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Abstract: The geometrical structure, electronic and magnetic properties of B-endoped C60 (B@C60)
ligand sandwich clusters, TM&(B@C60)2 (TM = V, Cr), and their one-dimensional (1D) infinite
molecular wires, [TM&(B@C60)]∞, have been systematically studied using first-principles calculations.
The calculations showed that the TM atoms can bond strongly to the pentagonal (η5-coordinated)
or hexagonal rings (η6-coordinated) of the endoped C60 ligands, with binding energies ranging
from 1.90 to 3.81 eV. Compared to the configurations with contrast-bonding characters, the η6- and
η5-coordinated bonding is energetically more favorable for V-(B@C60) and Cr-(B@C60) complexes,
respectively. Interestingly, 1D infinite molecular wire [V&(B@C60)-η6]∞ is an antiferromagnetic
half-metal, and 1D [Cr&(B@C60)-η5]∞ molecular wire is a ferromagnetic metal. The tunable electronic
and magnetic properties of 1D [TM&(B@C60)]∞ SMWs are found under compressive and tensile
stains. These findings provide additional possibilities for the application of C60-based sandwich
compounds in electronic and spintronic devices.

Keywords: sandwich complexes; magnetic; density functional theory

1. Introduction

Since the discovery of C60 in 1985 [1,2], various fullerenes and their derivatives have
attracted great attention due to their extraordinary stability and unique chemical and
physical properties [3–7]. Particularly, versatile polygons, such as pentagons and hexagons,
in fullerenes enabled them to be potential ligands bonding in external metal elements.
Using a laser vaporization method, Nakajima et al. [8–10] successfully synthesized TM-C60
(TM= 3d transition metal) complexes in the 1990s, and predicted that the TMn(C60)m clusters
exhibit sandwich-like structures for m = n + 1, n ≤ 3 or ring-like structures for m = n, n > 3.
These structure characteristics were later confirmed via theoretical studies [11]. In addition,
the TM-C60 coordinated bonds in TMn(C60)m complexes were found to be dependent on
the choice of TM atom [12,13]. However, differently from the comprehensively studied
benzene (Bz)-ligand [10,14] or cyclopentadienyl (Cp)-ligand [15] sandwich complexes, most
C60 sandwich complexes were confirmed to be non-magnetic or weakly magnetic [11–13],
severely limiting their application in spintronic devices. Therefore, tuning the electronic
and magnetic properties of fullerene-ligand sandwich complexes remains challenging.

Different from organic planar ligands (CnHn, n = 5–8) [16–22], the cage configuration
of fullerenes enable their large spaces to accommodate other atoms or molecules for form-
ing various core/shell complexes [23–32], which endows novel electronic properties on
them and their TM-fullerene sandwich derivatives. For example, 1D infinite molecular
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wires, [TM&(TM@C60)]∞ (TM = Ti-Ni), composed of metallofullerene (TM@C60)[23,33,34]
and 3d TM atoms, were identified as displaying robust antiferromagnetic (AFM) semicon-
ducting properties [20]. Unfortunately, the physical and chemical properties of sandwich
isomers with different endoped fullerenes are rarely investigated. Herein, we explore
the structure, electronic and magnetic properties of TM(B@C60)2 (TM = V, Cr) sandwich
clusters, as well as their 1D molecular wires (SMWs), [TM&(B@C60)]∞, constructed by
the fabricated core/shell structure, B@C60 [35], as a building block. All the V-(B@C60)
and Cr-(B@C60) sandwich complexes with η6- or η5- are thermodynamically stable, with
high binding energies. Among them, the η6- and η5-coordinated bonding configurations
are the stable ones, respectively, for the V and Cr atom. Moreover, 1D [V&(B@C60)-η6]∞
SMW is an antiferromagnetic half-metal, and 1D [Cr&(B@C60)-η5]∞ molecular wire is a
ferromagnetic metal.

2. Models and Method

All the calculations were performed in the Vienna ab initio simulation package
(VASP) [36,37] under the spin-polarized DFT framework. The exchange correlation interac-
tion was described by the Perdew–Burke–Ernzerhof (PBE) [38] functional, and the interac-
tion between valence electrons and ion nuclei was described by the projector–augmented
wave potential (PAW) [39] method. In the process of calculations, the van der Waals (vdW)
interaction was considered by using the DFT-D2 [40] method. In order to further con-
sider the Coulomb interaction and exchange interactions of the d-electron in the transition
metal atom, we adopted the GGA + U method [41], in which the parameter U was set
to 3.0 Ev [42,43]. In order to find the magnetic ground state of the 1D [TM&(B@C60)]∞
SMWs, a 1 × 1 × 2 supercell consisting of two TM atoms and two (B@C60) units was used.
The criteria for energy and atom force convergence were set to 10−4 eV and 0.01 eV/Å,
respectively. To determine the magnetic ground states of the TM&(B@C60) clusters and
molecular wires, diverse magnetic states with different magnetic moments were calculated
and compared.

3. Results and Discussion
3.1. TM&(B@C60)2 (TM = V, Cr) Sandwich Clusters

First, we explored the structural characters of the endohedral B@C60 cluster (see
Figure 1a). Similar to the C60 molecule, the point group symmetry of the B@C60 molecule is
Ih, with the B atom sitting on the mass center of C60. The diameter of B@C60 is 7.09 Å and
the C-C bond length is 1.45 Å. As shown in the spin density plot (see Figure 1b), the B atom
in B@C60 is spin-polarized with a local magnetic moment of 1.0 µB. The partial density of
state (PDOS) of B@C60 (Figure 1b) shows that the p states of the B atom is spin-polarized in
the energy around the Fermi level, accounting for the 1.0 µB net magnetic moment. Two
types of TM&(B@C60)2 configurations were considered: (i) TM&(B@C60)2-η5, in which
the sandwiched TM atoms are bonded to two pentagonal rings of two B@C60 molecules
forming η5-coordinate bonds; and (ii) TM&(B@C60)2-η6, in which the TM atoms are bonded
to two hexagonal rings of two B@C60s forming η6-coordinate bonds. Figure 1c,d show
the optimized structures of V&(B@C60)2 and Cr&(B@C60)2. Clearly, all the TM&(B@C60)2s
favor normal sandwich configurations, with the TM atom sitting above the mass center
of the pentagon or hexagon rings. For V&(B@C60)2, the η6 coordinated configuration is
more stable than the η5 coordinated one, with an energy difference of 0.32 eV. On the
contrary, the η5 coordinated configuration is energetically more stable for Cr&(B@C60)2,
with approximately 0.50 eV less energy.
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Figure 1. (a) Different views of B@C60; (b) the PDOS and spin density plot of B@C60 molecule;
optimized structures of V&(B@C60)2 (c) and Cr&(B@C60)2 (d) with η5 and η6 bonding. ∆E is the
energy difference between different bonding structures.

For V&(B@C60)2 and Cr&(B@C60)2, the distances of TM atoms from the mass center
of the faced Cn ring (n = 5, 6) (dTM-C60) to the nearest carbon rings are in the range of
1.73–2.00 Å (see Table 1), which are a bit larger than those in the TM-Bz (1.70 Å) [44], TM-Cp
(1.72 Å–1.81 Å) [15] and TM-C60 (1.75 Å) [6] sandwich compounds. In the compounds,
the dTM-C60s in η5 coordinated systems are longer than those in the η6 coordinated ones
by around 0.21~0.28 Å. Moreover, the B atoms in the TM&(B@C60)2s (Figure 1c,d) deviate
from the center of C60 with 0.02~0.08 Å (see Table 1). In order to investigate the stability of
these TM&(B@C60)2 sandwich clusters, the binding energies (Eb) are calculated based on
the following formula:

Eb = ETM&(B@C60)2 − [ETM + 2EB@C60] (1)

where ETM, EB@C60 and ETM&(B@C60)2 are the energies of the isolated TM atom, B@C60
molecule and TM&(B@C60)2, respectively. Shown in Table 1, the Ebs of V&(B@C60)2 and
Cr&(B@C60)2 with η5/η6 coordinated bonding are approximately −1.90/−2.23 eV and
−3.81/−3.31 eV, respectively, implying that these sandwich clusters are energetically stable.
Figure 2 plots the PDOS of the TM&(B@C60)2 (TM = Ti, V) clusters to explore the physical
origin of their stability. For V&(B@C60)2-η6, strong C-p and V-dx2−y2 orbitals hybridization
are observed in the energy window of [−0.75, −0.60 eV], and the hybridization between B-p
and V-dz2 states are in the energy window of [−0.25, 0 eV] (see Figure 2b) below the Fermi
level. While in the case of V&(B@C60)2-η5, relatively weaker B-p and V-dz2 hybridization
is found (see Figure 2a), which is responsible for its low stability. In Cr&(B@C60)2-η6, the
hybridization between C-p orbitals and Cr-dx2-y2, dz2 orbitals is observed in the energy of
[−0.5, −0.1 eV]. In contrast, for Cr&(B@C60)2-η5, stronger d-p hybridization is found deep
in the energy window below the Fermi level, around [−1.3, −1.2 eV] and [−0.6, −0.4 eV].
As a result, the most energetically stable configuration is Cr&(B@C60)2-η5.
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Table 1. Optimized lattice constant (L, Å), local magnetic moment of TM atom and B atom (LMM,
µB), binding energy (Eb, eV), the Bader charge (∆e, e) transferred from TM atom to B@C60 molecule,
distance of TM atom to the mass center of faced Cn rings (dTM-C60), distance of B atom to the mass
center of the nearest η5- or η6-carbon ring in C60 (dB-C60, Å), deviations of the encapsulated B atom to
the mass center of C60 molecule (∆h, Å).

Sys L(Å)
LMM(µB)

Eb(eV) ∆e(e) dTM-C60(Å) dB-C60(Å) ∆h(Å)
TM B

V&(B@C60)2-η5 —— 3.00 0.41 −1.90 1.13 1.96 3.28–3.53 0.03
V&(B@C60)2-η6 —— 1.00 0.41 −2.23 1.30 1.73 3.12–3.21 0.02
Cr&(B@C60)2-η5 —— 6.00 0.42 −3.81 1.09 2.00 3.24 0.08
Cr&(B@C60)2-η6 —— 2.00 0.41 −3.31 1.00 1.73 3.10–3.22 0.03

[V&(B@C60)-η6]∞ 9.84 1.00 0.41 −5.24 0.32 1.69 3.46–3.40 0.32
[Cr&(B@C60)-η5]∞ 10.64 4.00 0.41 −8.67 0.09 2.01 3.31–3.32 0.08

Figure 2. The spin density and PDOS of V&(B@C60)2 (a,b) and Cr&(B@C60)2 (c,d).

To determine the magnetic ground states of these TM&(B@C60)2 clusters, we consid-
ered different spin states for each system (see Table S1 in the supporting information, SI).
For V&(B@C60)2, the magnetic moment of its ground state is 3.0 µB and 1.0 µB in their η5/η6

coordinated configurations. Their second lower-energy isomers are found to have magnetic
moments of 5.0 µB and 3.0 µB, which are less stable than the ground states by approximately
0.01 eV and are 0.03 eV higher in energy, respectively. In addition, for Cr&(B@C60)2-η5 and
Cr&(B@C60)2-η6, the magnetic moment of 6.0 µB and 2.0 µB is observed for their ground
states, which are approximately 0.03 eV and 0.17 eV lower in energy, respectively, than
their second higher-energy isomers with the same magnetic moment of 4.0 µB. The inset in
Figure 2 shows the spin densities of V&(B@C60)2 and Cr&(B@C60)2. Clearly, the magnetic
moments of both systems are mainly contributed to the B atoms and TM atoms. The B atom
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and TM atom for V&(B@C60)2-η5 and Cr&(B@C60)2-η6 contribute to opposite spins. In
contrast, the same spins are found for the B atom and Cr atom in Cr&(B@C60)2-η5. As for
V&(B@C60)2-η6, its magnetic moments mainly arise from two B atoms with opposite spins.

3.2. D infinite [TM&(B@C60)]∞ (TM = V, Cr) SMWs

Figure 3a,b show the optimized structures of 1D [V&(B@C60)]∞ and [Cr&(B@C60)]∞.
Here, respective 1D [V&(B@C60)]∞ and [Cr&(B@C60)]∞ with η6- and η5-coordinated config-
urations are considered. Similar to the TM&(B@C60)2 clusters, both 1D [TM&(B@C60)]∞
SMWs have normal sandwich structures. The lattice constants of 1D [V&(B@C60)-η6]∞ and
[Cr&(B@C60)-η5]∞ SMWs are 9.84 Å and 10.64 Å, respectively (see Table 1 and Figure 3a,b).
Meanwhile, B atoms in the endoped C60 are separate from the mass center of C60, with the
deviation values (∆h) of 0.32 Å and 0.09 Å, respectively. Table 1 shows that the dTM-C60
in 1D [V&(B@C60)-η6]∞ SMW and [Cr&(B@C60)-η5]∞ SMW are approximately 1.70 Å and
2.01 Å, respectively, and are a bit shorter than that in the finite sandwich clusters.

Figure 3. The optimized structures (a,b) and PDOS (c,d) of 1D [V&(B@C60)-η6]∞ and [Cr&(B@C60)-
η5]∞ SMWs.

To evaluate the stability of these SMWs, we defined the binding energy (Eb) of
SMWs as:

Eb = E[TM&(B@C60)]∞
− ETM − EB@C60 (2)

where E[TM&(B@C60)]∞, ETM and EB@C60 are the energies of [TM&(B@C60)]∞ SMWs, 3d
TM atoms and B@C60 ligand, respectively. As shown in Table 1, the binding ener-
gies of [V&(B@C60)-η6]∞ and [Cr&(B@C60)-η5]∞ are about −5.24 eV and −8.67 eV, re-
spectively, larger than that of the reported 1D organometallic and non-organometallic
SMWs [15,22,45–47]. The Bader charge calculations indicate that their high stability
is correlated with charge transfer from the TM atom to B@C60 molecule, which is
about 1.22e and 1.09 e for V and Cr, respectively. Figure 3c,d present the PDOS of
1D [V&(B@C60)-η6]∞ SMW and [Cr&(B@C60)-η5]∞ SMW. Strong hybridization between
C-p and V-dz2, dx2-y2 orbitals are found in 1D [V&(B@C60)-η6]∞ SMW. As shown in
Figure 4d, C-p and Cr-dyz of [Cr&(B@C60)-η5]∞ SMW are strongly hybridized.
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Figure 4. Spin densities (a,b) and decomposed band structures (c,d) of 1D [V&(B@C60)-η6]∞ and
(b) [Cr&(B@C60)-η5]∞ SMWs, yellow and blue colors indicate up and down spins, respectively. red,
green and violet colors represent B-p, C-p and TM-d orbitals, respectively, the size of the color balls is
proportion to the contributions from the states.

Furthermore, to determine the magnetic ground state of 1D [V&(B@C60)-η6]∞ and
[Cr&(B@C60)-η5]∞ SMWs, a double cell was constructed to explore their FM and AFM
configurations (see Figure 4a,b). Obviously, 1D [V&(B@C60)-η6]∞ SMW favors an AFM
ground state, in which two nearby V-B atoms (V-B dimer) FM couple with each other,
while AFM couples with its nearby dimer (see Figure 4a). The FM state is less stable by
approximately 0.35 eV higher in energy. On the contrary, 1D [Cr&(B@C60)-η5]∞ SMW has
a FM ground state, which is more stable than the AFM state by approximately 0.10 eV
lower in energy (see Table S2). Moreover, 1D [V&(B@C60)-η6]∞ SWM is found to be an
AFM half-metal, in which the spin-up and spin-down electronic states are semiconducting
and conducting, respectively (see Figure 4c), while 1D [Cr&(B@C60)-η5]∞ SMW is a FM
metal(see Figure 4d). Finally, we explored the electronic and magnetic properties of the
most stable 1D [TM&(B@C60)-η5]∞ (TM = V, Cr) SMWs under external strains. For 1D
[V&(B@C60)-η6]∞ SMW, it undergoes an AFM HM-AFM semiconductor (SC) transition
under 5% and 10% compressive strain (see Figure 5a,b and Table 2). On the contrary, it
is changed to a FM metal under 5% and 10% tensile strain (see Figure 5c,d and Table 2).
In addition, 1D [Cr&(B@C60)-η5]∞ SMW transfers to both a FM metal and a ferrimagnetic
(FIM) metal under 5% compressive stain and 5% (10%) tensile strain (see Figure 5f–h and
Table 2), respectively, and changes to an AFM metal under 10% compressive strain (see
Figure 5e and Table 2).

Table 2. Local magnetic moment of TM atom and B atom (LMM, µB) under different strain.

Sys
LMM(µB)

ε = −10% ε = −5% ε = +5% ε = +10%

[V&(B@C60)-η6]∞
V 1.31/−1.33 1.00/−0.97 1.83/1.83 2.75/2.75
B 0.36/−0.35 0.41/−0.42 0.42/0.42 0.42/0.42

[Cr&(B@C60)-η5]∞
Cr 2.85/−2.92 3.12/3.12 4.03/4.03 4.25/4.25
B 0.38/0.38 0.37/0.37 −0.42/−0.42 −0.32/−0.32
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Figure 5. Band structures and spin density of 1D [V&(B@C60)-η6]∞ and (b) [Cr&(B@C60)-η5]∞ SMWs
under several strains of −10% (a,e), −5% (b,f), +5% (c,g) and +10% (d,h); yellow and blue colors
indicate up and down spins, respectively. The blue, black and red lines represent the Fermi level, the
spin up and spin down electronic bands, respectively.

4. Conclusions

Using first principles calculations, we systematically investigated the structure, elec-
tronic and magnetic properties of 3d transition metal atoms and B@C60 sandwich clusters,
TM&(B@C60)2 (TM = V, Cr), and their 1D infinite SMWs, [TM&(B@C60)]∞. Our results
showed that all the studied systems possess normal sandwich structures with extremely
thermodynamic stabilities. It was found that respective η6- and η5-bonding configurations
are confirmed for the systems with TM = V and Cr. One-dimensional [V&(B@C60)-η6]∞
and [Cr&(B@C60)-η5]∞ SMWs are an antiferromagnetic half-metal and a ferromagnetic
metal. Furthermore, the magnetic properties can be modulated by exerting biaxial compres-
sive and tensile strains. Finally, we should state that the diverse electronic and magnetic
properties of the studied complexes may be highly sensitive to their surroundings [48,49].
Therefore, exploring their performance in a complicated environment, instead of non-free-
standing states, is also of importance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12162770/s1, Table S1. Different spin states for each system.
Table S2. The energy difference between FM and AFM states. Atomic coordination of V&(B@C60)2-η5.
Atomic coordination of V&(B@C60)2-η6. Atomic coordination of Cr&(B@C60)2-η5. Atomic coor-
dination of Cr&(B@C60)2-η6. Atomic coordination of [V&(B@C60)-η6]∞. Atomic coordination of
[Cr&(B@C60)-η5]∞.
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