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Abstract: High optical transparency combined with high optical haze are essential requirements
for optoelectronic substrates. Light scattering caused by haze is responsible for increasing light
harvesting in photon-absorbing active materials, hence increasing efficiencies. A trade-off between
transparency and haze is common in solar substrates with high transparency (~90%) and low optical
haze (~20%), or vice versa. In this study, we report a novel, highly transparent film fabricated
from regenerated cellulose after controlled acid-hydrolysis of microcrystalline cellulose (MCC). The
developed networked-nanofibrous cellulose was chemically crosslinked with glutaraldehyde (GA)
and vacuum-cured to facilitate the fabrication of mechanically stable films. The effects of crosslinker
concentration, crosslinking time, and curing temperature were investigated. Optimum conditions for
fabrication unveils high optical transparency (~94%) and high haze (~60%), using 25% GA for 24 hr
with a curing temperature of 25 ◦C; therefore, conveying an optimal substrate for optoelectronics
applications. The high haze arises primarily from the crystalline, networked crystals of cellulose
II structure formed within the regenerated cellulose upon hydrolysis. Moreover, the developed
crosslinked film presents high thermal stability, water resistance, and good mechanical resilience.
This high-performance crosslinked cellulose film can be considered a potential material for new
environmentally-friendly optical substrates.
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1. Introduction

Global energy depletion is one of the major challenges faced in the 21st century.
Exhaustible fossil fuels dominate our daily power generation and, disturbingly, 38% of the
world’s electricity consumption depends on coal, according to the International Energy
Agency report in 2019. The world consumption of fossil fuels witnessed increasing trends
over the last half century, and is expected to keep escalating [1]. With this growth of
consumption, it is predicted that reserves will soon be diminished [2]. Additionally,
the environmental damage caused by burning fossil fuels, such as pollution and global
warming, presents a pressing hurdle. Consequently, much of the efforts are committed
to exploring alternative sources for energy. Renewable sources of energy hold boundless
potential to replace fossil fuels and reduce environmental impact; solar and wind energy,
to name a few. One promising viable source of green energy is solar energy; therefore,
optoelectronic devices such as solar cells is being actively researched. Solar cells are
photovoltaic devices that harness sunlight and convert its energy directly into electricity.
Sunlight energy is free; however, the materials and available space required to use solar
energy have high costs. Solar panels with low efficiency, for example, require more panels
occupying more space, in order to cover the same electricity demand [3]. The thriving sales
of silicon wafer-based photovoltaics almost completely dominate the market; however,
silicon wafers are costly [4]. One way to eliminate major costs is by fabricating cells in

Nanomaterials 2022, 12, 2729. https://doi.org/10.3390/nano12152729 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12152729
https://doi.org/10.3390/nano12152729
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-8944-1117
https://orcid.org/0000-0002-0248-7495
https://doi.org/10.3390/nano12152729
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12152729?type=check_update&version=1


Nanomaterials 2022, 12, 2729 2 of 16

the form of thin films, deposited onto substrates of different variety, such as glass and
polymers [5–8]. The choice of substrate is significant for optoelectronic systems as they
provide mechanical support, environmental protection, optical management, thermal
stability, and moisture resistivity [9].

The light management of the substrate plays a key role in the performance of solar
cells and greatly influence their efficiency. Having both high transparency and high optical
haze are desirable features for solar cell applications. The percentage of optical haze is
described as the percentage of transmitted light through a substrate that diffusely scatters.
This advantageous scattering of sunlight increases the absorption path of light, enhancing
solar cell conversion efficiency [10,11]. The market for flexible thin-film solar cells has been
influenced by plastic substrates, due to their low costs and light weight. However, the
mass production of electronic devices such as solar cells generates huge amounts of non-
biodegradable toxic electronic waste. To eliminate this drawback, biodegradable polymers,
such as silk [12] and cellulose, have recently emerged as a substitute for plastic substrates.
Unfortunately, marrying high transparency with high haze in common transparent cellulose
substrates remains a challenge.

Cellulose transparent films with high haze have recently been introduced as novel sustain-
able substrates for solar cells. Oxidation of cellulose fibers with 2,2,6,6-tetramethylpiperidine-
1-oxyl (TEMPO) is a common method to fabricate cellulose transparent and hazy sub-
strates [13–16]. Fang et al. reported the preparation of transparent wood fiber paper,
the substrates combining a high optical transparency of ~96% and a high optical haze of
~60%. Wood fibers were treated by an oxidation system of TEMPO/NaBr/NaCIO. The
oxidation weakens the hydrogen bonds, causing fibers to densely pack, introducing car-
boxyl groups and boosting optical properties [17]. Substrates with nearly theoretical haze
(95.2%) and high transparency (90.1%) were reported by Hou et al., the substrates were
cellulose composite films fabricated with softwood fibers and regenerated cellulose [18].
Thin-film solar cells, such as a perovskite solar cell [19], are sensitive to humidity and
suffer from degradation due to the permeation of water vapors through the substrate [20].
Therefore, substrates with high water- and humidity-resistance are needed. Hu et al. re-
ported protonation of a composite film of paper and carboxymethyl cellulose via an acetic
acid immersion and desalination process in an alcohol bath; films had high combined
transparency and haze properties of 90.9 and 83.6%, respectively, with a water contact
angle of 72◦. Physical crosslinking among the protonated carboxymethyl cellulose chains
and wood fibers enhanced water resistivity [21]. Transparent and hazy nanopaper with
a superhydrophobic surface was fabricated with TEMPO-oxidized cellulose nanofibrils
(TOCNF) and polysiloxane; the prepared films showed a transparency of 90.2% and haze
of 46.5%, with an impressive hydrophobicity surface of a 159.6◦ contact angle [22]. The
chemical structure of cellulose can be altered to many forms with different properties from
the mother form. Modification of cellulose implements changes in morphology and crys-
tallinity. These modifications, once regeneration takes place, are reflected in the properties
of the fabricated films.

An amorphous, modified network structure (NC) with cellulose II crystals was devel-
oped via controlled acid-hydrolysis [23]. This modified, regenerated cellulose possesses
an open-networked, fibrous structure formed during regeneration and recrystallization.
During the regeneration stage, the NC chains arrange themselves into a network with
cellulose II crystals. The open network of NC gives the cellulose high mechanical and
thermal stability [24]. We believe that the formation of the networked fibrous structure with
cellulose II crystals equips the NC material with light-diffusive properties. Further chemi-
cal crosslinking of such material will improve such properties as well as film fabrication.
Glutaraldehyde (GA) is one of the crosslinking agents that have been heavily researched for
the crosslinking of cellulose; the reason is that dialdehydes improve resilience, mechanical
properties, and thermal stability [25]. For the first time, we report the fabrication of a highly
transparent and hazy substrate, composed of the abundant and biodegradable cellulose via
a combination of controlled acid-hydrolysis (breaking chains) and chemical crosslinking
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(connecting chains). The hydrophobic, transparent, and hazy crosslinked cellulose film has
potential to be applied to solar cell applications in sustainable and environmentally-friendly
optoelectronics devices.

2. Materials and Methods
2.1. Materials

Microcrystalline cellulose (MCC) powder was supplied by FMC BioPolymer (Avicel-
PH101). Sulfuric acid (H2SO4) Reagent Grade (95–97%) was procured from VWR Chemicals-
USA. Ethanol and the 25 wt.% glutaraldehyde aqueous solution were purchased from Sigma
Aldrich-USA. All chemicals were used as received without further modifications.

2.2. Methods
2.2.1. Preparation of Networked–Nanofibrous Cellulose Suspension (NC)

Networked–nanofibrous cellulose was restructured via the regeneration of acid-
hydrolyzed cellulose solution. Acid hydrolysis was carried out using Copley Dissolution
Tester (DIS 6000)-UK, following a procedure reported in a previous study [23]. The tem-
perature of the water bath was fixed at 5 ◦C using ice packs. A 70% (w/w) diluted sulfuric
acid was prepared and subsequently added, kept under cold conditions (5 ◦C). An amount
of 10 g of MCC was mixed with 100 mL of sulfuric acid, and the solution was stirred at
200 rpm for 1 hr at 5 ◦C until a viscous transparent solution was formed. Ethanol (stored at
5 ◦C) was added to the cellulose solution as a regeneration solvent. After the addition of
ethanol, the mixture was mixed for another 20 min to allow for the complete regeneration of
cellulose. Following the complete generation of cellulose, centrifugation was carried out at
2400× g rpm at 5 ◦C, resulting in a separation between the cellulose-rich layer at the bottom
and the liquid acidic layer on top, which was decanted. The centrifugation process was
repeated three times. The bottom layer was collected and dialyzed in a Spectra/Por dialysis
membrane (MWCO: 12–14 K g/mol) under running tap water (3 days) until the suspension
pH reached 7–8 (tap water pH). The resulting NC and water suspension was homogenized
by a mechanical homogenizer (IKA-T25 ULTRA-TURRAX). The suspension was kept in
cold storage (5 ◦C) until further use; Figure 1 illustrates the preparation procedure. The
yield of the network cellulose was calculated by freeze-drying three samples in a freeze
dryer for 24 hr. The resulting suspension had a 96% yield and a 3% (w/w) concentration.

2.2.2. Preparation of Crosslinked Regenerated Networked–Nanofibrous Cellulose
Substrates (CRC)

A glutaraldehyde (GA) crosslinker was used to chemically crosslink the regenerated
cellulose. The reaction between the dialdehyde of GA and the hydroxyl groups of cellulose
is expected to form an acetal under catalyst conditions (i.e., acidic). Crosslinking occurred
where every GA molecule connected with four anhydroglucose units; Scheme 1 shows
the crosslinking reaction. The end mixture solutions of NC—GA were mixed at room
temperature, maintaining a solution of 60% NC/water suspension and 40% GA/water.
An amount of 350 µL of 20% H2SO4 was added to catalyze the reaction (pH of ~1.8).
The concentrations of NC suspension was kept unchanged at 3% (w/w), whereas the
concentrations of GA were varied between 6, 12, and 25%. The crosslinking reaction time
was studied for 3, 6, and 24 hr. After mixing, 4 mL of the solution was poured into a petri
dish and oven-cured in a vacuum oven at 25 ◦C, unless mentioned otherwise, for 3 hr. After
drying, the crosslinked regenerated cellulose (CRC) thin film was wetted with DI water to
encourage detachment from the glass; the prepared films were rinsed with water to remove
excess GA and kept wet. Films were subjected to air drying when needed in a dry state.



Nanomaterials 2022, 12, 2729 4 of 16Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. Schematic illustration of the preparation steps (from 1 to 5) for networked–nanofibrous 
cellulose (NC). 

2.2.2. Preparation of Crosslinked Regenerated Networked–Nanofibrous Cellulose  
Substrates (CRC) 

A glutaraldehyde (GA) crosslinker was used to chemically crosslink the regenerated 
cellulose. The reaction between the dialdehyde of GA and the hydroxyl groups of cellu-
lose is expected to form an acetal under catalyst conditions (i.e., acidic). Crosslinking oc-
curred where every GA molecule connected with four anhydroglucose units; Scheme 1 
shows the crosslinking reaction. The end mixture solutions of NC—GA were mixed at 
room temperature, maintaining a solution of 60% NC/water suspension and 40% GA/wa-
ter. An amount of 350 μL of 20% H2SO4 was added to catalyze the reaction (pH of ~1.8). 
The concentrations of NC suspension was kept unchanged at 3% (w/w), whereas the con-
centrations of GA were varied between 6, 12, and 25%. The crosslinking reaction time was 
studied for 3, 6, and 24 hr. After mixing, 4 mL of the solution was poured into a petri dish 
and oven-cured in a vacuum oven at 25 °C, unless mentioned otherwise, for 3 hr. After 
drying, the crosslinked regenerated cellulose (CRC) thin film was wetted with DI water 
to encourage detachment from the glass; the prepared films were rinsed with water to 
remove excess GA and kept wet. Films were subjected to air drying when needed in a dry 
state. 

 
Scheme 1. Crosslinking reaction of regenerated networked-–nanofibrous cellulose and glutaralde-
hyde. 

Figure 1. Schematic illustration of the preparation steps (from 1 to 5) for networked–nanofibrous
cellulose (NC).

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. Schematic illustration of the preparation steps (from 1 to 5) for networked–nanofibrous 
cellulose (NC). 

2.2.2. Preparation of Crosslinked Regenerated Networked–Nanofibrous Cellulose  
Substrates (CRC) 

A glutaraldehyde (GA) crosslinker was used to chemically crosslink the regenerated 
cellulose. The reaction between the dialdehyde of GA and the hydroxyl groups of cellu-
lose is expected to form an acetal under catalyst conditions (i.e., acidic). Crosslinking oc-
curred where every GA molecule connected with four anhydroglucose units; Scheme 1 
shows the crosslinking reaction. The end mixture solutions of NC—GA were mixed at 
room temperature, maintaining a solution of 60% NC/water suspension and 40% GA/wa-
ter. An amount of 350 μL of 20% H2SO4 was added to catalyze the reaction (pH of ~1.8). 
The concentrations of NC suspension was kept unchanged at 3% (w/w), whereas the con-
centrations of GA were varied between 6, 12, and 25%. The crosslinking reaction time was 
studied for 3, 6, and 24 hr. After mixing, 4 mL of the solution was poured into a petri dish 
and oven-cured in a vacuum oven at 25 °C, unless mentioned otherwise, for 3 hr. After 
drying, the crosslinked regenerated cellulose (CRC) thin film was wetted with DI water 
to encourage detachment from the glass; the prepared films were rinsed with water to 
remove excess GA and kept wet. Films were subjected to air drying when needed in a dry 
state. 

 
Scheme 1. Crosslinking reaction of regenerated networked-–nanofibrous cellulose and glutaralde-
hyde. 
Scheme 1. Crosslinking reaction of regenerated networked—nanofibrous cellulose and glutaraldehyde.

2.3. Measurements and Characterizations

A Fourier-transform infrared spectrometer (FTIR) (Thermo scientific™-USA, Nicolet
iS5 with iD7 ATR accessory) with the scanning wavelength range of 4000–500 cm−1 was
used to characterize the NC and CRC films. Scanning electron microscope (SEM) images
were captured using the ThermoFischer™ Quanta 450 FEG, USA. Microstructure images
were obtained using ThermoFischer™ Talos F200X, USA Transmission Electron Microscopy
(TEM). Samples were prepared by applying a drop of the suspension on Agar Scientific®

holey carbon S147-4 grids and allowing to air dry. Contact angle measurements on the mem-
brane surface was performed using an EasyDrop Standard drop shape analysis (DSA100,
Krüss GmbH, Germany). A deionized water droplet with a volume of 2 µL was placed
on the membrane surface using a syringe. X-ray diffractograms (XRD) of the freeze-dried
samples were obtained on an X-ray Powder Diffraction (Malvern™-UK, Empyrean 2). The
thermal properties of NC powder and CRC films were measured using thermogravimet-
ric analysis (TGA) (Netzsch TG 209 F3 Tarsus, Germany). The temperature range was
25–1000 ◦C with a heating rate of 20 ◦C/min. The optical properties of the CRC films were
tested using an Ultraviolet/Visible/Near infrared (UV/Vis/NIR) spectrophotometer (Agi-
lent Technologies Cary 5000-USA series) at a wavelength range of 200 to 1200 nm, equipped
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with a Diffuse Reflectance (integrating sphere) Accessory DRA-2500 (Labsphere®-USA),
following the ASTM1003-13 standard method [26]. Haze was calculated using Equation (1):

Haze % =

(
T4

T2
− T3

T1

)
∗ 100% (1)

where T1 is the incident light transmittance scan, T2 is the total light transmitted by the
sample, T3 is the scattered light by the instrument, and T4 is the light scattered by the
instrument and the sample.

The surface topography and roughness of the prepared films were characterized by
atomic force microscopy (AFM) using Multimode 8 with ScanAsyst and Nanoscope V
controller (Bruker-Nano Santa Barbara, Inc., CA, USA). A small piece of each film was
mounted on double-sided carbon tape supported on a steel disc. Samples imaging was
done using ScanAsyst mode (Nanoscope 9.7) under ambient air conditions with a silicon
tip on a nitride lever (SCANASYST-AIR probe with a spring constant of 0.4 N/m). The Rq
and Ra roughness values were obtained by analyzing first-order flattened images using
Nanoscope Analysis software (version 3.0). All images were acquired on a 40 × 40 µm
area with a scanning rate of 0.902 Hz and a resolution of 592 × 592 pixels. Tensile test
was carried out to determine the mechanical properties of film samples using Universal
Testing System—Instron 5960 with a 50 N load cell at 0.2 mm/min at room temperature,
with reference to the ASTM D638-03 [27]. The samples were cut into a rectangular shape
with dimensions of 10 mm in width and 30 mm in length. The breathability or water vapor
transmission rate (WVTR) of the CRC films were measured using a water permeability
cup (purchased from GARDCO, USA), following the desiccant (CaCl2) method of ASTM
E96 [28]. WVTR is the equivalent of the weight change of the container through the unit
area of membrane per day (g/m2/day). CRC films were fixed on top of a cup that was
filled with a desiccant (CaCl2) and the firmly sealed container was weighed to record the
initial weight, then placed in an environmental chamber (with a temperature of 20 ◦C and
humidity of 20%) in an upright position, where continuous measurement of the change in
container weight was taken at specific times. To calculate the WVTR, we used Equation (2):

WVTR = ∆M/(A ∗ t) (2)

where ∆M is the change in weight of the container, including sample and desiccant in (g),
t is the time (h) of the measurement, and A is the area of the film exposed to moisture (m2).

3. Results and Discussion

During hydrolysis, the ability to target and break down the amorphous regions of
cellulose at an increased rate compared with the crystalline regions is valid as long as
the sulfuric acid concentration is below 64% [29]. Higher concentrations would result in
the complete dissolution of cellulose chains due to disruption of the crystalline structure.
Thus, it is a narrow window between the dissolution of the crystalline region and the
hydrolysis of cellulose to work within. Networked–nanofibrous cellulose was produced via
controlled acid-hydrolysis; cellulose chains were dissolved with minimal degradation from
the acid by working with a 70% acid solution at a low temperature (5 ◦C). The crosslinking
reaction of the regenerated cellulose suspension was performed to produce films because
the mother solution, once cast, suffers from excessive shrinkage upon drying and hence,
is not able to form a continuous film. Figure 2a shows the effects of crosslinking time,
crosslinking concentration, and curing temperature on film formation. Crosslinking of
the regenerated cellulose for 3 hr was not enough to produce a film, even with a high glu-
taraldehyde concentration (~25%). Increasing the crosslinking time to 6 hr vastly improved
film formation; however, some defects were present for all crosslinking concentrations.
Crosslinking the regenerated cellulose for an extended time (24 hr) using a 25% glutaralde-
hyde concentration was the optimum condition to fabricate defect-free film (Figure 3f). FTIR
analysis was performed to confirm the chemical reaction with glutaraldehyde. As shown
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in Figure 2b, the FTIR spectra of NC is compared with the 6, 12, and 25% GA-crosslinked
regenerated cellulose (CRC) with different crosslinking reaction times (3, 6, and 24 hr)
and curing temperatures of 25 and 40 ◦C. The peaks of absorption at around 3000–3500,
2750–3000, and 1000–1200 cm−1 refer to the OH groups, C–H stretching, and C–O–H and
C–O–C asymmetric stretching, respectively. An increase in the intensity of –OH peaks
(3000–3500 cm−1) for CRC crosslinked with 6 and 12% GA, indicates insufficient crosslink-
ing. A reduced trend in absorption of –OH peaks in 25% GA-crosslinked regenerated
cellulose compared with NC was observed by increasing the crosslinking reaction time,
suggesting successful crosslinking bonds [30]. The absorption peak at 1115 cm−1 is highly
evident in the crosslinked film compared with the pristine NC, which is assigned to the
ether bond formation between cellulose and GA [31]. At 12 and 25% GA concentrations of
the crosslinking agent, the later peak seems to broaden and split, suggesting high degrees
of crosslinking. The –OH groups being consumed and the –C–O–C groups increasing in
peak broadness are signs of the crosslinking process. The degree of broadening of the
–C–O–C peak of the samples cured at 40 ◦C was intensified compared with the 25 ◦C-cured
samples, suggesting greater crosslinking and densification of the resultant films.

Scanning electron microscopy (SEM) imaging was performed on freeze-dried samples
of NC and CRC crosslinked with 25% GA for 24 hr, images are presented in Figure 2.
The NC material was found to be a fluffy powder, as seen in Figure 3a. From the TEM
images in Figure 3b, it is evident that the NC material possess a network structure with
fibers of 30 nm. Networking usually occurs when cellulose chains break and randomly
entangle and bundle together. In the regeneration step, the acid is exchanged with the non-
solvent (ethanol), causing the chains to bond to neighboring ones aimlessly and precipitate.
The combination of acid concentration with a low temperature motivated the networking
structure, and this structure was maintained when the regenerating solvent was added
at the monitored time. With quick precipitation, the chain bonding was limited to short
lengths. The final regenerated cellulose solution is a water suspension solution shown
in the inset of Figure 3b. Once the suspension is cast on a glass petri dish and dried, a
shrinking and flakiness is noticed (Figure 3c); the formation of a continuous film was not
possible. The shrinkage is an indication of the three-dimensional network, as reported
before [23]. In Figure 3d, the SEM image of the CRC-25%-24 hr freeze-dried powder shows
a denser structure, indicating that the cellulose chains packed densely due to the chemical
bonds formed. The same observation was made when the TEM images were examined
(Figure 3e). The open structure of NC, although reduced due to the crosslinking reaction,
kept its three-dimensional integrity. Figure 2e shows the 25% GA film crosslinked for 24 hr
and cured at 25 ◦C for one hour (before solidification); the inset in the same figure represents
the crosslinked film cured at 40 ◦C for one hour. Evidently, the curing temperature increases
the efficiency of crosslinking, leading to closely packed chains. This crosslinking reaction
enabled the successful formation of continuous, defect-free film, presented in Figure 3f.

X-ray diffraction data of the NC freeze-dried material alongside the mother material,
microcrystalline cellulose (MCC), and the CRC-25%-24 hr are presented in Figure 4a. The
data reveals a clear phase shift represented by the different MCC and NC signal patterns.
The XRD signal of MCC is a typical crystalline cellulose I signal. On the other hand, the
XRD pattern of NC exhibits a less-ordered, amorphous cellulose pattern with characteristics
of cellulose II, indicating that the controlled hydrolysis changed the crystallinity of the
cellulose. In comparison with NC, the XRD of CRC-25%-24 hr shows that the crosslinked
material kept the structure of cellulose II (mainly amorphous nature); however, the char-
acteristic peaks seem to have intensified. Cellulose II-characteristic peaks seem to exist
in the CRC samples well, suggesting that crosslinking did not affect the crystallinity or
amorphous nature of the cellulose film.



Nanomaterials 2022, 12, 2729 7 of 16Nanomaterials 2022, 12, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 2. (a) Effect of crosslinker concentration and crosslinking time on the formation of crosslinked 
regenerated cellulose (CRC), (b) FTIR spectra of the networked-nanofibrous cellulose (NC) and the 
CRC films crosslinked with 6, 12, and 25% GA for 3, 6, and 24 hr all at curing temperature of 25 °C 
(room temperature), in addition to FTIR spectra at curing temperature of 40 °C. The inset represents 
the magnification of FTIR spectra between 1250–1750 cm−1 wavelength. 

Figure 2. (a) Effect of crosslinker concentration and crosslinking time on the formation of crosslinked
regenerated cellulose (CRC), (b) FTIR spectra of the networked-nanofibrous cellulose (NC) and the
CRC films crosslinked with 6, 12, and 25% GA for 3, 6, and 24 hr all at curing temperature of 25 ◦C
(room temperature), in addition to FTIR spectra at curing temperature of 40 ◦C. The inset represents
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Figure 3. (a) SEM image of freeze-dried NC material with inset of a digital image of the powder,
(b) TEM image of the NC suspension with inset of a digital image of the suspension, (c) digital image
of the NC film after suspension is cast and dried with inset image of the water contact angle of the
dried film, (d) SEM image of freeze-dried CRC material crosslinked with 25% GA for 24 hr (CRC 25%
24 hr) with inset of a digital image of the powder, (e) TEM image of the CRC-25%-24 hr suspension
cured at 25 ◦C for 1 hr, with the inset of TEM for the CRC-25%-24 hr suspension cured at 40 ◦C for
1 hr, and (f) digital image of the CRC-25%-24 hr film after suspension is cast and dried with inset
image of the water contact angle of the dried film.

The thermal stability of 25% GA-crosslinked NC and CRC films were studied using
thermogravimetric analysis. The TGA and DTG curves of films were compared and are
presented in Figure 4b. From the DTG curves, the maximum weight loss sparked at 224 ◦C
for NC material. The low degradation temperature for NC (in comparison with the mother
material MCC, which was 348 ◦C) [23] is a sign that the hydrolysis caused a larger number
of free-end chains decomposes at lower temperature [32]. The thermal behavior of the CRC
films was different than that of NC and exhibited a higher degradation temperature. It
is well-established that chemical crosslinking enhances thermal stability; this observation
has been reported elsewhere [33]. The two degradation temperatures for CRC films were
345 and 450 ◦C. It was also observed that CRC films exhibited a peak below 100 ◦C, as a
result of the evaporation of adsorbed water.
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Cellulose, in general, consists of a tangled fiber network which has a blurred appear-
ance with strong light scattering behavior, rendering a transmission haze. Networked–
nanofibrous cellulose has a hazy structure, as seen in Figure 3c. The hazy appearance
emerged from the disruption that took place during hydrolysis. This disruption introduced
changes in the cellulose structure that led to a networking crystallization. The interaction
between cellulose and acid can be described as follows (Figure 5a): (i) The acid dissolu-
tion starts by opening up the cellulose structure, breaking the hydrogen bonds between
chains. The extent of the hydrolysis at given acid concentrations proceeds depending on
the reaction time and temperature. (ii) Running hydrolysis at a low temperature of 5 ◦C
slows down the hydrolysis reaction. (iii) Adding anti-solvent at that point withdraws the
acid from between cellulose chains and provokes phase separation; the cellulose chains
are forced to bundle and re-crystallize in a random manner into the more stable cellulose
II with a three-dimensional structure. This is confirmed by XRD data in Figure 4a and
TEM image in Figure 3b. As previously reported, the acid concentration, temperature, and
mixing time factors all affect the outcome, as such factors target amorphous and crystalline
regions at different rates [29,34]. According to previous studies, ethanol was found to be
the regenerating solvent with the highest yield [23]. We believe that the network structure
of NC is responsible for its hazy properties, as the cellulose II crystals formed during
recrystallization can scatter light; the sketch in the inset of Figure 5b displays this scattering
mechanism [35]. The microscale crystals in combination with the short fiber bundles formed
by the hydrolysis grant the NC its dual optical transparency and hazy properties. Although
the controlled hydrolysis treatment initially produces a resilient material, NC suffers from
excessive shrinkage once dried, which makes it extremely challenging to prepare films.

Crosslinking of polymers is a well-established method to improve chemical, thermal,
and mechanical properties. Glutaraldehyde is a popular crosslinking agent known for
its ability to crosslink cellulose under acidic conditions, due to the ability of dialdehydes
to enhance resilience, thermal stability, and mechanical properties of cellulose fibers [36].
Glutaraldehyde is considered a successful crosslinking agent because of its multicomponent
nature, as a variety of forms can be present in equilibrium at a given pH in the reaction
solution [37]. The solubility of GA in water facilitates the crosslinking to take place in
aqueous media, which is considered a safe and economic approach [38]. CRC films express
high transparency, which is a result of its densely packed homogeneous structure acquired
by successful crosslinking. We believe that crosslinking cellulose with GA can combine the
haziness from the networked–nanofibrous cellulose with the enhanced transparency from
the dense, crosslinked films. A denser fiber network has been shown to perpetuate high
optical transmittance [17].

In our study, the CRC films presented a highly transparent cellulose film with a
transmission haze of about ~60% at 550 nm (Figure 5b,c) by coupling the high optical
transmittance of GA–cellulose dense films and high haze of networked–nanofibrous cellu-
lose through a chemical crosslinking reaction, which retained 94% transparency and 60%
transmission haze. The dense structure of the obtained film permits light to go through,
whereas the nanosized crystals in the CRC film caused by crystallization provoke strong
forward-light scattering. Figure 5b,c also highlight the effect of curing time on the optical
properties of the CRC films; curing at 40 ◦C, for example, increased the hazy nature to
almost 100%, but sacrificed the transparency to 65%. This effect may be attributed to
the increased degree of crosslinking associated with a high curing temperature, which is
confirmed by the FTIR test in Figure 2b.

Figure 6a,b present digital images of the films at 25 and 40 ◦C with a laser beam being
scattered, as well as digital images of the films against NYU Abu Dhabi-written paper
(close to and 1 cm above), where the transparent and hazy properties are clearly showcased;
the digital images manifest remarkable light scattering. Figure 6c displays the transparency
percentage plotted against the transmission haze of the CRC films in comparison with other
transparent and hazy cellulose films. Cellulose-based substrates, such as transparent and
hazy paper (TH paper), are made from wood fibers or a composite of wood paper and
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carboxymethyl cellulose [13,15,18,21,39], wood film (anisotropic) [40], Ag-nanowire trans-
parent paper [41], bacterial cellulose film [42], Zn-nanopaper [43], anisotropic regenerated
cellulose fiber (RCF) [44], and nanopaper [22,45,46]. Our CRC film transmission haze and
transparency data fits within an attractive range for solar cell applications.
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Figure 5. Optical properties of CRC cured at 25 ◦C and CRC cured at 40 ◦C. (a) Schematic representa-
tion of the suggested networking mechanism. (b) Transmittance and (c) transmission haze of CRC
films cured at 25 and 40 ◦C, with sketch of haze representation in the inset of (b). (d) Digital images
of laser light pointed at and scattered from CRC films cured at 25 and 40 ◦C. (e) Transparent and hazy
CRC films cured at 25 and 40 ◦C, in close contact with and 1 cm above letters written to represent the
films’ light transmittance and haze. (f) Transmission haze vs. optical transmittance of our CRC films
in comparison with other reported cellulose-based transparent and hazy films.

The surface morphology of films influences their optical haze properties. In this study,
atomic force microscopy (AFM) was used to characterize the top-view morphology of CRC
films (Figure 7). As shown in Figure 7a, the neat NC film has a rough surface, and the
root-mean-square roughness (Rq) was recorded at 444 nm. The roughness reported here is
an ideal value to create hazy films. In addition, NC is transparent; however, the mechanical
stability of NC limits its application. In efforts to improve its mechanical stability, chemical
crosslinking was performed. Upon crosslinking, CRC films had better film formation,
but showed decreased roughness (Figure 7b,c). This indicates that crosslinking slightly
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reduces haze properties. Crosslinking connects polymer chains together, which changes the
network structure of NC, hence altering its haze properties. Dense CRC films effectively
limits light scattering, which endows a higher transparency but reduced haze. The effect
of crosslinking temperature was investigated as well; roughness appeared to increase as
temperature increased. Rq was recorded at 312 and 117 nm for CRC films crosslinked at
40 and 25 ◦C, respectively. When a higher temperature is employed, the kinetics of the
reaction are induced, meaning there is not enough time for the chains to organize, hence
resulting in a rough surface. The crosslinking and drying occurred simultaneously, and
evaporation of the solvent (water) was faster at 40 ◦C, which translated into a rough
surface. Haze % was higher at 40 ◦C (Figure 5c), which is in agreement with roughness
values (Figure 7b).
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and scattered from CRC films cured at 25 and 40 ◦C. (b) Transparent and hazy CRC films cured at 25
and 40 ◦C, in close contact with and 1 cm above letters written to represent the films’ light transmit-
tance and haze. (c) Transmission haze vs. optical transmittance of our CRC films in comparison with
other reported cellulose-based transparent and hazy films.

The mechanical properties of crosslinked regenerated cellulose films were significantly
improved with chemical crosslinking. GA-crosslinked films exhibited good integrated
mechanical characteristics; Figure 8a presents the stress–strain curve for the CRC film.
Films crosslinked with 25% GA for 24 hr and cured at 25 ◦C exhibited a tensile strength
and elongation at break range of 25 MPa and 2.23%, respectively. This is a significant
improvement because the native NC mechanical properties are impossible to obtain due to
the shrinkage and flakiness of NC. Similar improvements in the mechanical integrity of
crosslinked cellulose nanofibers have been reported in previous studies [30]. In comparison,
films crosslinked and cured at 40 ◦C experienced brittleness and were less mechanically
stable (tensile strength of 13 MPa, elongation at break range of 1.6%). Curing of films at
higher temperatures will indeed increase the degree of crosslinking; however, it increases
the brittleness of the films. Cellulose has strong hydrogen bonding caused by the hydroxyl
groups interacting at equatorial positions of a chair-like conformation pyranose ring. A
detailed study of such interactions was clearly demonstrated by Bergenstrahle et al. [47].
Past observations have indicated that hydrophobic interactions are influential on the
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behavior of cellulose in aqueous solutions: this suggest that there is a clear splitting of
polar –OH and nonpolar –CH patches in the cellulose structure, thus exhibiting clear
amphiphilicity [48]. As a result, the cellulose chains stack via hydrophobic interactions.
Crosslinking of the regenerated cellulose imparts increased hydrophobicity to the film
structure, as the crosslinking reaction boosts the hydrophobic region causing high resistivity
to water vapor (humidity) passage. This is also confirmed by the water contact angle, which
increased from 45◦ in the NC film to 80◦ in the CRC film, presented in the inset of Figure 3f.
Breathability of the CRC films refer to the water vapor transmission rate (WVTR) of GA-
crosslinked regenerated cellulose under certain conditions (22 ◦C, 30% humidity). Higher
WVTR values indicates that water vapor passes through the films with less effort. Solar
cells require minimal water vapor passage and a high humidity resistance. Herein, the
resilient WVTR of CRC was investigated using the upright desiccant (CaCl2) method with
a water permeability cup (Figure 8c), and the related curves are presented in Figure 8b. The
WVTR of the CRC films was calculated to be 3.77 g/m2/day, which is considered a good
resistivity to humidity for solar cell applications [49].
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Figure 8. (a) Stress-strain curve for the CRC film crosslinked with 25% GA for 24 hr. (b) Water vapor
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cup fixed with 25 ◦C-cured CRC-25% GA for 24 hr as a film, and CaCl2 as a desiccant.

4. Conclusions

A novel cellulose film with high transparency and transmission haze was created using
a combination of controlled acid-hydrolysis and chemical crosslinking. The acid-hydrolysis
of microcrystalline cellulose (the raw material) was carried out under specified, controlled
conditions of acid concentrations and reaction temperatures. Such controlled conditions
resulted in a networked, nanofibrous, and opaque cellulose material that would be highly
advantageous for optoelectronic applications. Chemical crosslinking was performed to
improve the mechanical stability and allow film formation. The prepared films exhibited
94% transparency and 60% transmission haze at 550 nm with a curing temperature of 25 ◦C.
The reason for the high haze arose primarily from the nanoscale crystals and the network
nanofibrous nature formed during the controlled recrystallization and regeneration of
cellulose, whereas the high transmittance was acquired from the dense packing during
chemical crosslinking. Moreover, the roughness of the surface of the films played an
important role in light scattering, causing the high optical haze. Increasing the curing
temperature to 40 ◦C resulted in higher optical haze; however, it was at the expense of
transparency. In addition, the crosslinked film displayed good mechanical and thermal
stability, as well as high water resistivity. Such easy to scale-up, highly transparent, and
high haze biodegradable films can be utilized as potential substrates for optoelectronics
devices, such as photovoltaic solar cells.
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