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Abstract: Recovery phosphorus (P) from P-contaminated wastewater is an efficient and environmen-
tally friendly mean to prevent water pollution and alleviate the P shortage crisis. In this study, oyster
shell as calcium sources and peanut shells as carbon sources (mass ratio 1:1) were used to prepare a
novel Ca-modified biochar (OBC) via co-pyrolysis, and its potential application after P adsorption
as a P biofertilizer for soil was also investigated. The results shown that OBC had a remarkable
P adsorption capacity from wastewater in a wide range of pH 4–12. The maximum P adsorption
capacity of OBC was about 168.2 mg/g with adsorbent dosage 1 g/L, which was about 27.6 times
that of the unmodified biochar. The adsorption isotherm and kinetic data were better described by
Langmuir isotherm model (R2 > 0.986) and the pseudo second-order model (R2 > 0.975), respectively.
Characterization analysis of OBC before and after P adsorption by scanning electron microscopy
(SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and specific surface
area and porosity analyzer (BET) indicated that the remarkable P adsorption capacity of OBC was
mainly ascribed to chemical precipitation, electrostatic adsorption, and hydrogen bonding. Pot
experiment results showed that OBC after P adsorption could significantly promote the germination
and growth of Spinacia, which manifested that OBC after P adsorption exhibited a good ability to be
reused as P fertilizer for soil.

Keywords: phosphorous; oyster shell; peanut shell; biochar; P biofertilizer

1. Introduction

In recent years, with the rapid development of industrialization and domestic urban-
ization, excessive nitrogen (N) and phosphorus (P) are discharged into surface water by
agricultural runoff and sewage effluent, which can lead to eutrophication, diminish the
self-purification capacity of aquatic environment, destroy the ecological balance and harm
human’s health [1–8]. By a 37-year experiment on nutrient management in Canadian lakes,
Schindler [9] found that P input directly controlled algal reproduction and was a key factor
in causing eutrophication. Moreover, many studies also found that most of eutrophic lakes
were P-controlled, and very few lakes were N-controlled [10,11]. Hence, P control is of
great significance to water pollution prevention.

According to “China’s Ecological and Environmental Status Bulletin (2019)”, the eu-
trophication rate of China’s lakes (reservoirs) was about 28% in 2019, and the main pollution
index was total phosphorus (TP). In general, water bodies will undergo eutrophication if
the concentration of total TP exceeds 0.02 mg/L [12]. Unfortunately, the P concentration of
the discharges from wastewater treatment plant (WWTP) and agricultural runoff is often
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much higher than 0.02 mg/L [12,13]. Hence, an increasingly stringent P discharge criteria
have been enacted around the world. For example, the new P discharge criteria for WWTP
in Europe and in North America are 0.05 mg/L and 0.0 1mg/L, respectively. Moreover,
as an essential nutrient in the growth and development of humans and other organisms,
P is a non-renewable resource. It is reported that P rocks as the main source of element P
would be exhausted in 300 years [12]. Therefore, the high-level P of wastewater also can be
regarded as a source of P; and thus, an efficient recovery of P from wastewater not only can
alleviate the P shortage crisis, but also can prevent eutrophication of water bodies.

Now many effective physical, chemical, and biological methods have been applied for
P removal/recovery from wastewater [7,14–17]. Biological phosphorus removal method
mainly depends on the metabolism of some microorganisms to remove P form wastewater.
Due to high P removal efficiency, low cost and low sludge yield, biological phosphorus
removal method is regarded as a promising method for the removal of P from wastewater.
Nevertheless, biological phosphorus removal method is only suitable for wastewater with
low P concentration, and its P removal rate is generally only 30% to 40%. Chemical
phosphorus removal method achieves the purpose of P removal by precipitation reaction
or ion exchange between the added chemical reagents and P in wastewater. It has an
excellent P removal effect for wastewater even with high concentration of P. However,
adding chemical reagents not only can increase its economic costs, but also can cause
sludge contamination. Compared with the previous two methods, adsorption not only
exhibits high efficiency, simplicity in operation and minimal sludge production, but also
can be applied to wastewater treatment with various concentrations. So, adsorption has
attracted more and more attention around the world [7,18]. Up to now, many adsorbents for
adsorption, such as bentonite, zeolite, activated carbons, biochar, and so on, have been used
for P removal, and shown different P removal efficiency [19–24]. Among them, because
of high surface, well-developed pore and richness of surface functional groups, biochar
has been seen as an economical, practical, and environmentally friendly adsorbent and soil
conditioner [22,25]. However, the high hydration energy of the P anion, negative charge of
biochar, and coexisting anions in wastewater pose a great obstacle for biochar to carry out
the selective sorption of P from an aqueous phase [26,27]. Therefore, the development of
biochar with high P selectivity is the key to achieving high level P removal/recovery.

According to the theory of hard soft acid base (HSAB) [28], P as a hard base could react
fast with hard acid (as Fe3+, Al3+, Mg2+, Ca2+) and form a strong bond [26]. That is, metal-
modified biochar can achieve selective P adsorption. It is reported that metal cations, such
as Ca2+, Mg2+, Fe3+, and La3+, have strong affinity with P, which can significantly improve
the P adsorption efficiency for biochar [27,29–32]. Among them, Ca is an ideal metal
element for biochar modification because of its low cost, ecologically non-toxic property,
and abundancy in nature [27,33]. Relevant studies have proved that the P adsorption
capacity of Ca-modified biochar is remarkably improved [27,34]. However, if a large
number of calcium reagents are used for biochar modification, it will lead to high cost and a
large amount of calcium waste, so more economic and friendly environmental raw rich-Ca
materials are needed [27]. Oyster is a kind of economic marine shellfish with huge yield,
and its shell contains approximately 96% calcium carbonate, which is a kind of cheap and
rich-Ca biological waste [35,36]. Therefore, oyster shell has great potential as a Ca source
for the preparation of Ca-modified biochar.

In this research, the oyster shell waste was used as the Ca source, and the peanut shell
was used as the C source to prepare Ca-modified biochar (OBC) for the removal/recovery
of P from aqueous solution. This work was conducted by assessing the effect of initial
pH on the adsorption of P by OBC. The kinetic and equilibrium behaviors during the
P adsorption process were also investigated to determine the P adsorption performance
and mechanism of OBC. Furthermore, the changes in surface chemical and space pore
structures of OBC during P adsorption were characterized using XRD, FTIR, SEM, and BET.
At last, the potential as a P fertilizer of OBC for soil after P adsorption was studied by a
pot experiment. The experiment results indicated that the prepared Ca-modified biochar
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exhibited excellent P adsorption performance from aqueous solution and had a good ability
as P fertilizer for soil after P adsorption. This work provided a promising method to
prepare functionalized biochar from agricultural wastes, which has wide applications in P
removal/recovery and agricultural application for P resource.

2. Materials and Methods
2.1. Materials

Peanut shell as biochar precursor was collected from a farm in Wuhan, Hubei Province,
China. Oyster shell was obtained from an Oyster farm in Dandong, Liaoning Province,
China. Both of them were washed, naturally dried, crushed, and sieved through a 100-mesh
sieve. Then they were dried at 60 ◦C and sealed in a container before experiments. Potas-
sium phosphate monobasic (KH2PO4) and other chemical reagents were of analytical
grades and purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shang-
hai, China).

2.2. Preparation of Experiment Materials

Ca-biochar was prepared by co-pyrolysis of oyster shell and peanut shell in a pro-
grammable tube electric furnace (OTF-1200X, Jingke, Hefei, China) at 800 ◦C. Oyster shell
and peanut shell powder were fully mixed with mass ratio of 1:1, then placed in the pro-
grammable tube electric furnace and heated up to 800 ◦C with heating rate of 10 ◦C/min
and holding time of 2 h under N2 atmosphere. The synthesized material was denoted as
OBC. Meanwhile, an unmodified biochar (BC) only with peanut shell powder was pre-
pared under the same condition. Stock solution (1000 mg P/L) was prepared by dissolving
KH2PO4 in deionized water, and the solutions for the following experiment were prepared
by diluting the stock solution.

2.3. P Adsorption

The performances of OBC and BC as P sorbents in this study were investigated by
batch experiments in duplicates. Adsorption isotherm of P for OBC was investigated by
adding 0.02 g different sorbent into 20mL different initial P concentrations (0, 10, 25, 50,
100, 200, 300, 400 mg/L), and shaken at 180 rpm at the temperature of 28 ± 0.5 ◦C for
24 h in a mechanical shaker (QYC-200, Shanghai, China). Afterwards, the mixtures were
filtered by a 0.45-µm PES syringe filter and the final P concentration after adsorption was
determined by ammonium molybdate spectrophotometric method using an ultraviolet
spectrophotometer at a wavelength of 700 nm (SP-1920, Shanghai, China) and by a pH
Meter (BPH-7200, Dalian, China), resp. According to the P concentration difference in
solution before and after adsorption experiments, the P adsorption capacity of the sorbents
were calculated by the same mass balance equation used in Qu’s study [37].

Adsorption kinetics were addressed by mixing 0.02 g of different sorbent into 50 mL
polyethylene tubes with 20 mL of 300 mg/L P solution. Then these containers were shaken
using a shaker with the rate of 180 rpm at the temperature of 28 ± 0.5 ◦C for appropriate
sampling time (e.g., 2, 6, 15, 30, 60, 180, 360, 720, and 1440 min).

To investigate the effect of initial pH on P adsorption, 20 mL of 300 mg/L P solution
with different initial pH (2, 4, 6, 8, 10, 12) was added into 50 mL polyethylene tube. The
initial pH of the solution was adjusted by 0.1 M NaOH and 0.1M HNO3 solutions. Then,
0.02 g of adsorbent was added and shaken using a shaker with the rate of 180 rpm at a
temperature of 28 ± 0.5 ◦C for 24 h; after that, the mixed solution was filtered through a
0.45 µm PES syringe filter, and the final P concentration and final pH in the filtrate were
measured using an ultraviolet spectrophotometer at a wavelength of 700 nm (SP-1920,
Shanghai, China) and a pH Meter (BPH-7200, Dalian, China), respectively. Then, the P
adsorption capacity of the sorbents were calculated by the same mass balance equation
used in Qu’s study [37].



Nanomaterials 2022, 12, 2755 4 of 14

2.4. Characterization

The micro-morphology, surface functional group, crystal structure, and pore structure
of biochar samples were characterized by scanning electron microscopy (SEM, Mira Lms,
Tescan, Brno, South Moravia, Czech Republic), Fourier transform infrared spectroscopy
(FTIR, Nicolet 6700, Thermo Fisher Scientific, Waltham, MA, USA), X-ray diffraction (XRD,
D8 advance, Bruker, Karlsruhe, Germany), and specific surface area and porosity analyzer
(ASAP2020, Mike, Atlanta, GA, USA), respectively.

2.5. Seed Germination and Seedling Growth

A pot experiment was conducted to investigate the application of OBC after P adsorp-
tion as a P fertilizer for the plant. First, market-bought Spinacia seeds were washed with DI
water three times. Second, soil collected from a farmland in Henan Province was dried in
an oven at 60 ◦C for 24 h, and then screened with a 50-mesh sieve. The dried OBC after
P adsorption from the adsorption isotherm experiment was manually mixed with 100 g
dried soil in 3.0 × 2.3 × 7.5 cm plastic boxes. The mass ratio of OBC after P adsorption was
0.25% and 0.5%. Meanwhile, a group only with 100 g of dried soil was taken as the blank
control. Ten treated Spinacia seeds were placed in each box. The seeds were completely
covered in the medium. The Spinacia seeds in all the plastic boxes were cultivated under
similar conditions such as natural light and the soil moisture was kept at constant levels by
distilled water. The condition of germination and growth was recorded by taking photos
every day, and the plants were collected for statistical analysis after 15 days.

3. Results and Discussion
3.1. P Adsorption Experiments
Effects of Initial P Concentration and Adsorption Isotherms

In this study, the well-known isotherm models Langmuir (Equation (1)), Freundlich
(Equation (2)), and Temkin (Equation (3)) were used to investigate the P adsorption behavior
on the prepared OBC samples [38].

Langmuir : Qe = KL · qmax · Ce/(1 + KL · Ce) (1)

Freundlich : Qe = KFC1/n
e (2)

Temkin : Qe =
RT
bT

ln(KTCe) (3)

where Qe (mg/g) is the equilibrium P adsorption capacity. Ce (mg/L) is the equilibrium
concentration of the sorbents. qmax (mg/g) is the maximum adsorption capacity. KL and
qmax (mg/g) are the Langmuir equation constants relating to the sorption energy and
maximum sorption capacity, respectively. KF and n are the Freundlich equation constants
relating to the capacity and intensity of the sorption, respectively. T (K) is the absolute
temperature, R = 8.314 J mol/K. bT and KT are adsorption heat and equilibrium binding
constant, respectively.

The effects of initial P concentration on P adsorption capacity and the three adsorption
fitting curves of OBC are depicted in Figure 1a,b, respectively. Initial concentration of
adsorbed substance and the number of surface-active sites on adsorbent were the two
crucial factors for the adsorption. Initial concentration of adsorbed substance could provide
an important driving force to overcome the mass transfer resistance between liquid phase
and the solid adsorbent surface. The number of surface-active sites onto adsorbent can
determine its the maximum adsorption capacity. In this experiment, the dosage of adsorbent
was 0.02 g, thus the total number of surface-active sites onto adsorbent was definite.
Moreover, the amount of P that can be absorbed was also definite. As shown in the
Figure 1a, there were enough surface-active sites on OBC to adsorb all P in the solution
with low initial P concentration, so the P equilibrium adsorption capacity increased with
the increase in initial P concentration from 10 mg/L to 200 mg/L. Otherwise, when the
surface-active sites on OBC were gradually occupied by P, even though more P were still in
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the water, there were no redundant surface-active sites to adsorb P. Thus, when the initial P
concentration exceeded 200 mg/L, the adsorption capacity almost kept stable. Hence, the
initial P concentration of 200 mg/L was a demarcation point for the P adsorption capacity
of OBC. Moreover, the maximum P adsorption capacity of OBC was 168.2 mg/g, which
was about 27.6-folds of BC.

Figure 1. Adsorption capacity (a) and adsorption isotherms (b) of synthetic materials.

The fitting parameters of three different adsorption models of OBC are listed in Table 1.
Evidently, the nonlinear correlation coefficients of the Langmuir, Freundlich, and Temkin
model for OBC are 0.987, 0.960, and 0.982, respectively. The results indicated the entire P
adsorption process by OBC was most consistent with the Langmuir model. This suggested
the adsorption of P onto OBC belonged to single molecular layer adsorption [39].

Table 1. Fitting parameters of the adsorption isotherm for P on synthetic materials.

Adsorbents
Langmuir Model Freundlich Model Temkin Model

KL (L/mg) qmax
(mg/g) R2 KF 1/n R2 bT (J/mol) AT R2

OBC 7.9578 172.4149 0.987 40.5597 0.2826 0.960 152.4065 236.1026 0.982

The P adsorption kinetics of OBC are illustrated in Figure 2. Clearly, the P adsorption
capacity increased with the increase in contact time and reached equilibrium at around
120 min, which was similar to other studies [35,40,41]. Higher P concentration can provide
a greater driving force to overcome the mass transfer resistance between liquid phase and
the solid adsorbent surface. A greater driving force will accelerate the P adsorption rate.
Moreover, P adsorption mainly takes place on the outer surface of OBC by surface-active
sites. More surface-active sites are conducive to P adsorption by OBC [42]. During the
adsorption process of P by OBC, the concentration of P and the number of surface-active
sites both decreased with the increase in adsorption time. Hence, as shown in the Figure 2,
P adsorption rate was fast at the beginning, especially within the initial 30 min, then slowed
down to zero. The results of this experiment were consistent with previous studies [27,34].

The pseudo-first-order and pseudo-second-order kinetics equations as expressed in
Equations (4) and (5) were used to fit the experimental data to explore the P adsorption
mechanism, respectively [38].

Pseudo− first− order : ln(Qe −Qt) = lnQe − K1t (4)
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Pseudo− second− order :
t

Qt
=

1
K2 ·Q2

e
+

1
Qe

t (5)

where Qe (mg/g) and Qt (mg/g) represent the P adsorption capacity at equilibrium and
at t time, respectively. K1 (min−1) and K2 (g mg−1 min−1) are the adsorption rate con-
stants of pseudo-first-order and pseudo-second-order kinetics models, respectively. The
corresponding fitting parameters are documented in Table 2.

Figure 2. Adsorption kinetics of P on OBC.

Table 2. Adsorption kinetic parameters of P on OBC.

Adsorbents
Pseudo-First-Order Model Pseudo-Second-Order Model

K1 (h−1) qe
(mg/g) R2 K2 (g mg−1

h−1)
qe

(mg/g) R2

OBC 0.188 169.466 0.966 1.92 × 10−3 172.984 0.975

It was found that the nonlinear regression coefficients of determination simulated
with the pseudo-second-order model were higher than those simulated with the pseudo-
first-order model, indicating that the P adsorption by OBC could be better described by
the pseudo-second-order model. The pseudo-second-order kinetic model assumes that
the removal process of adsorbate is controlled by chemical adsorption, which involves
the valence forces where the adsorbent and the adsorbate exchange or share electrons and
may form new compounds [40]. Moreover, the pseudo-second-order model also assumes a
monolayer adsorption, agreeing with the above isotherm results.

3.2. Effect of Initial Solution pH

The initial solution pH, as an important factor in the adsorption process, has a close
interaction with the form of P in the solution and the surface charge of the adsorbent [41].
The effect of initial solution pH on P adsorption by OBC is shown in Figure 3. At pH 2,
the P adsorption capacity of OBC was very low, only about 7.29 mg/g. However, the P
adsorption capacity of OBC sharply increased from 7.29 mg/g to 169.82 mg/g with the
pH increasing from 2 to 4. Afterwards, with the pH increased from 4 to 12, though the P
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adsorption capacity of OBC slightly fluctuated, it still maintained high efficiency at about
170 mg/g. The results manifested that OBC had a significant removal efficiency for P in a
wide pH range (4–12) from weak acid to base, which would be favorable for its application
in realistic water bodies. The final pH of the solution after adsorption is also shown in
Figure 3. It was clear that the final pH of the solution had an increasing trend compared
to the corresponding initial pH. At low initial pH of 2 and high initial pH of 10 and 12, a
small increase was observed, but a larger increase was observed between the pH of 4 and
8. For example, the final solution pH increased to 8.42 for the initial pH of 4, while it only
increased to 2.7, 11.68, and 12.19 for the initial pH of 2.0, 10.0, and 2.0, respectively.

Figure 3. Effect of initial pH on adsorption capacity of OBC, final pH after P adsorption and zeta
potential for OBC.

The initial solution pH directly determined the form of P, which has a remarkable
effect on P adsorption capacity by OBC. The ionization equilibrium of P at different solution
pH can be expressed as Equations (6)–(8) [41].

pH = 2.16 H2PO4
−+H2O→ H3PO4+OH− (6)

pH = 7.20 HPO4
2−+H2O→ H2PO4

−+OH− (7)

pH = 10.30 PO4
3−+H2O→ HPO4

2−+OH− (8)

According to Equations (6)–(8) and Figure 3, the adsorption capacity of H2PO4
− by

OBC was lower than that of HPO4
2− and PO4

3−, and similar behavior was observed in
other studies [34,43]. In addition, the adsorbent surface charge determined by the pH at
point of zero charge (pHpzc) of the adsorbent also has a direct influence on its P adsorption
capacity. As shown in Figure 3, the pHpzc of OBC sample was about 4.29. When the
solution pH value was less than pHpzc (4.29), the surface of OBC would be protonated,
and the surface charge of OBC will became positive charge. At this time, P adsorption by
OBC mainly was contributed to electrostatic adsorption. When solution pH increased to
above pHpzc, the surface of OBC became negatively charged. According to the principle of
“like charges repel, unlike charges attract”, a repulsion would exist between OBC and P,
so electrostatic adsorption did not work [44]. However, the P adsorption capacity of OBC
was still high. This mainly could be attributed to the chemical reaction between P and the
CaO and Ca(OH)2 produced during the thermal decomposition of CaCO3 originated from
Oyster shell during OBC preparation process.
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3.3. Adsorption Mechanisms

In this study, the characterization of adsorbents before and after P adsorption were
analyzed by SEM, FTIR, XRD, and BET to explore the P adsorption mechanism.

The crystallinity of BC, OBC before and after adsorption were analyzed by XRD
(Figure 4). As shown in Figure 4, BC, OBC before and after P adsorption exhibited a
broad diffraction peak in the range of 20–30◦, which implied the amorphous existence of
carbonaceous matrix [8]. The XRD spectra of BC was smoother than that of OBC before
adsorption, indicating OBC had a high crystallinity and low purity. The diffraction peak
of OBC before P adsorption was observed at 2θ = 32.2◦, 33.9◦, 37.6◦, 51.1◦, and 54.0◦.
The diffraction peaks at 2θ = 33.9◦ and 54.0◦ could be assigned to Ca(OH)2 [34], while
the diffraction peaks at 2θ = 32.2◦, 37.6◦, and 51.1◦ could be assigned to CaO [34]. The
difference in XRD patterns between BC and OBC showed that calcium contained in oyster
shell was successfully introduced into OBC with the form of CaO and Ca(OH)2. CaO
originated from the thermal decomposition of CaCO3 during OBC preparation process.
Some CaO could react with hydroxyl groups of the biochar or the moisture in the air and
form Ca(OH)2 [28,37,45]. Moreover, for OBC after P adsorption, the diffraction peaks
of Ca(OH)2 and CaO disappeared completely, and a new diffraction peaks at 2θ = 32.2◦

corresponding to Ca5(PO4)3(OH) appeared [34]. These significant changes between OBC
before and after P adsorption originate from the formation of hydroxyapatite (HAP) as the
following reactions:

3PO4
3−+5Ca2++OH− → Ca5(PO4)3(OH) ↓ (9)

3HPO4
2−+5Ca2++4OH− → Ca5(PO4)3(OH) ↓ +3H2O (10)

3H2PO4
−+5Ca2++7OH− → Ca5(PO4)3(OH) ↓ +6H2O (11)

Figure 4. XRD spectra of OBC before P adsorption (a), OBC after P adsorption (b) and BC (c).
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Therefore, the OBC could effectively remove P from the liquid phase. In addition,
CaO loaded on the structure of OBC might change its surface charge into positive charge,
so the negatively charged P ions in liquid phase could also be removed by electrostatic
adsorption, which could be conducive to improving the P adsorption capacity of OBC, too.

The existing functional groups on the surface of adsorbents was identified by FTIR
analyses (Figure 5). As shown in the Figure 5, the spectrum of BC was relatively smooth,
which illustrated that the types and numbers of functional groups were very rare. Therefore,
the P adsorption capacity of BC was poor. Compared to BC, OBC had a stronger and
narrower stretching vibration band of 3641 cm−1, which is attributed to -OH from Ca(OH)2.
However, the stretching −OH vibration band disappeared after P adsorption, and was
replaced by a new absorbance band assigned to the bending vibration of P−O at 1024 cm−1.
This distinct change of spectrum between OBC before and after adsorption could be
ascribed to the interaction between the−OH group originated from Ca(OH)2 and P. During
OBC preparation process, CaO thermally decomposed from the rich CaCO3 in the oyster
shell could react with the moisture in the air or the hydroxyl groups of the biochar to form
abundant Ca(OH)2 [28,37,46]. Thus, OBC had a high P adsorption capacity.

Figure 5. FTIR spectra of BC (a) and OBC before (b) and after (c) P adsorption.

Besides CaCO3, the nitrogen-rich organic matter (e.g., protein) contained in oyster shell
could form some organic functional groups [14,45–47]. Hence, compared with BC, there
was a wide stretching vibration range from 1330 cm−1 to 1700 cm−1 for OBC, including
C=C, C=O, C=N, and N–H [27,48]. It was obvious that most of peaks for OBC at these
positions became stronger after P adsorption, which might be resulted from the formation
of intramolecular and intermolecular hydrogen bonds during the P adsorption process [48].
Therefore, besides chemical precipitation and electrostatic adsorption, hydrogen bonding
also played an important role in the removal of P by OBC.

The morphology and structure of BC, OBC before and after P adsorption are shown in
Figure 6. The surface of the BC was relatively smoother and rather regular with a highly
porous structure, which could provide enough loading space for calcium compounds. The
CaCO3 contained in the oyster shell was thermally decomposed into CO2 and CaO particles
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during the OBC preparation process [27]. The release of CO2 could enlarge the pore size of
OBC, resulting in a more porous structure of OBC [34,49]. The structure of OBC shown in
Figure 6d,e confirmed this phenomenon. In addition, the generation of CaO could react
with the moisture in the air or the hydroxyl groups of the biochar to form Ca(OH)2, which
is attached to the surface of biochar or embedded in the pores of OBC. Hence, as shown
in the Figure 6d,e, numerous accumulated small particles were observed on the surface
of OBC [27]. Moreover, the difference in the EDS analysis for BC and OBC also confirmed
the successful load of Ca, which was consistent with the XRD analysis. However, after P
adsorption, the effective active sites were occupied by a large amount clustered flocculent
precipitate, which covered the surface and the pores of OBC. Therefore, the effective active
sites sharply decreased, eventually resulting in the adsorption saturation for OBC. From
the EDS (Figure 6j) and XRD analyses (Figure 5), it can be confirmed that these precipitates
were Ca5(PO4)3OH (HAP).
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The space pore structure changes of the OBC before and after P adsorption, including
BET surface area, pore volume and average pore width, are listed in Table 3. Compared to
BC, addition of oyster shell in biochar could increases its BET surface area, pore volume,
and average pore width. During the pyrolysis process at high temperature, the abundant
CaCO3 in oyster shell decomposed into CO2, whose release increased the pore size of the
biochar [28,35,50]. Moreover, the higher specific surface of the flocculent Ca-P precipitations
formed on the surface of OBC led to a higher BET surface area, pore volume, and average
pore width for OBC after P adsorption [27]. BJH desorption pore distribution of the OBC
before and after P adsorption is shown in Figure 7, showing an obvious redistribution of
the space pore structure distributions for OBC [27]. As shown in the Figure 7, the generated
Ca-P precipitation is mainly distributed within the pore size range of 20–60 nm.
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Table 3. Space pore structure parameters of the biochar before and after adsorption.

BC OBC before Adsorption OBC after Adsorption

SBET(m2/g) 67.9042 127.2446 141.5378
Pore volume (cm3/g) 0.0938 0.3691 0.5614

Average pore width (nm) 5.5346 12.2830 15.8643

Figure 7. Pore volume distributions of OBC before and after adsorption.

3.4. Seed Germination and Seedling Growth

The application of OBC after P adsorption as a P fertilizer was studied by a pot
experiment. The experimental results are shown in Table 4 and Figure 8. It showed that
OBC after P adsorption promoted Spinacia germination and growth. Compared with
the control experiment only with soil, the germination rate of the addition OBC after P
adsorption with 0.25 wt% and 0.5 wt% was increased by 16.67% and 36.67% respectively.
The dry weight and wet weight of Spinacia with OBC after P adsorption are listed in Table 4,
the dry weight and wet weight of Spinacia increased with the increase in the addition
amount of OBC after P adsorption. These results indicated that the absorbed P by OBC
could be released and absorbed by Spinacia during its germination and growth process [50].
Hence, the OBC after P adsorption showed great potential to be used as a soil slow-release
P fertilizer to improve soil fertility and promote Spinacia growth. However, the long-term
effectiveness of OBC after P adsorption as a slow-release P fertilizer for different crops with
different types of agricultural soils is unclear and should be studied in the future.

Table 4. Plant weight.

Control Group 0.25 wt% OBC after
Adsorption

0.5 wt% OBC after
Adsorption

Wet weight (g) 0.1462 ± 0.0284 0.2263 ± 0.0143 0.2597 ± 0.0269
Dry weight (g) 0.0132 ± 0.0008 0.0251 ± 0.012 0.0311 ± 0.0066
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Figure 8. Germination rate of plants (a) and images of plant growth (b).

4. Conclusions

In this study, a novel Ca-modified biochar was prepared by co-pyrolysis oyster shell
and peanut shells with mass ratio 1:1. The synthesized Ca-modified biochar was used
to recover P from P-rich aqueous solution and demonstrated excellent performance in a
wide range pH 4–12. The maximum P adsorption capacity of Ca-modified biochar was
about 168.2 mg/g with adsorbent dosage 1 g/L at 28 ◦C for 2 h, which was 27.6 times
higher than that of the unmodified biochar. Characterization analysis of biochar by SEM,
XRD, FTIR, and BET indicated that the dominant adsorption mechanism included chemical
precipitation, electrostatic adsorption, and hydrogen bonding. OBC after P adsorption
exhibited a good ability to be reused as a new slow-release P fertilizer for soil to promote
Spinacia germination and growth.
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