits immunosuppressive cells such as M2-like tumour-associated macrophages. It also
reduces the expression of immunosuppressive molecules, e.g., changing growth factor beta.
When it is targeting the peripheral immune system, it aims to promote T cell production
in secondary lymphoid organs, and also engineer and strengthen the peripheral effector
immune cell population, which ultimately promotes anticancer immunity [65]. Liposomal
NPs have a very high potential to deliver immune modulators and act as theranostic
agents [66]. NPs of different types such as graphene oxide, black phosphorous, silver,
gold, copper, tellurium, iron oxide, zinc oxide and magnesium oxide, prepared using the
aerosol method, have many advantages and show high potential in cancer theranostics [67].
Wrapping the NPs with a cellular membrane shows a high potential for cancer theranostics.
They are generally isolated from immune cells, stem cells, blood cells and cancer cells and
allow for superior tumour targeting through self-recognition, homotypic targeting and
prolonged systemic circulation [68]. Magnetic NPs as novel agents for cancer theranostic
purposes play a big role in treating malignant melanomas and significantly improves the
treatment outcome [69].

4. Photothermal Therapy (PTT) and Photodynamic Therapy (PDT)

Research on gold NPs has increased significantly in recent years due to their prop-
erty advantages and theragnostic compatibilities. They have been widely used in cancer
theragnostics including photo imaging and PTT due to their stability, enhanced solubility,
bifunctionality, biocompatibility and cancer-targeting ability [70]. A study functionalized
AuNP with hyaluronic acid, polyethylene glycol and adipic dihydrazide. The antitumour
drug was loaded into the NPs via the chemical method. The result shows the NPs had very
low toxicity toward cells in high doses with a significant enhancement of the antitumour
properties [71]. PTT therapy has high compatibility to be combined with other therapies
to yield better treatment outcomes. One of the limitations of PPT is its light penetration
depth that can cause the incomplete elimination of cancer cells, which could lead to tu-
mour recurrence and metastases in distant organs. This shortcoming can be eliminated by
combining PTT with other therapies [72]. Glioblastoma multiforme therapeutic efficacy is
often limited due to the poor penetration of therapeutics through the blood–brain barrier.
Functionalized up conversion of an NP-based delivery system can target brain tumours and
convert deep tissue penetrating NIR light into visible light for PPT and PDT [73]. In PPT
and PDT, the heat generation and the activation of photosensitizer drugs occurs in response
to exogenously applied light of a specific wavelength. The NPs allow the generation of
cytotoxic photothermal heating via a surface plasmon resonance phenomenon and reactive
oxygen species. This cytotoxic heat promotes apoptotic and necrotic cancer cell death.
Gold NPs can be used both as photothermal agents and photosensitize carriers due to their
surface plasmon resonance effect that has a very high efficiency of light to hear conversion
and simple thiolation chemistry for functionalization, which allows targeting [74]. The
mechanism of the photothermal and photodynamic therapy using gold NPs can be seen in
Figure 5 using near-infrared light. A study also looked at conjugating curcumin to the gold
NPs to be used in PTT. Curcumin is a polyphenol with an anticancer and antimicrobial
ability, and gold NPs allow it to be transported to the target site [75]. Gold NPs have proved
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themselves to be an excellent theranostic agent for carrier and synergistic PTT and PDT
due to their properties [74]. PEGylated bovine serum albumin-coated silver core/shell
NPs were proposed for PPT due to their advantageous properties and ability to transport
indocyanine green, a clinically-approved NIR dye. The study shows it is an effective carrier
and an efficient agent in PPT [76]. A study used magnetite (Fe3O4) NPs that were function-
alized with chlorin e6 and folic acid as a theragnostic agent in PDT and showed that it can
be used as a versatile therapeutic tool that can be used in diagnostic imaging [77]. A study
synthesized novel carbon dots/hemin NPs. The fluorescence resonance energy transfer
effect enhances their photothermal ability and synergises with PDT [78]. Another study
synthesized selenide molybdenum nanoflower that is capable of delivering NIR-mediated
synergetic PTT and PDT [79]. A cost-effective modified zinc oxide NP was also introduced
that has NIR absorbance, which can be used in PTT and PDT for synergistic therapy [80]. A
study also looked at gold doped hollow mesoporous organosilica NPs for PDT and PTT
with multimodal imaging for gastric cancer [81]. These functionalized NPs have been
suggested for non-invasive cancer treatment because the near-infrared-induced PTT and
PDT effect can increase the cancer cell kills.
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Figure 5. Schematic diagram showing the physiological and biological effects of gold nanoparticle-
mediated photothermal therapy (PTT) and photodynamic therapy (PDT). A large amount of gold
nanoparticles accumulate due to the leaky vasculature of the tumour, resulting in a photothermal
effect in response to near-infrared (NIR) light and reactive oxygen species (ROS) generated by
secondary delivered photosensitizer (PS), ultimately inducing apoptosis and necrosis of tumour
tissue. Reproduced with permission from [74]. Copyright Kim et al. 2018.

5. Molecular Imaging

A nanoscaled material’s size, shape surface chemistry and structure allow their func-
tionalization and utilization in theranostic applications [82]. Molecular imaging shows their
high potential in the identification of inflammatory cellular and molecular processes in car-
diovascular disease. NPs have been studied as contrast agents in molecular imaging in the
detection of vascular inflammation [83]. Quantum dot has also shown very good results in
an in vivo study of molecular imaging as a contrast agent [84]. A preclinical study showed
that molecular ultrasound imaging has high sensitivity and specificity in disease detection,
classification and therapy response monitoring. The use of microbubbles may have high
potential in cancer detection [85]. Perfluorocarbon NPs have a high potential to be used
in combination with imaging modalities for targeted drug delivery. Their intravascular
constraint from their particle size provides a unique advantage for angiogenesis imaging
and antiangiogenesis therapy [86]. Gold NPs have been extensively used as a contrast
agent in molecular imaging and as a theranostics platform [87]. Silica NPs have also been
used in molecular imaging and as a theranostic platform due to their having different sizes
in nanometer ranges, and this allows surface modification. It also allows conjugation of
different biomolecules such as nucleic acid and proteins [88].
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6. Chemotherapy

Some of the common issues with old therapeutic agents are their poor water solubility,
non-specific distribution and lack of targeting capabilities. Now, functionalized NPs over-
come those shortcomings and can also act as a contrast agent for diagnosis in therapeutic
applications [89]. Therapeutic NPs can efficiently deliver chemotherapeutic drugs to the
pathological site. This avoids accumulation in healthy organs and tissue and is based on an
enhanced permeability and retention effect [90]. NPs offer several advantages in that they
are drug-like, their capability to carry high payloads of a drug with reduced toxicity of the
drug and prolonged half-life, and, most importantly, their increased targeting efficiency. All
of these capabilities make them excellent theranostic agents and allow theranostic applica-
tions to flourish [91]. NPs are captured and eliminated by the natural immune system and
this is an inconvenience for drug delivery. Camouflaging NPs with cell membrane provides
a solution to this obstacle. A novel class of NPs such as biomimetic NPs was developed,
which can inherit specific biological functions of the source cell-like immune cells, cancer
cells or erythrocytes. This allows them to evade the immune system, and even in some
cases, allows homing capabilities for cancer cell targeting [92]. A study conjugated gold
NPs with folate and methotrexate in breast cancer cell lines due to the high expression of
folate receptors. Low-level laser therapy had a proliferative effect on the breast cancer cell
line. The combination of chemo and PTT with the functionalized NPs shows a significantly
higher appetitive effect due to their targeting ability [93]. Table 1 below shows the gold
NPs that have been investigated for drug delivery [94].

Table 1. Application of gold NPs in drug delivery. Reproduced with permission from [94].

Nanoparticle Nanoparticle Size (nm) Outcome Cell Lines

MTX-AuNP 8–80

Higher cytotoxicity towards
numerous cell lines as compared to
free MTX. Suppression of tumour

growth with MTX-AuNP but not with
free MTX.

Lewis lung carcinoma (LL2) cells

DOX-Hyd@AuNP 30 Enhanced toxicity against multi
drug-resistant cancer cells. MCF-7/ADR cancer cells

(Pt(R,R-dach))-AuNP 26.7

Platinum-tethering exhibited higher
cytotoxicity as compared to

free oxaliplatin
that could enter the nucleus.

A549 lung epithelial
cancer cell line, HCT116,
HCT15, HT29 and RKO
colon cancer cell lines

Tfpep-AuNP conjugated with
photodynamic pro-drug Pc 4 5.1

Cellular uptake of targeted particles
was significantly higher than that of

the non-targeted ones.

LN229 and U87 human
glioma cancer lines

CPP-DOX-AuNP 25 Higher cell death as compared to
previously tested 41 nm AuNP. HeLa cells and A549 cells

FA-Au-SMCC-DOX
Enhanced drug accumulation and

retention as compared to free DOX in
multi drug-resistant cancer cells.

HepG2-R, C0045C
and HDF

FA-BHC-AuNP 20–60 Increased efficacy of BHC against
cancer cells. Vero and HeLa

Au-P(LA-DOX)-b-PEG-OH/FA NP 34 Enhanced cellular uptake and
cytotoxicity against cancer cells.

4T1 mouse mammary
carcinoma cell line

DOX@PVP-AuNP 12
Induction of early and late apoptosis
in lung cancer cells and upregulation

of tumour suppression genes.

A549, H460 and H520 human
lung cancer cells

DOX-BLM-PEG-AuNP 10
Enhanced half-maximal effective drug
concentration, providing rationale for

chemotherapy using two drugs.
HeLa cells

EpCam-RPAuN 48
The biomimetic nanoparticle loaded
with PTX was used in combination
treatment (PTT and chemotherapy).

4T1 mouse mammary
carcinoma cell line

AuNP: gold nanoparticle, AuN: gold nanocage, BHC: berberine hydrochloride, BLM: bleomycin, CPP: cell
penetrating peptides, DOX: doxorubicin, EpCam: epithelial cell adhesion molecule, FA: folic acid, Hyd: hydrazone,
MTX: methotrexate, PEG: poly ethylene glycol, PLA: poly L-aspartate, (Pt (R,R-dach)): active ingredient of
oxaliplatin, PTT: photothermal therapy, PTX: paclitaxel, PVP: polyvinylpyrrolidone, SMCC: succinimidyl 4-(N-
maleimidomethyl) cyclohexane-1-carboxylate, Tfpep: transferrin peptide.
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Breast cancer is often diagnosed with molecular imaging, and an NP conjugate with
targeting moiety significantly enhances the output of optical imaging and can be used as
a carrier in chemotherapy [95]. A polydopamine-coated magnetite NP and sphere with
PAMAM dendrimers that were functionalized with NHS-PEG-Mal(N-hydroxysuccinimide-
polyethylene glycol-maleimide) linker was developed to be able to functionalize with a
folic acid derivative, which is a targeting moiety that can effectively kill cancer cells in dual
chemo and PTT in liver cancer [96]. Microbubbles, when stabilized by a coating of magnetic
or drug-containing NPs, have useful usages in theranostic applications. These microbubbles
allow the transport of more efficient NP-mediated drug delivery [97]. Graphene-based
NPs show good potential in photo chemotherapy. A study synthesized reduced graphene-
based NPs with excellent biocompatibility capable of loading anticancer drugs for photo
chemotherapy [98]. A study synthesized the polymerization of 3-caprolactone, 1,4,8-trioxa
[4.6]spiro-9-undecanone and poly NPs for bladder cancer to be used as a chemotherapeutic
agent with loaded DOX and zinc phthalocyanine, which enables synergistic PDT [99]. The
potential risk of using NPs has yet to be fully explored. They pose a risk that is beyond the
scope of chemical drug delivery. They can cross barriers that are not accessible to many
other particles such as crossing the blood–brain barrier [9].

7. Clinical Research

Functionalized nanocarriers based on nanoparticles have been developed to improve
the therapeutic efficiency of chemotherapy combined with other treatment options. The ad-
vantages of functionalized nanocarriers, namely, passive targeting capacity by the enhanced
permeation and retention, ability to load drugs for targeting modification and the large
surface-to-volume ratio, made various clinical research studies focusing on combined ther-
apy possible [100]. For example, Katragadda et al. [101] demonstrated a safe and efficacious
nanosized formulation for the delivery of paclitaxel and 17-AAG combination therapy,
which has shown meagre responses in phase 1 clinical trials. Liu et al. [102] developed
novel nanoparticles based on polymeric microspheres loaded with two anticancer drugs for
pulmonary delivery. The in vivo pharmacokinetic and biodistribution studies showed that
the microspheres demonstrated a prolonged circulation time and could accumulate in the
lung. Araujo et al. [103] summarized the tyrosine kinase inhibitors in clinical practice for
solid tumour treatment (Table 2). As SRC is a tyrosine kinase important in the oncogenic
and bone-metastatic processes, it is a potential therapeutic agent to treat solid tumours.
Dasatinib is one of the SRC inhibitors now being developed and is the most studied in-
hibitor. The current results provide valuable information to investigate if targeting SRC
exhibits a viable therapeutic strategy. To date, various carrier-free prodrug NPs based on
dasatinib have been designed. In vivo and in vitro experiments showed that the NPs had
excellent antitumour activity and reduced toxicities [104].

Table 2. Some tyrosine kinase inhibitors used in clinical practice. Reproduced with permission
from [103]. Copyright 2010 Elsevier.

Tyrosine Kinase Inhibitor Kinase Target(s) FDA-Approved Indications

Dasatinib (Sprycel) SRC, SFKs, BCR-ABL, c-KIT,
PDGFR, c-FMS, EPHA2 CML (2nd-line), Ph + ALL

Erlotinib (Tarceva) EGFR NSCLC
Gefitinib (Iressa) EGFR NSCLC

Imatinib (Gleevec/Glivec) BCR-ABL, c-KIT, PDGFR CML, Ph + ALL, GIST
Lapatinib (Tykerb) EGFR, HER2/neu Advanced breast cancer
Nilotinib (Tasigna) BCR-ABL, c-KIT, PDGFR CML (2nd-line)

Sorafenib (Nexavar) VEGFR, PDGFR Renal cell carcinoma,
hepatocellular carcinoma

Sunitinib (Sutent) VEGFR2, PDGFR, c-KIT, FLT3 GIST, renal cell carcinoma
CML, chronic myeloid leukemia; EGFR, epidermal growth factor receptor; EPHA, ephrin A; FLT3, FMS-like
tyrosine kinase 3; GIST, gastrointestinal stromal tumours; NSCLC, non-small cell lung carcinoma; PDGFR, platelet-
derived growth factor receptor; Ph + ALL, Philadelphia chromosome–positive acute lymphoblastic leukemia;
VEGFR2, vascular endothelial growth factor receptor-2.
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8. Future Prospects

In this topical review, though cancer nanotheranostics is quite a novel field within
these last 10 years, it has high potential to be applied extensively for cancer therapy in
personalized medicine oncology. From the current works and results, it can be seen that
more efforts should be taken to study the microbiological environment of the disease, and
investigate the stimuli-responsive nanomedicines and co-delivery of drugs using nanocarri-
ers. Moreover, further work should focus on the development of a novel preclinical model
resulting in the potential for more accurate clinical predictability. This should lead to more
clinical trials on nanotheranostics. Regarding nanomaterials, future work should focus on
the design and synthesis of functionalized nanoparticles in active delivery systems, and in
targeted tumour and cancer marker detection in the human body serum.

9. Conclusions

Cancer treatment has advanced significantly over the last 10 years and it continues
to advance. The development of more functionalized nanoparticles allows cancer ther-
apy to be more precise and imaging modalities to provide more enhances images. The
combination of imaging modalities and therapeutic application allows for more accurate
patient-specific treatment and it is complemented by a new theranostic nanoagent, which
can serve multiple purposes in combination modalities. This review is particularly im-
portant for researchers in either cancer diagnosis or therapy to see the big picture of the
recent advances in nanotheranostics. Through understanding the current development and
progress of functionalized nanoparticle application in theranostics, they can find out the
most promising study directions in the future.
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