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Abstract: Sliding electrical contacts need to be lubricated by conductive lubricants to perform low
energy dissipation, high reliability, and long service life. This work studied the thermal stability, anti-
corrosion capacity, and conductive, and tribological behaviors of several solid additives in multiply
alkylated cyclopentanes (MACs), including carbon nanotubes (CNTs), multilayer graphene (MG), and
silver microparticles. The results showed that all the additives possessed favorable thermal stability
and corrosion resistance; in particular, CNTs and MG exhibited lower and more stable electrical
contact resistance (ECR) and better lubricity abilities than Ag microparticles. Moreover, based on the
characterization of the worn surfaces and the film thickness calculation, the favorable conductive and
tribological properties of CNTs and MG were related to the high conductivity and specific structure
of the additives and the good chemical inertness of MACs.
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1. Introduction

A sliding electrical connector is the key component in electromechanical equipment
such as electrical switches, high-speed railways, and power transmission systems, and the
main function is to connect, break, or transmit electrical energy or signals [1–3]. Given
the increasing number of sliding electrical connectors during the process of electrification
engineering, the requirement for reliability and service life is also rising [4]. In the past few
decades, attention has been focused on modifying materials to improve the tribological
properties and reduce electrical contact resistance (ECR) [5–7]. Even though a series
of metal-based self-lubricating materials have been explored as contact materials, these
problems still exist [5–7]. Recent studies show that it is possible to solve these problems by
the usage of lubricants [8–10].

Focusing attention on the lubricants that are employed to lubricate sliding electrical
connectors, they not only need to have excellent electrical conductivity to reduce the
transmission loss of energy or signal, but also need to have excellent tribological properties
to reduce the wear of sliding electrical connectors and prolong their service life [8–10].
Lubricants are complex mixtures consisting of a base oil/grease and highly specialized
chemicals, namely additives. The base oil/grease contributes the fundamental properties,
while the additive imparts additional characteristics to the final products. Since base
oil/grease usually has poor conductivity, conductive additives should be utilized to impart
good conductivity to lubricants. Noble metals such as gold, silver, and palladium may
be good candidates to enhance the conductive and tribological properties. They could
deposit on the contact surfaces to generate a film, thereby enhancing the conductive and
tribological behaviors of the sliding electrical contacts [10–12]. However, due to the high
cost, the noble metals are not suitable for massive applications [8,9].
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Owing to the rapid development of nanotechnology, carbon nanotubes (CNTs) and
graphene were found one after another and they have attracted intensive attention across
scientific and industrial fields. Graphene is a monolayer of carbon’s hexagon allotrope π

stacked together, and CNTs are thought of as rolled sheets of graphene [13–16]. They all
have excellent conductivity, novel thermal stability, outstanding tribological properties,
and so forth [15,17,18]. Meanwhile, due to their large theoretical specific surface area (SSA),
they may generate many contact points in lubricants, thereby improving conductivity [8,9].
Therefore, CNTs and graphene hold great promise as conductive additives in lubricants to
lubricate electrical contacts.

From the previous research, the ECR is measured under a relatively low current and
then is simply used as an indicator to assess the boundary lubrication film [19–21]. There
is no excessive attention paid to the magnitudes of ECR during the friction process. On
the electrical performances of connectors subjected to friction, the wear variation is not the
most significant aspect but the ECR [22]. In addition, some research has also indicated that
the stability of the conductive and tribological behaviors seriously affects the performance
of a sliding electrical contact [5,23]. At present, much of the literature has reported that
CNTs and graphene all have excellent electrical conductivity and tribological properties.
However, there are few reports regarding the usage of CNTs and graphene as additives to
prepare conductive lubricants, and investigating their conductive and tribological behaviors
and related mechanisms under current-carrying friction conditions.

In this work, multiply alkylated cyclopentanes (MACs) are used as the base oil due
to their impressive properties including chemical inertness, thermal stability, tribological
properties, and so forth [24–26]. The ECR and tribological properties of CNTs, multilayer
graphene (MG), and Ag in MACs are investigated under different loads and currents. The
thermal stability and corrosion resistance of lubricants are also characterized. Meanwhile,
the stability of the conductive and tribological behaviors are evaluated by the standard
deviation (SD). After the friction test, the conductive and lubrication mechanisms are
analyzed and discussed.

2. Experiment
2.1. Materials

MACs and multilayer graphene (MG, SSA: 647 m2/g) was synthesized by the State
Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese
Academy of Sciences (Lanzhou, China). Table 1 lists the typical properties of MACs. CNTs
(outer diameter: ~50 nm, SSA: 173 m2/g) and Ag microparticles (diameter: ~1 µm, SSA:
6 m2/g) were purchased from Chengdu Organic Chemicals (Chengdu, China). In this
study, 0.2 wt% additives were uniformly dispersed in MACs by sonication for 30 min.

Table 1. Typical properties of MACs.

Item
Kinematic Viscosity

(mm2/s) Viscosity Index
Pressure-Viscosity

Coefficient
(GPa−1, 29 ◦C)

Dynamic
Viscosity

(Pa·s, 30 ◦C)40 ◦C 100 ◦C

MACs 112 14.7 135 11.6 0.0948

2.2. Characterization of the Materials

A Q500 thermogravimetric analyzer (TGA, TA Instruments, New Castle, DE, USA)
was used to characterize the thermal stability of lubricants. The heating rate was 10 ◦C/min
and the atmosphere condition was air. The procedure of the corrosion test was as follows:
At first, a piece of polished copper was immersed in lubricant and heated at 150 ◦C for 24 h.
After that, the copper block was cleaned with ethanol, and then the corrosion resistance
was compared with the polished copper block.
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2.3. Tribological Tests

The current-carrying tribological tests were achieved on a friction apparatus (MFT-
R4000). Figure 1 gives the picture and schematic diagram of the friction apparatus. The
current and voltage of the friction interfaces was monitored and recorded in live time
during the friction process. The upper ball (diameter, 5 mm) slid against the lower disc
(20 mm × 20 mm × 5 mm) with a frequency of 2 Hz and an amplitude of 5 mm. The ball
and disc were all made of copper (CuZn40, purity, >99.99%, hardness, 100–120 Hv). The
load and voltage was set as three combinations including 5 N–500 mV, 5 N–1500 mV, and
20 N–1500 mV. All the discs and balls were polished with diamond paste to acquire a surface
roughness of about 0.05 µm. The relative humidity and temperature was 30% and 25 ◦C,
respectively. Before each tribological test, the balls and discs were ultrasonically washed
with acetone for 10 min and then the friction region was filled with about 0.5 g lubricant.
The curves of the coefficient of friction (COF) were recorded and every tribological test was
repeated three times to ensure the accuracy of the experimental data. After the friction test,
the electrical contact resistance (ECR) and the standard deviation (SD) of COFs and ECR
were calculated, respectively.
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Figure 1. Picture (a) and schematic diagram (b) of the friction apparatus.

2.4. Surface Analysis

All the discs were ultrasonically washed with acetone for 10 min. Then, a high-power
optical microscope was used to measure the wear width. The morphology and element
composition of the worn surface were obtained using a scanning electron microscope
(SEM, EVO-18, Zeiss, Oberkochen, Germany) and an energy dispersive X-ray analyzer
(EDS, Bruker, Karlsruhe, Germany). A PHI-5702 multifunctional X-ray photoelectron
spectrometer (XPS, Physical Electronics, inc., Washington, D.C., WA, USA) was used to
probe the elements’ chemical states on the worn surface. The binding energy of O1s is
531.0 eV, which was used as the reference.

3. Results and Discussion
3.1. Results

The TGA curves of MACs and additives are shown in Figure 2. MACs have a de-
composition temperature of approximately 285 ◦C. Ag has a slowly increasing mass from
about 300 ◦C, indicating that Ag is oxidized under a relatively high temperature. CNTs and
MG start to decompose at about 220 ◦C, which is attributed to the pyrolysis of the carbon
backbone and the removal of labile oxygen-containing functional groups [27,28]. In some
severe cases, electrical contacts can have a temperature as high as 150 ◦C [29,30]. Herein,
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all the samples exhibited good thermal stability to meet the requirement because they have
a decomposition temperature higher than 200 ◦C.

Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 12 
 

 

carbon backbone and the removal of labile oxygen-containing functional groups [27,28]. 
In some severe cases, electrical contacts can have a temperature as high as 150 °C [29,30]. 
Herein, all the samples exhibited good thermal stability to meet the requirement because 
they have a decomposition temperature higher than 200 °C. 

100 200 300 400 500

0

30

60

90

120

150

 

W
ei

gh
t (

%
)

Temperature (°C)

 MACs  Ag  CNTs  MG

 
Figure 2. TGA curves of MACs and additives. 

The pictures of the copper blocks after the corrosion test are shown in Figure 3. In 
general, compared with the polished copper, if the color of copper changed obviously, it 
indicated that this lubricant had a certain corrosion performance. Here, compared with 
the copper block before the corrosion test, the copper blocks immersed in a different lub-
ricants all had no obvious corrosion phenomenon, indicating that the lubricants had good 
corrosion resistance ability. 

 
Figure 3. Copper blocks (20 × 20 × 5 mm) after corrosion test. 

Figure 4a,b give the COF and ECR curves and the SD. It can be seen that all the ad-
ditives in MACs not only significantly lower the COF and ECR, but also make them more 
stable. The lowest COF and ECR values are obtained by MACs + MG, reducing the COF 
and ECR by approximately 64% and 20% compared with MACs, respectively. Figure 4c 
gives the wear widths of the wear scars under the lubrication of different lubricants. Com-
pared with pure MACs, MACs containing CNTs or MG all could reduce the wear widths 
by about 52% compared with MACs, indicating a superior anti-wear property. 

Figure 2. TGA curves of MACs and additives.

The pictures of the copper blocks after the corrosion test are shown in Figure 3. In
general, compared with the polished copper, if the color of copper changed obviously, it
indicated that this lubricant had a certain corrosion performance. Here, compared with
the copper block before the corrosion test, the copper blocks immersed in a different
lubricants all had no obvious corrosion phenomenon, indicating that the lubricants had
good corrosion resistance ability.
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Figure 3. Copper blocks (20 × 20 × 5 mm) after corrosion test.

Figure 4a,b give the COF and ECR curves and the SD. It can be seen that all the
additives in MACs not only significantly lower the COF and ECR, but also make them more
stable. The lowest COF and ECR values are obtained by MACs + MG, reducing the COF and
ECR by approximately 64% and 20% compared with MACs, respectively. Figure 4c gives
the wear widths of the wear scars under the lubrication of different lubricants. Compared
with pure MACs, MACs containing CNTs or MG all could reduce the wear widths by about
52% compared with MACs, indicating a superior anti-wear property.
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5 N and 500 mV at 2 Hz.

Figure 5 presents the COF, ECR, SD, and wear widths under 5 N and 1500 mV at 2 Hz.
As can be seen from Figure 5a,b, though the voltage is increased by ten times up to 1500 mV,
CNTs and MG still exhibited an outstandingly low and stable COF and ECR throughout
the whole friction process. The addition of Ag in MACs also made the COF and ECR lower.
However, the SD values were relatively large. The wear widths of the wear scars depicted
in Figure 5c suggest that the wear resistance ability of MACs was also greatly improved by
adding Ag, CNTs, or MG.
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Figure 5. (a) COF and ECR, (b) the corresponding SD, and (c) wear widths on copper discs under
5 N and 1500 mV at 2 Hz.

Figure 6 gives the experimental results under 20 N and 1500 mV at 2 Hz. As can be
seen from Figure 6a, MACs containing additives all reduced the COF by more than 40%
compared with MACs. However, Figure 6b shows that Ag exhibited a higher SD value of
COF than others, indicating the friction was not stable. CNTs and MG in MACs exhibited
low and stable ECR, indicating good conductive and friction reduction abilities. Figure 6c
depicts that MACs containing CNTs or MG had lower wear widths than pure MACs and
MACs + Ag, demonstrating a superior wear-resistant property.
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3.2. Discussion

To study the conductive and tribological mechanisms of these additives, several
surface characterizations were employed. The morphologies of the worn surfaces under
the lubrication of different lubricants were obtained by an SEM (Figure 7). The worn
surface (Figure 7a,a1) lubricated by pure MACs was wider and rougher. There were a lot of
deep furrows and spalling dominated by abrasive and fatigue wear on the worn surface,
indicating severe wear was taking place under this condition. Figure 7b shows that Ag
did not significantly reduce the wear widths. Figure 7b1 suggests that the worn surface
lubricated by MACs + Ag had some shallow grooves and adhesion regions, which may be
due to the abrasive wear and Ag particles depositing on the worn surface. Figure 7c,c1,d,d1
shows that the addition of CNTs or MG in MACs can reduce the wear widths and make
the worn surfaces smoother, as compared with pure MACs, exhibiting an outstanding
wear-resistance ability.

The chemical state of elements on the worn surface is crucial to understanding the
conductive and lubricating mechanisms; therefore, XPS is employed and Figure 8 gives
the XPS spectra of O1s, C1s, Cu2p, and Ag3d. The XPS of O1s (Figure 8a) has two peaks at
531.0 eV and 532.4 eV, which belong to carbon oxides and copper oxides [31,32]. The C1s
peaks at 284.6 eV and 286.2 eV shown in Figure 8b belongs to –C-C, –C-H and –C-O bonds,
which are identified as derived compounds the from the lubricants [31]. Figure 8c depicts
that the XPS spectra of Cu2p has peaks at 932.6 eV, 952.4 eV and 934.2 eV. Combining the
XPS peaks of O1s, it can be inferred that there are metallic copper and copper oxides on
the friction surface [32–34]. Figure 8d depicts the XPS spectra of Ag3d having sharp peaks
at 368.1, 365.1 eV and 374.2 eV, which are assigned to Ag [20,35]. Combining the TGA
result that Ag is oxidized under a high temperature of about 300 ◦C, it can be confirmed
that metal Ag is deposited on the copper worn surface to enhance the conductive and
lubrication performances. Figure 9 gives the EDS surface distribution images of Ag and
C elements on the copper worn surfaces. It can be seen that Ag or C elements achieved
high-density coverage on the copper worn surface. Under the action of pressure, solid
additives can fill in the valley of surfaces and deposit on the friction surface to increase the
contact area, which can reduce friction and wear. EDS characterization of the worn surfaces
further provides direct evidence for the generation of a deposited lubricating film on the
worn surface. XPS and EDS analysis show that a protective film is formed on the copper
worn surface, which enhance the conductive and tribological behaviors throughout the
friction test.

Under different loads and applied voltages, the MACs containing additives greatly
make the COF, ECR, and wear width lower and more stable, as compared with pure MACs.
Meanwhile, it can be found that different additives exhibit distinguished conductive and
tribological behaviors. Many researches have proposed the mechanisms of solid particles
as additives including the rolling effect, mending effect, polishing effect, protective film,
and the others [31,36,37]. Herein, combined with the experimental results and analysis,
the conductive and lubrication mechanisms for MACs containing Ag, CNTs, or MG are
discussed in detail.

The similar mechanisms of Ag, CNTs, and MG in MACs can be proposed in the
following two aspects: On one hand, the XPS analysis suggests that the chemical reaction
protective film composed of carbon oxides, copper oxides, and so on, are all generated
on the friction surfaces to improve the tribological properties. On the other hand, based
on the EDS analysis and the model proposed by De-Xing Peng [38], solid additives could
achieve the mending effect by filling the interspace of contact surfaces and depositing to
act as a physical film. This physical film could increase the real contact area, bear the load
from the ball, and disperse stress concentration, thereby improving the conductive and
tribological properties.
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Figure 7. Morphologies of the worn surfaces under lubrication of (a,a1) MACs, (b,b1) MACs + Ag,
(c,c1) MACs + CNTs, (d,d1) MACs + MG under 20 N and 1500 mV at 2 Hz.
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In addition to these two aspects, a large number of experimental analyses suggest
that spherical or rod-shaped nanoparticles may perform the rolling effect under boundary
lubrication [38–40]. However, the rolling effect is dependent on the size of the additive and
the thickness of the lubrication film [40]. Here, the film thickness h can be approximately
calculated according to the H-D Equation (1) [41].

h = 2.69
G0.53RU0.67

W0.067

(
1− 0.61e−0.73k

)
(1)

1
E′

=
1
2
(

1− v2
ball

Eball
+

1− v2
disc

Edisc
) (2)

where G = αE′, U = nu/E′R, and W = w/E′R2. Here, E′ is the equivalent elastic modulus of
the two friction materials, α is the pressure-viscosity coefficient (PVC) (11.6 GPa−1), n refers
to the dynamic viscosity (DV) (0.0948 Pa·s), w is the applied load (5 N), u is the sliding



Nanomaterials 2022, 12, 2707 9 of 11

speed (0.02 m/s), k = 1 is a coefficient, R is the effective radius, and v and E are the Poisson’s
ratio and elastic modulus [42].

The contact area could be considered as the Hertz elastic deformation region, thus the
relationship between wear scar width and the R can be described by Equation (3).

d
2
= (

3Rw
4E′′

)
1/3

(3)

Thus, R can be calculated by Equation (4) [39].

R =
E′′ d3

6w
(4)

where E′′ is the effective elastic modulus of the two friction materials, which could be
obtained by Equation (5).

1
E′′

=
1− v2

ball
Eball

+
1− v2

disc
Edisc

(5)

During the friction process under 5 N and 500 mV, the temperature of the friction
fluctuated between 28 and 45 ◦C, which was measured using an infrared thermometer. In
this study, the PVC and DV values of MACs at 30 ◦C are about 11.6 GPa−1 and 0.0948 Pa·s,
respectively. After using the appropriate values of material properties and physical con-
stants, the lubrication film thickness under 5 N at about 30 ◦C was determined to be
approximately 34.7 nm, which could be used as a benchmark to illustrate the possible
lubrication mechanisms.

The Ag and CNTs used in this study had a diameter of about 1 µm and 50 nm,
respectively. As reported by Rapoport [43], spherical nanoparticles are more likely to
perform a rolling effect when the size of the particle is close to the thickness of the lubrication
film. Apparently, under the load of 5 N and the temperature of 30 ◦C, the rolling effect is not
the dominant lubrication mechanism for Ag and CNTs. As known, increasing temperature
leads to a reduction in PVC and DV values. According to Equation (3), reduced PVC and
DV values cause a decrease in film thickness. Meanwhile, as reported by Xie [40], the
lubrication film thickness may decrease with the increasing load. Therefore, under the
other tested condition, where the temperature is higher than 30 ◦C and the load is higher
than 5 N, the lubrication film thickness was lower than 34.7 nm. Thus, Ag and CNTs
are more difficult to perform the rolling effect in the friction process. The above analysis
suggests that the dominant lubrication mechanism for Ag and CNTs mainly depends on
the “mending effect”, as mentioned above.

Our previous research suggests that when the mass fraction of solid additives are the
same, the additives with a smaller size and higher specific surface area (SSA) could generate
more conductive paths and form a denser protective film, thereby contributing to a better
conductive and tribological performances [8,9]. CNTs (50 nm, 173 m2/g) have a smaller
size and higher SSA than Ag (1 µm, 6 m2/g); therefore, CNTs could exhibit lower ECR and
better tribological properties than Ag under all the tested conditions. Ag has a diameter
of 1 µm which is much larger than the film thickness. When performing the mending
effect, some Ag particles may also act as abrasive particles during the friction process. The
worn surface lubricated by MACs + Ag shown in Figure 7b1 has obvious shallow grooves
generated by abrasive wear, which may be consistent with this view. Therefore, Ag exhibits
a higher and more fluctuant ECR and COF than CNTs.

In terms of MG, it is well known that platelet-shaped particles are less likely to roll
between the contact interfaces, as compared with spherical or rod-shaped particles; thus,
the lubricity mechanisms of MG are related to its special structure [40]. Because MG has a
two-dimensional layered structure and the layers are linked by weak van der Waals bonds,
it could act as a “third body” to decrease the direct contact between friction pairs and form
an easily shearing lubricating film on the friction surfaces, thereby greatly enhancing the
tribological properties [17,18]. MG exhibits a lower ECR than CNTs because MG has a larger
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specific surface area (647 m2/g). As depicted in Figure 9c, MG dispersed in MACs could
generate more contact points to form conductive paths, resulting in a better conductive
performance during the friction process.

4. Conclusions

A series of lubricants were prepared by blending MACs with conductive additives
including Ag, CNTs, or MG. TGA and corrosion tests show that they all have good thermal
stability and anti-corrosion properties. Current-carrying friction tests show that CNTs
and MG greatly reduce and stabilize the COF, ECR, and wear width, as compared with
Ag. Based on SEM, EDS, XPS analysis, and the lubrication film thickness calculation, the
preferable conductive and tribological performances mainly depended on the synergistic
effect such as the mending effect, the protective film, and so on. Given the good conductive
and tribological behaviors, MACs containing CNTs or MG may hold great promise as
lubricants for the sliding electrical contact.
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