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Abstract: Hierarchical functionalization of flax fibers with ZnO nanostructures was achieved by
electroless deposition to improve the interfacial adhesion between the natural fibers and synthetic
matrix in composite materials. The structural, morphological, thermal and wetting properties of the
pristine and ZnO-coated flax fibers were investigated. Thus, the ZnO-coated flax fabric discloses an
apparent contact angle of ~140◦ immediately after the placement of a water droplet on its surface. An
assessment of the interfacial adhesion at the yarn scale was also carried out on the flax yarns coated
with ZnO nanostructures. Thus, after the ZnO functionalization process, no significant degradation
of the tensile properties of the flax yarns occurs. Furthermore, the single yarn fragmentation tests
revealed a notable increase in the interfacial adhesion with an epoxy matrix, reductions of 36% and
9% in debonding and critical length values being measured compared to those of the pristine flax
yarns, respectively. The analysis of the fracture morphology by scanning electron microscopy and
X-ray microtomography highlighted the positive role of ZnO nanostructures in restraining debonding
phenomena at the flax fibers/epoxy resin matrix interphase.

Keywords: composites; flax fibers; ZnO nanostructures; interface/interphase; electroless deposition

1. Introduction

In the last two decades, environmental and economic concerns have been the engine
in the development of composites based on natural fibers [1–3]. Derived from renew-
able resources, natural fibers offer significant biodegradability and sustainability, their
composites being widely utilized in components for various industries, due to their low
environmental impact. Thus, natural fiber-reinforced epoxy resins are the most used com-
posite materials in the automotive sector (epoxy resin reinforced with flax, hemp, kenaf or
sisal fibers for automotive components) and construction sector (furniture, decks, building
materials—masonry, cementitious materials, thermal insulating materials, etc.). In this
type of application, the mechanical properties of natural fibers-reinforced epoxy resin
composites are essential, the interphase between the fibers and matrix playing the key role
in achieving the required mechanical performance.

The main advantages of natural fibers are their specific features, namely high abun-
dance, availability, renewability, biodegradability, recyclability, lightweight, low cost, ease
of handling, good strength, very good thermal insulation and non-toxicity. The natural
plant fibers such as flax, hemp, jute, etc. are actually cellulose-based materials being mainly
made from cellulose, lignin, hemicellulose, pectin and wax [4], the percentage of each
chemical component in the composition depends on the type of the fibers. Accordingly, due
to a large number of hydroxyl groups from the cellulose structure, the natural fibers present
an inherent hydrophilicity nature that is responsible for the limited adhesion and the poor
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compatibility between these fibers and polymer matrices (e.g., epoxy resin, polypropylene)
used in the composite materials which usually feature a hydrophobic behavior [5]. One
of the most used approaches for modifying the wettability of natural fibers in order to
improve the interfacial bonding and enhance the properties of the composite materials
consists in the physical or chemical treatment of the fiber surface [5,6]. The combination
between natural fibers and inorganic nanostructures can also lead to an improvement in
the mechanical performance of the composites [7], expanding their potential range of ap-
plications. Therefore, recently, the surface functionalization of various natural plant fibers
(flax [8–12], sisal [13], fique [14], hemp [15] and cotton [16,17]) with metal oxide nanostruc-
tures (TiO2 [9,11,12], ZnO [8,10,13–17]) has received considerable attention [18]. One of
the main aims is to mimic naturally occurring biological systems, such as wood or nacre,
which rely on the development of structures at different length scales (from the macro to the
nanoscale) for achieving interesting combinations of strength and toughness [19]. Among
the cellulose-based materials, flax fibers are extensively used as reinforcement in composite
materials due to their high specific mechanical properties [20–22], their functionalization
with ZnO or TiO2 nanostructures by solution-based methods such as hydrothermal [8],
sol-gel [11], in situ chemical synthesis [10] or dip-coating [9,12] being recently reported.

Abundant and low-cost material, ZnO is an interesting choice for the functionalization
of natural fibers being one of the most investigated metal oxides. Furthermore, ZnO can
be easily prepared in nanostructures with different morphologies by simple and scalable
wet and dry methods [23–26]. Usually, the chemical synthesis of ZnO by solution-based ap-
proaches involves inexpensive equipment, easily accessible and low-cost chemical reagents,
mild temperature, and ambient pressure facilitating the large-scale production and the
application of the materials and devices based on this metal oxide. Consequently, ZnO is a
technological key material which can be applied in superhydrophobic surfaces [15,16,24,25],
sensing [25], field effect transistors [23], photodetectors [27], photovoltaic cells [28], etc.
Among the solution-based techniques, the ZnO electroless deposition is a successful surface
functionalization technique that allows the coverage of complex shapes and non-conductive
substrates such as natural (cotton, hemp) or synthetic (polyester, polyamide, poly(lactic
acid)) fabrics, these studies being mainly focused on the wetting properties of the ZnO-
functionalized fabrics [15,16]. It must be noticed that in the electroless process, before the
immersion of the substrate in the deposition solution containing a zinc salt and a reducing
agent, its surface must contain catalytic metal sites because the ZnO growth takes place
only on the metal-catalyzed surface being triggered by the increase of the pH in the vicinity
of this surface via the redox reactions [15,16]. Recently, this functionalization approach
has proven to be effective also on basalt fibers (natural fabric of mineral origin), and the
presence of ZnO nanostructures on the surface of these fibers had a positive effect on their
mechanical performance [29]. Thus, due to a relatively uniform coating on large areas
and good adhesion of the ZnO nanostructures to the fiber surface, the improvement in the
apparent interfacial shear strength of the ZnO-coated basalt fibers by electroless deposition
was higher in comparison with that obtained for the basalt fibers decorated with ZnO
nanorods by a hydrothermal treatment, where a poor chemical bonding between the metal
oxides nanostructures and the surface of the fibers was observed [30].

In this context, the aim of this study is to obtain hierarchical flax fibers by ZnO electro-
less deposition, this wet chemical approach offering the possibility to modify the surface of
the flax fibers with ZnO nanostructures for enhancing the natural fibers/synthetic matrix
interfacial adhesion. Although ZnO electroless deposition can be regarded as a scalable
functionalization technique, very suitable for achieving a high degree of functionalization
of flax fibers, which further can be integrated into composites with enhanced mechanical
performance, up to now there are no reports on the coating of the flax fibers by ZnO elec-
troless deposition. Till now, from natural fibers of cellulosic origin, only cotton and hemp
fibers were coated by ZnO electroless deposition, the studies revealing the UV-blocking
and superhydrophobic properties of the ZnO-functionalized fabrics [15,16]. Additionally,
only two papers were focused on the mechanical properties of flax fibers functionalized
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with ZnO nanostructures through a hydrothermal treatment, the growth process involving
a ZnO seed layer previously deposited on the fiber surface [8,31]. Moreover, natural fibers
of mineral origin such as basalt fibers were lately coated by ZnO electroless deposition,
the work emphasizing a significant improvement in the apparent interfacial shear strength
(~42%) with limited degradation of the pristine basalt fiber tensile strength (a reduction
of ~17%) [29]. Thus, ZnO nanostructured interphase obtained on the surface of flax fibers
by electroless deposition can allow a smoother transition between the flax yarns and the
epoxy resin matrix in terms of mechanical properties for a better load transfer and me-
chanical interlocking. In particular, structural and morphological properties of the pristine
and functionalized flax fabrics were investigated. A thermal and wettability analysis of
the fabrics was also performed before and after the functionalization, while to character-
ize the interfacial adhesion, tensile tests were carried out on yarns and on single-yarn
composite samples allowing the determination of the influence of the ZnO electroless
deposition. Consequently, the new information provided by this research regarding the
design of ZnO nanostructured interphase on flax fibers can be very helpful for developing
natural fiber-reinforced epoxy resin composites with enhanced mechanical performance
that can find potential applications in various industries, especially in automotive and
construction fields.

2. Materials and Methods
2.1. Materials

In the ZnO electroless deposition were used unsized flax fabric samples supplied
by Composites Evolution (UK) with a 2 × 2 twill architecture and a fiber areal weight of
200 g/m2. In addition, single flax yarns were manually extracted from the flax fabrics
for assessing the influence of the sample geometry (fabric or yarn) on the growth of
ZnO nanostructures. Single yarn fragmentation tests were carried out for evaluating the
interfacial adhesion of the functionalized flax yarns. In this case, an epoxy matrix supplied
by Gurit, commercially known as PRIME 27, was mixed with a PRIME 20 slow hardener in
a recommended 100:28 weight ratio, the curing cycle being 7 h at 90 ◦C.

2.2. ZnO Electroless Deposition

The chemical reagents (SnCl2, PdCl2, Zn(NO3)2 and (CH3)2NHBH3) were purchased
from Sigma Aldrich (Burlington, VT, USA). The functionalization of flax fabrics or flax
yarns by ZnO electroless deposition included three steps: sensitization, activation and
deposition, the optimal reaction parameters being chosen based on our previous study
carried out on cotton, another cellulosic fiber [16]. At first the substrates were immersed at
room temperature 2 h in the sensitization aqueous solution (40 g/L SnCl2 and 20 mL/L HCl
(37% vol.)) followed by 2 h in the activation aqueous solution (0.1 g/L PdCl2 and 20 mL/L
HCl (37% vol.)). Further, the substrates with metal-catalyzed surfaces were immersed for
2 h, at 70 ◦C, in the deposition aqueous solution containing 0.07 M Zn(NO3)2 and 0.01 M
(CH3)2NHBH3. The obtained samples were carefully rinsed with distilled water and dried
under the ambient atmosphere.

A schematic representation of the functionalization of flax fabrics by ZnO electroless
deposition is depicted in Figure 1.
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2.3. Structural, Morphological, Thermal and Wettability Analysis of the Pristine and Functionalized
Flax Fabrics

The structure, morphology and elemental composition of the samples were investi-
gated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM)
and energy dispersive X-ray analysis (EDX) using a Bruker AXS D8 Advance instrument
with Cu Kα radiation (λ = 0.154 nm), a Zeiss Merlin Compact field emission scanning
electron microscope and a Zeiss Gemini SEM 500 field emission scanning electron micro-
scope equipped with energy dispersive X-ray analysis Quantax Bruker XFlash detector
610 M as an accessory, respectively. The wetting properties were evaluated using a Drop
Shape Analysis System, model DSA100 from Kruss GmbH by recording with a video
camera the modification of the volume of a water droplet placed on the surface of the
sample. The thermal degradation behavior of the modified flax fabrics was investigated by
thermogravimetric analysis (TGA), the tests being carried out with a SetSys Evolution TGA
analyzer (Setaram Instrumentation). Thus, the samples weighing about 25–30 mg were
placed in an alumina pan and subjected to a heating rate of 10 ◦C/min in a temperature
range of 25–800 ◦C, in a nitrogen atmosphere.

2.4. Characterization of the ZnO-Coated Flax Yarns: Tensile Test and Single Yarn Fragmentation Test

The effect induced by the presence of the ZnO nanostructures on the surface of the
flax yarns on their mechanical properties was evaluated, the tensile tests being carried out
on modified single flax yarns. Prior to the measurements, the samples were conditioned
for 24 h at 45 ◦C. Further, the tensile tests were performed according to ASTM C-1557 with
three different gauge lengths, namely 20, 30, and 40 mm [8] using a Zwick/Roell Z010
equipped with a 1 kN load cell in displacement control (crosshead speed = 2 mm/min).
For each gauge length, the results are the average of thirty measurements.

The level of the interfacial adhesion between modified flax yarns and epoxy matrix
was investigated by single yarn fragmentation tests. Thus, the well-known single fiber
fragmentation test was adapted to test single yarns, the details of this test and its assump-
tions being reported in previous works [8,32–34]. Specimens containing one single flax
yarn were tested in tension with a crosshead speed of 0.005 mm/min by using an Instron
E1000 ElectroPuls test machine equipped with a load cell of 2 kN. The yarn diameters and
fragment lengths were evaluated by optical microscopy using a ZEISS Axio Imager optical
microscope. It has to be mentioned that the application of tensile loading was interrupted
in the case of specimen failure or when the fragmentation saturation level was reached,
meaning that no new yarn breaks appeared during a subsequent strain increase by 0.5%.
The results stem from at least 10 valid fragmentation tests. Numerical data were statistically
analyzed by ANOVA and t-test by using an alpha value of 0.05 using Origin software.

After single yarn fragmentation tests, the fracture morphology of the single yarn
composites was investigated by a Tescan Mira3 field emission scanning electron micro-
scope. Prior to FESEM analysis, the samples were sputter coated with a gold thin layer.
Fractured samples were also subjected to X-ray microtomography (micro-CT) analysis
using an UltraTom CT scanner by RX Solutions with a resolution of 1.5 µm, an accelerating
voltage of 50 kV and a beam current of 157 µA. An Avizo 9.0 software was used for the
volumetric reconstruction of the X-ray images acquired from 1120 rotation views over 360◦

(approximately 0.32◦ rotation step).

3. Results and Discussion

The XRD patterns of the flax fabrics before and after ZnO electroless deposition
are presented in Figure 2. Both samples showed two narrow peaks at 15◦ and 17◦ and
one sharper intense peak at 23◦ all related to the cellulose I phase from higher plant
cellulose [35–37]. The deposition of ZnO on the surface of the cellulose-based fabrics is
confirmed by the diffraction peaks assigned to its hexagonal wurtzite phase (JCPDS file
no. 36-1451), the sharp and narrow diffraction peaks proving a well-crystallized material.
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Figure 2. XRD patterns of flax (dotted curve) and ZnO-coated flax fibers (solid curve) as fabrics.
* Peaks attributed only to flax fibers.

FESEM micrographs at different magnifications displaying the morphology of the flax
fabrics before and after ZnO functionalization are included in Figure 3. The flax fabrics are
formed by fibers with a relatively smooth surface having diameters in the range from 5 µm
to 30 µm. After the ZnO electroless deposition, the surface of the natural fibers is covered
by a continuous, homogeneous and densely packed array of ZnO well faceted hexagonal
prisms having a base diameter of ~500 nm and the height of ~100 nm. The FESEM images
of the flax yarns shown in Figure 4 reveal the same hexagonal prism shape for the ZnO, the
structures having similar sizes to those deposited on flax fabrics. At higher magnifications
(insets from Figures 3 and 4), the FESEM images evidence that the crystallites are in fact
formed by twin hexagonal prisms, oriented and connected along the c-axis of the growth
direction, this being the characteristic morphology of the ZnO nanostructures deposited by
electroless deposition on various natural or synthetic fibers [15,16].

At lower magnification, the FESEM images disclose that: (i) the most uniformly
covered fibers are the outermost ones (Figures 3 and 4) and (ii) the aggregates of ZnO
particles are formed above the compact deposited layer (Figure 3).

These results can be explained considering the key role played by the diffusion pro-
cesses involved in each of the three steps, an effect which is also supported by the inherent
hydrophilicity nature of the pristine flax fabrics. In the sensitization step, the hydrolysis of
SnCl2 generates Sn2+ ions that are adsorbed on the fibers’ surface through an electrostatic
attraction. Further, in the activation step, the presence of PdCl2 triggered the oxidation
of Sn2+ ions into Sn4+ ions and simultaneously Pd2+ ions are reduced to metallic Pd form-
ing Pd0 colloids on the fibers’ surface. Finally, in the deposition step, the Zn(NO3)2 is
hydrolyzed and the (CH3)2NHBH3 is oxidized in the presence of Pd catalyst releasing free
electrons (its oxidation is well explained in Ref. [38]), which reduces NO3

− ions to NO2
−

ions inducing at the same time an increase of HO− ions concentration in the local area. The
HO− ions combine with the Zn2+ ions leading to the formation of Zn(OH)2 which forms
ZnO by spontaneous dehydration.
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All the mentioned chemical reactions are controlled by diffusion; therefore, they will
take place faster where diffusion is promoted, i.e., on the outermost layer of the fibers, and
much slower on the inner fibers of the textile material where diffusion is hampered. The
catalytic reaction stimulates the nucleation of the ZnO crystallites from the Pd catalyst and,
as the reactions continue, their growth continues covering completely the metal-catalyzed
surface. The presence of the ZnO aggregates can be the result of a reaction that takes place
in the volume of the deposition solution due to a local increase in the pH but which is
still limited to the proximity of the functionalized surface. It is worth mentioning that no
precipitate was observed in the volume of the solution or later decanted on the bottom of
the deposition vessel.
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The FESEM micrographs taken on the large area presented in Figure 5 prove that
the electroless deposition is a suitable functionalization route that allows to maintain a
large specific surface area. It can be seen that the flax fibers were covered by a continuous
nanostructured film formed by ZnO crystallites without embedding the flax fibers into a
metal oxide thick layer. Furthermore, the distribution of Zn on the fabric surface and its
atomic percentage in the sample were evaluated from the EDX mapping and EDX spec-
trum provided in Figure 6, the EDX data being acquired on areas having ~740 × 553 µm
(width × height) in different locations of the flax fabrics. Thus, the EDX mapping image
illustrates a uniform distribution of Zn on the surface of the flax fibers, the Zn atomic
percentage being estimated at ~9–13% depending on the investigated area.
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Further, the wettability of the flax fabrics before and after ZnO electroless deposition
was evaluated (Figure 5). The pristine flax fabric absorbs instantly the water droplet placed
on its surface (hydrophilic behavior). In the case of ZnO-coated flax fabrics, although
immediately after the placement on the surface, the water droplet seems “to rest” on
the fabric surface revealing an apparent contact angle of ~140◦ (a value that suggests a
hydrophobic behavior). This particular behavior can be related on one hand to the decrease
of the space between the flax fibers due to their covering with ZnO nanostructures and to the
hydrophobic behavior of the ZnO synthesized by the electroless deposition approach [16]
and on the other hand to the capillary wicking, a phenomenon that usually occurs in
the porous structure of the fabrics [39]. It has to be mentioned that various studies were
recently performed on flax fibers and their composites manufactured by liquid composite
molding processes for understanding the capillary wicking phenomena, and the wetting
parameters such as static and dynamic contact angles, polar and dispersive components of
surface-free energy, and the swelling effects at various fiber scale (individual fiber, yarn,
tow or fabric) [40–44].

The thermal stability of the ZnO-coated flax yarns was evaluated by TGA analysis, the
results shown in Figure 7 revealing a similar degradation behavior with that recorded for
the pristine flax fibers [8]. The thermogram shows the three typical degradation steps for
the cellulose-based materials: (i) around 80–100 ◦C, a first mass loss related to the moisture
removal from the amorphous regions of cellulose, (ii) around 200–250 ◦C, a second peak
linked to the decomposition of hemicellulose, the less thermally stable constituent of
the lignocellulosic fibers and (iii) around 300–350 ◦C, a third peak due to the cellulose
degradation; moreover, around 400–450 ◦C, a small tail related to the lignin degradation
can be observed [45]. Consequently, compared to the pristine flax fibers (Figure 7a) [8],
the global degradation behavior of the flax fibers is not significantly influenced by the
ZnO nanostructures deposited on the fibers’ surface, albeit a decrease in the onset of
thermal degradation was noted, likely ascribed to the premature decomposition of residues
pertaining to the sensitization step. In fact, the presence of ceramic nanostructures can
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interfere with the thermal conductivity of the fibers and the resulting decrease might delay
the hemicellulose/cellulose degradation [11]. This is further confirmed by the possible
heat shielding effect of ZnO nanostructures, which should improve the thermal stability of
the fibers [13,46]. The results confirm that the effect of nanostructures is dependent on the
specific synthesis technique used.
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Further, the final residual mass obtained for ZnO-coated flax yarns (25.4%) compared
to that recorded for neat flax yarns (13–17% [8]) indicates a high amount of ZnO deposited
on flax fibers’ surface (~8–12%) that is thermally stable in the temperature range investi-
gated [47]. The result is also confirmed by the FESEM analysis carried out on the modified
flax fibers after the thermogravimetric test, i.e., after having experienced a temperature of
800 ◦C. The FESEM images shown in Figure 8 prove that well-individualized flax fibers are
still uniformly covered by ZnO nanostructures.
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Mechanical properties of the functionalized natural fibers are generally dependent on
a number of parameters including the plant origin and growth conditions, fiber extraction
method, fiber diameter variability, fiber surface treatment, moisture amount, etc., but also
on the type of functionalization method applied for modifying the fibers’ surface. There-
fore, the mechanical properties of flax yarns were investigated at different gauge lengths
providing the following breaking forces at 20, 30 and 40 mm gauge lengths: 20.1 ± 3.4 N,
19.4 ± 2.9 N and 18.7 ± 3.1 N, respectively. Gauge length does not affect negatively the
tensile properties of flax yarns, despite the higher probability of including a defect (e.g.,
kink bands) with increasing yarn length [48,49], as confirmed by ANOVA (p > 5%). Consid-
ering the comparison of mechanical properties of ZnO-coated flax yarns with those of neat
flax yarns (22.9 ± 3.9 N) [8], both at a gauge length of 20 mm, it can be concluded that the
ZnO growth by electroless deposition process does not compromise the tensile properties
of underlying flax fibers, despite the corresponding properties are statistically different
as confirmed by a t-test (p < 5%); this is in line with other studies dealing with flax fibers
functionalized with nanostructures. Foruzanmehr et al. [11] reported on the importance of
an oxidation pre-treatment to enhance the interfacial adhesion of flax fibers with a TiO2
coating by sol–gel dip-coating. The presence of TiO2 coating was supposed to increase the
stress transfer among the fibrils and heal the fiber surface defects. The same reasoning was
proposed by Ajith et al. [50] who decorated flax fibers with zirconia nanoparticles. The
presence of hydrous zirconia nanoparticles reduced the surface defects, thus not degrading
the mechanical properties.

The effect of the ZnO nanostructures on the interfacial adhesion in flax/epoxy com-
posites was evaluated by implementing the single yarn fragmentation test in accordance
with the methodology reported in [33] and taking into account the limitations of this test
when applied to the natural fibers (especially to natural fibers as yarns). In fact, the evalu-
ation of the key parameter in this test, the interfacial shear strength (IFSS), is based on a
homogenous distribution of the fiber diameters that is not the case for the natural fibers,
these being characterized by a significant variability of fiber diameters among fibers and
along the same fiber itself. Previous works have demonstrated that other parameters, such
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as the critical fragment length and debonding length provide a clear representation of the
stress transfer efficiency at the yarn/matrix interface [32,33]. The critical fragment length
(lc) was calculated according to Equation (1):

lc =
4
3

l (1)

where l is the average value of the fragment length. The yarn diameter and fragment
lengths were measured in the gauge length zone by optical microscopy for each sample.
In particular, the fragment lengths were determined as the average values between the
internal and the central points of the breaking zones, which can be easily imaged by using
polarized light. In this case, it is possible to observe the birefringence within the epoxy
matrix, as shown in Figure 9. The dark area around each yarn breakpoint corresponds
to the debonding length (ldebonding) at the flax yarn/matrix interface [33]. The next step
is the evaluation of the yarn strength at the critical length, σf (lc), which cannot be cal-
culated directly by experimental tests conducted at such short lengths. In this case, an
extrapolation procedure was used from the knowledge of the distribution of the resistance
values measured at greater lengths. In fact, in accordance with the analysis reported in [51],
considering that the mean strength σf can be obtained by Equation (2) (for a two-parameter
Weibull distribution):

σf = σ0l−
1
m Γ

(
1 +

1
m

)
(2)

and taking the logarithm of Equation (2), it can be written that:

lnσf = − 1
m

lnl + ln
[

σ0Γ
(

1 +
1
m

)]
(3)

where m and σ0 are the shape and the scale parameters of the equivalent Weibull distribu-
tion, respectively, l the gauge length, σf the tensile strength and Γ the Gamma function. A
plot of ln(σf) versus ln(l) should provide a linear trend with a slope equal to (−1/m). To
this aim, in the present work, tensile tests were performed at three different gauge lengths,
namely 20, 30, and 40 mm, obtaining a linear graph with the slope—−1/m = −0.135. The
determination of the IFSS was addressed by using Equation (4):

τ =
σf (lc)d

2lc
(4)

where τ is the interfacial shear strength, σf (lc) is the yarn strength at the critical yarn length,
lc is the critical fragment length and d is the yarn diameter. All the relevant parameters
obtained from the fragmentation tests are summarized in Table 1, where values for the neat
flax yarns [33] are also included as a reference.
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Table 1. Diameter, critical length (lc), debonding length (ldebonding) and interfacial shear strength
values (IFSS) for ZnO-coated flax/epoxy single yarn composite and for neat flax/epoxy single
yarn composite.

Specimen Diameter (µm) lc (µm) ldebonding (µm) IFSS (MPa)

Neat flax/epoxy 248.33 ± 33.91 2687 ± 631 444 ± 49 19.3 ± 3.7
ZnO-coated flax/epoxy 398.87 ± 17.48 2452.7 ± 169.9 285.4 ± 84.4 14.7 ± 1.1

From the results given in Table 1, the presence of ZnO nanostructures on the surface
of flax fibers reduces both the critical and debonding length values of the flax yarns, these
parameters being directly related to the extent of the fiber/matrix interfacial adhesion.
Shorter fragments and a lower debonding length suggest that the stress transfer efficiency
is improved, this effect occurring for strong interfacial bonds [52]. The difference in the
debonding length resulted to be statistically significant as confirmed by a t-test (p < 5%).
When considering the value of IFSS, an inconsistency can be found, as the value for the mod-
ified flax yarns is lower than the neat flax yarns; however, this is not completely surprising
if one considers that this parameter is dependent on the yarn diameter (Equation (4)) and
the natural fibers display a high variability in diameters. Furthermore, when adapting the
fragmentation test to yarns, the cross-sectional area measurement of the yarn can include
voids between the fibers that are then replaced by matrix during the impregnation step of
the single yarn, without considering the yarn swelling occurred during the ZnO electroless
deposition, which resulted in higher diameters (Table 1). An increase in average yarn
diameter leads to a decrease in tensile strength, thus affecting the final IFSS values. All
these considerations suggest that the numerical IFSS values can be considered only as
qualitative ones.

The better interfacial adhesion was also supported by a morphological investigation
performed by FESEM and micro-CT, the results being presented in Figure 10.

The FESEM images reveal that most flax fibers are broken at the same level and on
the same fracture plane (Figure 10a), without extensive pull-out phenomena. In addition,
when debonding occurred, it is possible to observe ZnO nanostructures acting as a bridge
between the yarn and the epoxy matrix (Figure 10b). In a relatively few cases (Figure 10c),
the failure at the yarn/ZnO interphase occurred, thus suggesting that a potential future
improvement would be the enhancement of the bond between the ZnO nanostructures
and the flax substrate. In Figure 10d, thanks to a segmentation of the raw images, it was
possible to distinguish the flax yarn from the fracture zone (colored in blue for clarity); this
blue zone includes decohesion and yarn break. It can be seen that this fracture zone has
a very limited extension, thus supporting the small values observed for the debonding
length measurements. The results prove that the interfacial adhesion between the natural
fibers and the synthetic matrix is improved due to a mechanical interlocking effect played
by the ZnO nanostructures deposited on the flax fibers by the electroless deposition ap-
proach. Indeed, the effects of grafting nanostructures on enhanced fiber/matrix interfacial
adhesion are commonly ascribed to the interlocking interface created by nanostructures
that bridge the matrix and the fibers [12] and to the higher strength and toughness of the
nano-composite layer located at the interface [53]. The presence of densely packed ZnO
nanostructures increases the specific surface area of the fibers, and the penetration of ZnO
into the epoxy matrix improves further the mechanical interlocking; these effects have
been demonstrated to be more important than the intrinsic properties of the individual
constituents [13,54].
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single ZnO-coated flax yarn composite after the single yarn fragmentation test and (d) volumetric
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4. Conclusions

Electroless deposition, a scalable wet chemical functionalization approach, was suc-
cessfully used to functionalize flax fibers with ZnO nanostructures. The grown ZnO
displayed a hexagonal wurtzite structure with twin hexagonal prism morphology, and the
flax fabric coated with ZnO nanostructures revealed an apparent contact angle of ~140◦,
immediately after the placement of a water droplet on its surface, further the water droplet
being absorbed into the fabric. In addition, the electroless deposition preserved the tensile
properties of the flax yarns without inducing significant changes in their global degradation
behavior as determined by TGA analysis. The beneficial effect of this functionalization
approach on the flax/epoxy interfacial adhesion was assessed by single yarn fragmentation
tests. The significant reductions in the debonding and critical fragment length values
obtained in the case of ZnO-coated flax yarns confirm the improvement of flax/matrix
interphase providing new opportunities for tailoring the mechanical performance of the
composites based on natural fibers and synthetic matrices. Another important feature of
the proposed functionalization approach might consider the piezoelectric properties of the
synthesized ZnO nanostructures that could be exploited in new multifunctional materials.
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