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Abstract: The current research intended to employ a facile and economical process, which is also
ecofriendly to transform camel waste bones into novel heterostructure for cleansing of diverse
waste waters. The bones of camel were utilized for preparation of hydroxyapatite by hydrothermal
method. The prepared hydroxyapatite was applied to the synthesis of cerium oxide-hydroxyapatite
coated with natural polymer chitosan (CS-HAP-CeO2) heterostructure. Being abundant natural
polymer polysaccharide, chitosan possesses exceptional assets such as accessibility, economic price,
hydrophilicity, biocompatibility as well as biodegradability, therefore style it as an outstanding
adsorbent for removing colorant and other waste molecules form water. This heterostructure was
characterized by various physicochemical processes such as XRD, SEM-EDX, TEM, and FT-IR. The
CS-HAP-CeO2 was screened for adsorption of various industrially important dyes, viz., Brilliant
blue (BB), Congo red (CR), Crystal violet (CV), Methylene blue (MB), Methyl orange (MO), and
Rhodamine B (RB) which are collective pollutants of industrial waste waters. The CS-HAP-CeO2

demonstrated exceptional adsorption against CR dye. The adsorption/or removal efficiency ranges
are BB (11.22%), CR (96%), CV (28.22%), MB (47.74%), MO (2.43%), and RB (58.89%) dyes. Moreover,
this heterostructure showed excellent bacteriostatic potential for E. coli, that is liable for serious
waterborne diseases. Interestingly, this work revealed that the incorporation of cerium oxide and
chitosan into hydroxyapatite substantially strengthened antimicrobial and adsorption capabilities
than those observed in virgin hydroxyapatite. Herein, we recycled the unwanted camel bones into a
novel heterostructure, which assists to reduce water pollution, mainly caused by the dye industries.

Keywords: adsorption; water remediation; CS-HAP-CeO2 heterostructure; antibacterial; Congo red

1. Introduction

The ecosphere encounters pure water crisis even in the 21st century. Unpolluted
water is essential for the ecosystem; however, inattention and maladministration of nat-
ural water assets had considerably endangered the availability of pure water. Annually,
water contamination and allied ailments prerogative affect approximately 2.1 million lives.
Predominantly, various biological pollutants are accountable for water-related infections.
The incidence of Coliforms is considered as indicator of fecal contagion. The eruptions of
water-related microbial infections and inorganic materials are the main causes of loss of
precious lives [1]. Admitting, not severely damaging in minute amounts, but they are the
main pollutants once concentrated in water. Similarly, organic materials and prescription
drugs etc., enter through different sources into water bodies [2]. Besides being aesthetic, the
colored dyes are cancer-causing, and block light from entering aquatic systems. Numerous
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dyes pose a health risk since they are poisonous to both plants and animals [3]. Congo red
(CR) is a benzidine, which is based on anionic disazo dyes. It is a human carcinogen. This
dye is dangerous for both humans and the environment [4].

The waste-water treatment methods are very expensive. Bearing in mind, the prob-
able claim for unsoiled water in Saudi Arabia, there is an imperative need for expansion
of inexpensive materials for sanitization of contaminated waters. Therefore, current in-
vestigation visualizes the synthesis of economical material from Albaha camel bones.
Camelus dromedarius, encompasses as dominant livestock of Arabian Peninsula. Due to
appreciable consumption of camel meat in Saudi Arabia, huge amount of waste camel
bones is being generated. These waste camel bones lead to hefty disposal costs and are
major threat to health, aesthetic pleasure, and the environment. Therefore, in this study
camel waste bones collected from Albaha region were utilized for the first time for pu-
rification of wastewater. Nevertheless, the chemical synthesis of hydroxyapatite (HAP)
is complicated and expensive. Therefore, a very simple and low-cost procedure for the
extraction of natural bone precursor HAP from waste camel bones is applied. The camel
bone waste is a good natural source to develop hybrid nanocomposites which possess
remarkable antimicrobial activity; hence, can be used to treat the household wastewaters
such as kitchen, toilets, laundry etc. A plethora of studies have utilized animal bones for
adsorption of mercury ions [5], removal of divalent heavy metals from wastewater [6], etc.
Moreover, several organic/inorganic HAP composites are being utilized for removal of
different dyes from waste waters. For instance, plain HAP, and composites of HAP have
been used to adsorb CR dye [7]. Similarly, HAP doped with magnesium, sodium alginate
was applied to remove Acid Yellow 220 [8]. Similarly, HAP-Chitosan composite is used for
the elimination of CR, and HAP with polyalcohol is used to remove CR, MB, and MO [9].
It is reported in the literature that HAP is a noteworthy material for the elimination of toxic
constituents from waste waters. Consequently, this study reports the synthesis of HAP
from Albaha camel bones which were utilized for purification of wastewater particularly
Saudi Arabia wastewater. The interesting properties of HAP [10] eases with opportunity to
use it in numerous applications [11].

Similarly, chitosan (CS) can also be cast-off as an adsorbent to eliminate dyes owing
to the occurrence of amino and hydroxyl clusters (which assist as energetic spots). CS is
an abundant natural alkaline polymer polysaccharide. The exclusive chattels, for instance
easiness, cheapness, water compatibility, biocompatibility, as well as biodegradability make
it as an outstanding adsorbent for eliminating dyes [12–16]. The admirable functional
groups of CS (amino and hydroxyl groups) craft it as a fabulous adsorbent for interaction
with diverse dyes. Moreover, it possesses intrinsic biomedical applications such as CS is
incorporated in dressings to reduce bleeding and as an antibacterial agent. CS can also
be used to help to deliver drugs through skin [17,18]. Very recently, chitosan-Ulva lactuca
composites for eliminating of Cd(II) ions from aquatic media have been employed which
displayed outstanding efficacy [19]. Likewise, at present, the progressive semiconductor
photocatalysis skill has been documented as an auspicious methodology to resolve water
pollution and energy problems owing to its low-cost, eco-friendly, environment reusability
and high removal efficiency characters. Semiconductor metal oxide nanophotocatalysts,
such as CeO2, ZnO, SnO2, Bi2O3, and TiO2 have been widely used to eliminate the toxic
pollutants in wastewater under different light sources [20]. In current times, cerium oxide
nanoparticles have attracted increased attention owing to their shielded 4f electrons which
is accountable for their captivating assets [21]. In an investigation, the synthesized CeO2
nanopowder, displayed extraordinary adsorption competence for elimination of diverse
dyes at specific pH [22]. In particular, recently the CeO2 composites such as La2O3–CeO2–
Fe3O4 nanofibers [23] and Ce/ZnO/CNFs catalysts exhibit good stability and reusability,
which would be an economical and environmental friendly photocatalysts for various
practical applications and can simply be recycled [20]. However, antagonistic characteristics
viz., meager solubility of CeO2 can be overawed by packing CeO2 with biopolymer (such
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as chitosan, dextran, cyclodextrin, glucose and folic acid etc.,), therefore intensifies their
miscibility and biocompatibility.

Consequently, with regard to exploring inexpensive material for purification of wastew-
ater, this study recommends making usage of cheap and environment-friendly approaches
to transform camel bone waste into novel composites such as CS-HAP-CeO2 heterostruc-
ture. The CS-HAP-CeO2 will then be applied as a chemical and biological agent for water
purification. Moreover, solving water pollution crisis, our scientific contribution will also
assist in plummeting the environmental pollution by recycling camel waste bones of Albaha
province which might be a serious cause of pathogenic diseases in the very near future.

2. Materials and Methods
2.1. Preparation of Hydroxyapatite (HAP)

The camel bones were assembled from abattoir of Albaha city of Saudi Arabia. Ex-
tensive cleaning of bones was done following our earlier procedures [24], primarily, these
mandibles were swept away extensively using water, also with acetone to exclude fat and
superfluous impurities. Later on, bones were put in an oven at 170 ◦C for 48 h. Furthermore,
it was calcined in a furnace at an elevated temperature of 700 ◦C to get HAP.

2.2. Synthesis of Chitosan Coated Cerium Oxide-HAP Heterostructure (CS-HAP-CeO2)

Cerium sulfate (5.6 g, anhydrous, 97%, Alfa Aesar, India) was added to 80 mL of water
in a beaker. Then s sodium hydroxide solution (2 M) was added dropwise to attain pH~11.
HAP (2 g) powder was mixed in the same solution with continuous stirring. About 10 mL
of chitosan solution (500 mg of chitosan was liquefied in acetic acid solution, 1% v/v in
water) was dissolved to it. At that time the final solution was shifted to the hydrothermal
reactor and heated at 180 ◦C for 15 h. The prepared CS-HAP-CeO2 heterostructures were
filtered and rinsed quite a few times with water and then with ethanol and kept at 90 ◦C
overnight in an oven.

2.3. Characterization

The crystallinity of HAP and CS-HAP-CeO2 heterostructures were examined by X-ray
diffraction (XRD, Rigaku (Tokyo, Japan) D/Max-2550, λ = 0.154 18 nm). The morphology
of the samples was depicted by scanning electron microscopy equipped with energy-
dispersive X-ray (SEM-EDX, JEOL, Tokyo, Japan). The presence of samples functional
group was performed by Fourier transform infrared (FTIR, Thermo Scientific, Waltham,
MA, USA) spectrometer. The microscopic images of samples were obtained by transmission
electron microscopy (TEM, Hitachi, Tokyo, Japan).

2.4. Adsorption Studies

The adsorption study was conducted by batch method. The impact of various factors
such as adsorbent dosage, contact time, pH, dyes concentration, and temperature on the
removal efficiency of CR by CS-HAP-CeO2 heterostructure in the range (0.0025–0.1 g),
(5–1440 min), (3–11 pH), (50–500 mg/L), and (25–45 ◦C) respectively, was tested. For
adsorptive dye removal, 0.02 g of CS-HAP-CeO2 heterostructure adsorbent solution was
thoroughly mixed with 50 mL aqueous dye solution of 50 mg/L in 100 mL conical flask.
Dye pH was changed by the addition of 0.1 M HCl or 0.1 M NaOH and then placed on a
shaker at 100 rpm at ambient temperature, and the samples were tested at specific time
intervals. After equilibrium period, the solution was filtered and the concentration of
CR, RB, MB, CV, BB, and MO dyes were observed by UV–visible spectrophotometer at
maximum absorption wavelengths (λmax) of 500, 603, 665, 590, 592, and 468 nm, respectively.
The removal efficiency (%) and adsorption capacity (mg/g) were determined using the
following Equations (1) and (2), respectively [25].

Removal efficiency (%) =
(Co − Ce)

Co
× 100 (1)
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Adsorption capacity (qe) = (Co − Ce)×
V
m

(2)

where Co is the initial concentration of dye and Ce is the concentration of MB equilibrium
time), V is the volume of dye solutions, L, and m is the adsorbent dosage, g.

2.5. Antimicrobial Activity

The antibacterial activity of pristine HAP and novel CS-HAP-CeO2 heterostructure
was verified in liquid broth [26]. The E. coli culture was maintained (106 CFU) with known
amount of pristine HAP and CS-HAP-CeO2 heterostructure (0, 50, 100, and 200 µg/mL)
to regulate the minimum inhibitory concentration (MIC). The expansion kinetics was
supervised at every 4 h by reading the OD in a spectrophotometer. A persistent incubation
temperature of 37 ◦C and rpm of 150 were sustained in a rotary shaker. Growth inhibition
in presence of HAP and HAP-Ce coated with natural polymer CS was upheld to 16 h and
the shift in absorbance was considered at 600 nm by ultra-violet [27] spectrophotometer.

3. Results
3.1. Sythesis and Characterization

The formation of CS-HAP-CeO2 heterostructure can be hypothesized as follows: the
bone does have 65–70% HAP and 30–35% organic compounds (on dry weight basis). In
our work, we extracted HAP by simple thermal treatment of natural bone. Cerium oxide
was prepared using cerium sulfate precursors with HAP in solution. The use of sodium
hydroxide resulted in a white precipitate, Ce(OH)3, from cerium sulfate solution. Oxidation
of Ce3+ to Ce4+ in solution occurs at high pH and forms Ce(OH)4 [28]. Then it is converted
to cerium oxide at high temperature. Furthermore, chitosan as a linear polysaccharide
consists of (1,4)-linked 2-amino-deoxy-b-d-glucan with two free hydroxyl and one primary
amino group. The positive and negative charge of amino and hydroxyl groups could make
it available to attached with the surface of HAP and cerium oxide, thus resulting in the
formation of novel CS-HAP-CeO2 heterostructure [28].

Figure 1 displays the XRD spectra of untainted HAP and CS-HAP-CeO2 heterostruc-
ture. All diffraction peaks of pure HAP correspond to single phase hexagonal structure
of [Ca10 (PO4)6(OH)2] (JCPDS no. 09-0432). There was no contamination peaks present in
the spectrum, it confirms the formation of pure HAP [29] (Figure 1a). The XRD patterns
of CS-HAP-CeO2 heterostructure exhibited all characteristic diffraction peaks of HAP, in
addition, it also shows the diffraction peaks corresponding to the crystalline plane (111),
(200), (220), and (311) which confirms the cubic fluorite assembly of CeO2 (JCPDS no.
81-0792) [30]. In the same spectrum, a weak peak at around 2θ of 20◦ corresponds to pure
chitosan [31] (Figure 1b).

Figure 2 presents the surface structure and morphology of pure HAP and CS-HAP-
CeO2 heterostructure. Figure 2 illustrates the micro-structural study of HAP particles,
which shows somewhat spherical in shape, displaying small and large particles with
maximum size of around 1 µm (Figure 2a,b). Whereas, in the heterostructure, the HAP
particles together with nanotube-like structure having diameter of around 100 nm with
varying lengths (Figure 2c,d) were visible.

The close inspection of the TEM image confirmed the presence of CeO2 nanotubes
having diameter of around 100 nm over the surface of HAP particles, which is in good
agreement with SEM results (Figure 3a). The high-resolution image clearly shows different
crystal structures on the heterostructure surface, the fringes of d = 0.34 nm and d = 0.27 nm,
observed in Figure 3b matched well to those of (002) and (200) crystallographic planes of
HAP and CeO2 particles, respectively. A thin amorphous uniform coating layer on the
crystal surface can also be seen confirming the chitosan presence in the heterostructure
(Figure 3b). This confirms that CS-HAP-CeO2 heterostructure was successfully prepared.
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3.2. Adsorption Studies
3.2.1. Adsorbate Selectivity

The obtained adsorbent was tested for removal of various anionic dyes such as CR, RB,
BB, and MO and cationic dyes such as CV and MB in aqueous medium at the parameters
(dye = 20 mg/L, agitation = 100 rpm, dose = 0.02 g; and 25 ◦C) as shown in Figure 5. The
experimental observations revealed that removal efficiency of the different dyes were BB
(11.22%), CR (96%), CV (28.22%), MB (47.74%), MO (2.43%), and RB (58.89%). This indicates
that the removal efficiency of CR dye was higher than the other tested dyes and order of
affinity built on the amount of dye uptake was found to be: CR > RB > MB > CV > Bb > MO
dye. This is owing to the fact that different dyes will undergo different physical and
electrostatic forces, thus the difference in removal efficiency of dyes is due to their structure,
molecular size, and functional groups which react with the functional groups of adsorbent
surfaces with different physical and electrostatic forces [32,33]. Consequently, CR molecules
occupy larger area over the CS-HAP-CeO2 heterostructure surface.

Nanomaterials 2022, 12, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 5. Selectivity studies of CS-HAP-CeO2 heterostructure toward different dyes. 

3.2.2. Effect of pH  
The initial pH solution shows an important role in the adsorption process owing to 

its impact on both, the active sites of ionization process of the CR molecule and the CS-
HAP-CeO2 heterostructure in the solution. Therefore, the effect of pH solution on the ad-
sorption process at (CR = 100 mg/L, agitation = 100 rpm, dose = 0.02 g; and 25 °C) was 
tested at the varying initial pH (3–11) as presented in Figure 6a. The CR is a dipolar mol-
ecule and it represents a cationic form at acidic pH and an anionic form at basic pH [34]. 
Moreover, the normal red color of CR at pH around 7 changes to dark blue in a highly 
acidic medium and to red in basic medium ~pH (11–12), this color in an alkaline medium 
is slightly different from the original red at pH = 7 [35]. The results reveal that the removal 
efficiency and adsorption capacity increased from (242.84 mg/g and 97.13%) to (248.40 
mg/g and 99.63%) with the increase in pH from 3 to 7, respectively, and then reduced. The 
dissociation constant (pKa) of CR is 4.0 [36]. According to this value when the pH < (pKa 
= 4), the surfaces of both CS-HAP-CeO2 heterostructure and CR dye are positively 
charged, showing an electrostatic repulsion between them. On the other hand, when the 
pH > (pKa = 4), the CR dissociates into polar groups (SO3−) along with the positive charge 
of –N=N+– groups. The SO3− group over the CR surface adsorbs on positively charged CS-
HAP-CeO2 adsorbent by electrostatic attraction along with  H-bonding. As pH increases 
to 7, the removal efficiency of CR was increased to 99.84% owing to the number of positive 
charges in CS-HAP-CeO2 heterostructure surface, decreasing which led to creation of elec-
trostatic attraction between the –N=N+– group of CR molecules and CS-HAP-CeO2 heter-
ostructure surface. At an alkaline medium, at high pH, the existence of excess -OH ions 
compete with the CR anions (sulfonate groups) for the adsorption sites on the CS-HAP-
CeO2 heterostructure surface, leading to a decrease in the removal efficiency of CR dye 
[37,38]. Therefore, at pH = 7, probably, electrostatic attraction and H-bonding become 
dominant in the adsorption mechanism. Thus, pH 7 was chosen as the optimum pH value 
in further experiments. The reported effect of pH on adsorption of CR dye by MgO com-
posite [39] is in agreement with our study. Furthermore, a recent review report based on 
the applications of artificial intelligence has captured incredible attention owing to solve 
future water-related problems [40]. Moreover, the cellulose nanofibril/rectorite composite 

Figure 5. Selectivity studies of CS-HAP-CeO2 heterostructure toward different dyes.

3.2.2. Effect of pH

The initial pH solution shows an important role in the adsorption process owing to its
impact on both, the active sites of ionization process of the CR molecule and the CS-HAP-
CeO2 heterostructure in the solution. Therefore, the effect of pH solution on the adsorption
process at (CR = 100 mg/L, agitation = 100 rpm, dose = 0.02 g; and 25 ◦C) was tested at the
varying initial pH (3–11) as presented in Figure 6a. The CR is a dipolar molecule and it
represents a cationic form at acidic pH and an anionic form at basic pH [34]. Moreover, the
normal red color of CR at pH around 7 changes to dark blue in a highly acidic medium and
to red in basic medium ~pH (11–12), this color in an alkaline medium is slightly different
from the original red at pH = 7 [35]. The results reveal that the removal efficiency and
adsorption capacity increased from (242.84 mg/g and 97.13%) to (248.40 mg/g and 99.63%)
with the increase in pH from 3 to 7, respectively, and then reduced. The dissociation
constant (pKa) of CR is 4.0 [36]. According to this value when the pH < (pKa = 4), the
surfaces of both CS-HAP-CeO2 heterostructure and CR dye are positively charged, showing
an electrostatic repulsion between them. On the other hand, when the pH > (pKa = 4),
the CR dissociates into polar groups (SO3

−) along with the positive charge of –N=N+–
groups. The SO3

− group over the CR surface adsorbs on positively charged CS-HAP-
CeO2 adsorbent by electrostatic attraction along with H-bonding. As pH increases to 7,
the removal efficiency of CR was increased to 99.84% owing to the number of positive
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charges in CS-HAP-CeO2 heterostructure surface, decreasing which led to creation of
electrostatic attraction between the –N=N+– group of CR molecules and CS-HAP-CeO2
heterostructure surface. At an alkaline medium, at high pH, the existence of excess −OH
ions compete with the CR anions (sulfonate groups) for the adsorption sites on the CS-
HAP-CeO2 heterostructure surface, leading to a decrease in the removal efficiency of
CR dye [37,38]. Therefore, at pH = 7, probably, electrostatic attraction and H-bonding
become dominant in the adsorption mechanism. Thus, pH 7 was chosen as the optimum
pH value in further experiments. The reported effect of pH on adsorption of CR dye by
MgO composite [39] is in agreement with our study. Furthermore, a recent review report
based on the applications of artificial intelligence has captured incredible attention owing
to solve future water-related problems [40]. Moreover, the cellulose nanofibril/rectorite
composite sponges has displaced an efficient dye adsorption and selective separation in
recent investigation [41].
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3.2.3. Effect of Adsorbent Dose

The influence of CS-HAP-CeO2 heterostructure amount on CR dye adsorption at
parameters conditions (CR = 20 mg/L, pH = 7; and 25 ◦C) in the range (0.0025–0.1 g) was
studied as mentioned in Figure 6b. It was noticed that the removal efficiency of CR increases
from 60.16% to 99.43% with the increase in amount of CS-HAP-CeO2 heterostructure
adsorbent from 0.0025 to 0.02, and then became constant as the amount of CS-HAP-CeO2
heterostructure adsorbent increased to 0.1 g. An increase in the removal efficiency with
the increase in amount of CS-HAP-CeO2 heterostructure adsorbent can be ascribed to the
increasing accessibility of more adsorption sites [42]. On the other hand, the adsorption
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capacity was reduced from 240 mg/g to 20 mg/g with an increase in an adsorbent amount
from 0.0025 to 0.1 g. This might be due to the aggregation events at high dosage [43].
Similar results were reported to the effect of adsorbent dose on adsorption of CR by
Teucrium polium L. [44] and polypyrrole-modified red mud [45]. Therefore, 0.02 g was
chosen as the optimal adsorbent dose under the examined conditions.

3.2.4. Effect of Contact Time

Figure 6c shows the effect of contact time on the removal of CR dye at an initial
concentration of 100 mg/L onto CS-HAP-CeO2 adsorbent under various conditions (dose–
0.02 g; pH–7; T–25 ◦C). The present outcome exhibited that the adsorption capacity of
the CS-HAP-CeO2 heterostructure and removal efficiency of CR dye increased rapidly
from (120.91 to 233.65 mg/g) and (48.36% to 96%) at 100 mg/L with the increase in time
from 1 to 15 min at the initial concentration of CR dye, respectively. As a result, the ideal
time for equilibrium for future work was evaluated to be 15 min. The CR adsorption on
graphene–chitosan composite hydrogel has shown a comparable contact time effect [46].

3.2.5. Effect Temperatures

The effect of temperature on CR adsorption of dye on the CS-HAP-CeO2 adsorbent
was investigated at different temperatures (25, 35, and 45 ◦C) and at different concentrations
(50–400 mg/L). Figure 6d shows the initial CR dye concentration effect on the adsorption
process at various concentrations (50 to 400 mg/L) and temperatures (25, 35, and 45 ◦C). The
conditions are as follows: (dose–0.02 g; pH–7). When the CR dye concentration increased
from 50 to 250 mg/L at 25 ◦C, the adsorption capacity of the CS-HAP-CeO2 adsorbent
increased from 121.87 to 289.21 mg/g. The increase in the driving force for mass transfer
from solution to the CS-HAP-CeO2 heterostructure adsorbent surface results in prominent
increase in adsorption capacity at higher initial concentrations [47–49]. It was perceived
that when the temperature rises, the adsorption capacity decreased marginally, indicating
that the CR dye adsorption was an exothermic process. At higher temperatures, the binding
forces on the surface with the CS-HAP-CeO2 heterostructure adsorbent were destroyed [50].
These results were consistent to that of CR adsorption on a fly ash/CeO2 composite adsor-
bent [51], malachite green and CR were removed from aqueous solution using magnetic
HAP nanopowder [52], CR adsorption on graphene oxide/chitosan fibers [53], as well as
CR adsorption on calcium HAP nanoparticles [54].

3.3. Adsorption Kinetics

To determine the CR adsorption mechanism onto CS-HAP-CeO2 heterostructure, two
most common adsorption kinetics namely, pseudo-first-order equation (PFO) (Equation (3))
and pseudo-second-order rate equation (PSO) (Equation (4)) were applied. The equations
can be expressed as follows [55]:

log(qe − qt) = log(qe)−
k1

2.303
t (3)

t
qt

=
1

k2q2
e
+

1
qe

t (4)

where k1 (1/min) and k2 (g/(mg·min)) represent the PFO and PSO constant, respectively;
qe and qt (mg/g) represent the adsorption capacity of the CS-HAP-CeO2 at equilibrium and
at various times, respectively. The linear curves plotted of log (qe − qt) and (t/qt) versus t
are displayed in Figure 7, and the kinetic parameters are listed in Table 1.
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Table 1. Kinetic parameters for the pseudo-first and pseudo-second-order adsorption model.

Model Parameters
Value

Co: 100 mg/L, qe,exp.: 237.95 mg/g

Pseudo-first-order
qe1, cal. (mg/g) 98.01

k1 (L/min) 0.360
R2 0.7967

Pseudo-second-order
qe2, cal. (mg/g) 238.09
k2 (g/mg-min) 0.0098

R2 0.9999

The results show the experimental data fitted very well with PSO kinetic model,
because the R2 value for the PFO (R2 = 0.9999) is higher than the R2 value for the PFO
(R2 = 0.7967). Moreover, the adsorption capacity (qe,cal = 238.09 mg/g) value derived from
PSO is close to that obtained experimentally (qe,exp = 237.95 mg/g). Hence, the results show
that the adsorption of CR dye onto CS-HAP-CeO2 heterostructure is chemical adsorption
via electrostatic attraction and H-bonding. The same result was observed for adsorption of
CR by EG@MnFe2O4 and MnFe2O4 [36].

3.4. Adsorption Isotherm

To determine the mechanism of the adsorption process and evaluate the quantity of
CR dye adsorption onto the CS-HAP-CeO2 heterostructure, four linear isotherm models
namely, Langmuir Equation (5), Freundlich Equation (6), Temkin (Equations (7) and (8)),
and Dubinin–Radushkevich (Equations (9)–(11)) were used. The equations can be expressed
as follows [36]:

1
qe

=
1

qm
+

1
qmKLCe

(5)

log qe = log K f +
1
n

log Ce (6)

qe = B ln AT + B ln Ce (7)
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B =
RT
bT

(8)

ln qe = ln(qs)−
(

Kadε2
)

(9)

ε = RT ln
(

1 +
1

Ce

)
(10)

E =
1√

2× KD
(11)

where Ce (mg/L) represents the equilibrium concentration of CR dye (mg/L), qm is the max-
imum monolayer adsorption capacity (mg/g), Kad (mol2/kJ2), Kf (mg/g), and KL (L/mg),
represent the Dubinin–Radushkevich, Freundlich, and Langmuir isotherm constant, re-
spectively; n is the adsorption intensity; AT (L/g) and B (J/mol) are the binding constant
and the constant related to heat of sorption. ε is the Polanyi potential and E (kJ/mol) is the
average free energy.

The linear plots of four isotherm models are shown in Figure 8, and the isotherm
parameters are listed in Table 2. It was noticed that the R2 values of the Langmuir adsorption
model were the highest (R2 = 0.9989) compared to the other isotherm models, Dubunin–
Radushkevich (R2 = 0.9332), Temkin (R2 = 0.6384), and Freundlich (R2 = 0.5963). That means
the adsorption process was well fitted with Langmuir adsorption model, representing
monolayer adsorption on homogeneous surfaces. The maximum monolayer adsorption
capacity of CS-HAP-CeO2 nanocomposite toward CR dye was 270.27 mg/g. This value
is greater than the adsorption capacities of other adsorbents listed in Table 3 [34,56–61].
From the Dubinin–Radushkevich model, the magnitude of E is used for evaluating the
type of adsorption mechanism. If the value of E is between 8 and 16 kJ/mol, it indicates
chemisorption, while for values of E < 8 kJ/mol, the sorption process is of a physical
nature [62,63]. Our results showed that the adsorption of CR on heterostructure adsorbent
is physical adsorption, owing to the values of E being between 0.2672 and 1.118 kJ/mol
(25 ◦C < T < 45 ◦C).

Table 2. Parameters for plotting Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich adsorp-
tion isotherms of CR onto CS-HAP-CeO2 heterostructure.

Model
CR

298 K 308 K 318 K

Langmuir
qm, mg/g 270.27 238.09 185.18

KL (L/mg) 1.000 0.591 0.397
R2 0.9989 0.9987 0.9958

Freundlich
Kf,(mg/g) (L/mg)1/n 158.19 131.67 84.58

N 7.85 7.23 5.40
R2 0.5963 0.6027 0.6422

Dubinin-R
qs, mg/g 282.56 245.45 196.56

KD-R (mol2 KJ−2) 4.00 × 10−7 1.00 × 10−6 7.00 × 10−6

E (kJ mol−1) 1.118 0.7071 0.2672
R2 0.9332 0.9805 0.929

Temkin
bT = RT/B 119.99 130.15 141.519
AT (L/g) 4029.70 2084.66 340.63

B 20.647 19.036 17.507
R2 0.6384 0.5725 0.4481
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Table 3. Comparison of the maximum adsorption capacities for CR adsorption with different adsorbents.

Adsorbent qm (mg/g) Isotherm/Kinetic Models Ref.

CeO2 nanocrystals 237 Langmuir/PSO [56]
AgNPs-functionalized HAP 159.11 Freundlich/PSO [57]

CS@GO-Hap composite 43.06 Freundlich/PSO [58]
Hydroxyapatite (HAp) 139 mg/g Freundlich/PSO [59]

ZnO/chitosan 227.3 Langmuir [60]
Ground nut shells charcoal (GNC) 117.6 Freundlich/PSO [34]

Eichhornia charcoal (EC) 56.8 Freundlich/PSO [34]
Polygorskite -700T 136.1 Freundlich/Elovich [61]

CS-HAP-CeO2 270.27 Langmuir/PSO This study

3.5. Thermodynamic Studies

To explain the effect of temperature on the CR adsorption over adsorbent and interpret
whether the adsorption process occurs spontaneously or not, thermodynamic parameters
including, free energy change (∆G◦), enthalpy change (∆H◦), and entropy change (∆S◦)
were calculated using the following Equations (12) and (13) [64]:

∆G◦ = −RT lnKc (12)

lnKc = −∆H
◦

RT
+

∆S
◦

R
(13)

where k is Kc = qe/Ce. The values of ∆H◦ and ∆S◦ were calculated from the slope and
intercept of the plot ln kc versus 1/T (Figure 9). The thermodynamic parameters are
summarized in Table 4. The negative values of ∆G◦ and ∆H◦ imply that the CR adsorption
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over CS-HAP-CeO2 heterostructure are spontaneous and exothermic [65]. The values of
∆G◦ slightly increased from −11.63 to −5.69 (kJ mol−1) with the rising temperature from
298 to 318 K, indicating the adsorption process is favored at lower temperatures [65]. The
∆S◦ negative value implies a decrease in the randomness of the solid-solution interface.
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Table 4. Thermodynamic parameters for the adsorption of CV on CS-HAP-CeO2 heterostruc-
ture adsorbent.

Co (mg/L) (−) ∆H◦ (kJ/mol) (−) ∆S◦ (J/mol.K)
(−) ∆G◦ (kJ/mol)

298 K 308 K 318 K

100 19.43 8.29 11.63 9.02 5.69

3.6. CR Dye Adsorption Mechanism

CS-HAP-CeO2 heterostructure adsorbent contains functional groups on their surfaces
such as phosphate, amino, and hydroxyl groups which are responsible for the binding of
the CR dye. According to the dissociation constant (pKa) of CR dye, when the pH text-
less (pKa = 4), the surfaces of both CS-HAP-CeO2 heterostructure and CR dye are positively
charged, representing an electrostatic repulsion between them. On the other hand, when
the pH > (pKa = 4), the CR dissociates into polar groups (SO3

−) along with the positive
charge of the –N=N+– group. The SO3

− group over CR surface adsorbs on positively
charged CS-HAP-CeO2 adsorbent by electrostatic attraction along with H-bonding. As pH
increases to 7, the removal efficiency of CR increased due to the decrease in the number
of positive charges in the CS-HAP-CeO2 heterostructure surface which led to the creation
of electrostatic attraction between the –N=N+– group of CR molecules and the negative
charge of CS-HAP-CeO2 heterostructure surface. The functional groups of CS-HAP-CeO2
heterostructure before/and after adsorbing CR dye were identified through FTIR analysis,
and the obtained results are shown in Figure 10. It was observed that the intensity of
O–H/NH2 stretching shifted from 3529 to 3382 cm−1 and the band associated with P-O
at 1038 cm−1 decreased in intensity and shifted to 1029 cm−1 after CR dye adsorption.
This is due to the interaction of –N=N+– and –NH2, –SO3H groups on the CR surface of
dye with PO4

−3 and O–H/NH2 groups on the surface of CS-HAP-CeO2 heterostructure
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through electrostatic attraction and H- bonding. The appearance of two new bands at 830
and 755 cm−1 after CR dye adsorption indicates the CR dye loaded successfully onto the
CS-HAP-CeO2 heterostructure surface. Therefore, the mechanism of adsorption of CR dye
onto CS-HAP-CeO2 heterostructure occurred by two mechanisms namely, electrostatic
interaction and H-bonding (Figure 11).
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3.7. Antimicrobial

The virgin HAP and CS-HAP-CeO2 heterostructure were also evaluated using vary-
ing amounts against E. coli [66,67]. The produced heterostructure proved reputable an-
timicrobial activity against E. coli (MIC-50 µg/mL). The effects are shown in Figure 12.
Alternatively, moderately trifling antibacterial achievement was detected with HAP at
equal concentrations. Obviously, less bacteriostatic outcome was found at small amounts
of HAP against E. coli, nonetheless improved activity was found with CS-HAP-CeO2
heterostructure. The greater activity of CS-HAP-CeO2 heterostructure was endorsed to
morphological topographies with large surface [68] and synergism [69] between HAP and
CeO2. The coating of CS also augmented in antimicrobial performance. The supposi-
tion about the antimicrobial action may be as: possibly at first HAP and CS-HAP-CeO2
heterostructure are interrelated with bacterial membrane, further disseminating into the
inner cell prompting an outflow by disruption of the content of cell. Previous studies have
described that nanocomposites via electrostatic attraction result in disruption of membrane,
quash enzymes, break bacteria, ultimately hampering protein synthesis [70]. By and large,
the bacteriostatic effect of HAP is correlated to liberation of OH− ions in culture broth.
Hydroxyl ions are tremendously oxidant free radicals which depict pronounced reactivity
toward biomolecules. Furthermore, their lethal influence on bacterial cells are collectively
allocated to aforesaid mechanisms [70].

Nanomaterials 2022, 12, x FOR PEER REVIEW 17 of 21 
 

 

3.7. Antimicrobial  
The virgin HAP and CS-HAP-CeO2 heterostructure were also evaluated using vary-

ing amounts against E. coli [66,67]. The produced heterostructure proved reputable anti-
microbial activity against E. coli (MIC-50 µg/mL). The effects are shown in Figure 12. Al-
ternatively, moderately trifling antibacterial achievement was detected with HAP at equal 
concentrations. Obviously, less bacteriostatic outcome was found at small amounts of 
HAP against E. coli, nonetheless improved activity was found with CS-HAP-CeO2 heter-
ostructure. The greater activity of CS-HAP-CeO2 heterostructure was endorsed to mor-
phological topographies with large surface [68] and synergism [69] between HAP and 
CeO2. The coating of CS also augmented in antimicrobial performance. The supposition 
about the antimicrobial action may be as: possibly at first HAP and CS-HAP-CeO2 heter-
ostructure are interrelated with bacterial membrane, further disseminating into the inner 
cell prompting an outflow by disruption of the content of cell. Previous studies have de-
scribed that nanocomposites via electrostatic attraction result in disruption of membrane, 
quash enzymes, break bacteria, ultimately hampering protein synthesis [70]. By and large, 
the bacteriostatic effect of HAP is correlated to liberation of OH− ions in culture broth. 
Hydroxyl ions are tremendously oxidant free radicals which depict pronounced reactivity 
toward biomolecules. Furthermore, their lethal influence on bacterial cells are collectively 
allocated to aforesaid mechanisms [70].  

 
Figure 12. Bar illustrations demonstrating E. coli supplemented with different amounts of HAP and 
CS-HAP-CeO2 heterostructure (peak enlargement indicates E. coli deprived of HAP and CS-HAP-
CeO2). Considerable difference (* p ≤ 0.05) was perceived between control and treatments. Substan-
tial variance in bacteriostatic effect with HAP and CS-HAP-CeO2 at high quantity was envisaged. * 
p ≤ 0.05, *** p ≤ 0.001 suggestively different from virgin culture. 

4. Conclusions 
In this paper, HAP and CS-HAP-CeO2 heterostructures were primed by hydrother-

mal method. The physicochemical data confirms efficacious formation of CS-HAP-CeO2 

heterostructure. The adsorption results of CR dyes indicated outstanding efficiency of CS-

Figure 12. Bar illustrations demonstrating E. coli supplemented with different amounts of HAP
and CS-HAP-CeO2 heterostructure (peak enlargement indicates E. coli deprived of HAP and CS-
HAP-CeO2). Considerable difference (* p ≤ 0.05) was perceived between control and treatments.
Substantial variance in bacteriostatic effect with HAP and CS-HAP-CeO2 at high quantity was
envisaged. * p ≤ 0.05, *** p ≤ 0.001 suggestively different from virgin culture.

4. Conclusions

In this paper, HAP and CS-HAP-CeO2 heterostructures were primed by hydrother-
mal method. The physicochemical data confirms efficacious formation of CS-HAP-CeO2
heterostructure. The adsorption results of CR dyes indicated outstanding efficiency of
CS-HAP-CeO2 adsorbent. Additionally, the synthesized pristine and CS-HAP-CeO2 het-
erostructures unveiled good recyclable use and stability. The enhanced adsorption and
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antibacterial action of CS-HAP-CeO2 was mainly attributed to combined influence of CS,
HAP and CeO2. Conclusively, outcomes of this study endorse an exceptionally capable
adsorbent for decontamination of effluents; moreover, helps in reutilization of wastes of
Baha city and meritoriously remove the environmental burden and govern the remediation
procedure of the pathogenic diseases.
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