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Abstract: Natural sources of green energy include sunshine, water, biomass, geothermal heat, and
wind. These energies are alternate forms of electrical energy that do not rely on fossil fuels. Green
energy is environmentally benign, as it avoids the generation of greenhouse gases and pollutants.
Various systems and equipment have been utilized to gather natural energy. However, most tech-
nologies need a huge amount of infrastructure and expensive equipment in order to power electronic
gadgets, smart sensors, and wearable devices. Nanogenerators have recently emerged as an alterna-
tive technique for collecting energy from both natural and artificial sources, with significant benefits
such as light weight, low-cost production, simple operation, easy signal processing, and low-cost
materials. These nanogenerators might power electronic components and wearable devices used in a
variety of applications such as telecommunications, the medical sector, the military and automotive
industries, and internet of things (IoT) devices. We describe new research on the performance of
nanogenerators employing several green energy acquisition processes such as piezoelectric, electro-
magnetic, thermoelectric, and triboelectric. Furthermore, the materials, applications, challenges, and
future prospects of several nanogenerators are discussed.

Keywords: energy harvesting; green energy; hybrid nanogenerators; piezoelectric nanogenerator;
thermoelectric nanogenerators; triboelectric nanogenerator

1. Introduction

The internet of things (IoT) gadgets, smart sensors, internet of medical things (IoMT)
for healthcare systems, and consumer electronics devices have seen significant expansion
in recent years. These devices often employ traditional batteries, which have drawbacks
owing to their huge size, finite lifetime, and harmful components that contaminate the
environment [1-3]. This issue with traditional batteries may restrict the efficiency of future
IoT gadgets, smart sensors, and wearable devices. Thus, new eco-friendly alternative
technologies to power these gadgets are current and future research challenges. Recent
studies [4-8] have described nanogenerators capable of harvesting green energy by several
transduction methods such as the piezoelectric, triboelectric, electromagnetic, and thermo-
electric effects. The nanogenerators can harvest green energy from natural and artificial
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sources from wind, water, thermal, solar, mechanical vibrations, and motions of the human
body [9-13]. These nanogenerators have unique features such as light weight, low-cost
fabrication, tiny size, simple performance and signal processing, high power density, and a
longer lifetime when compared to conventional batteries. Thus, nanogenerators provide
a cost-effective alternative for powering future IoT devices, smart sensors, and consumer
electronics products based on green energy harvesting from the environment. Further-
more, nanogenerators may be used to drive self-powered sensors for applications ranging
from telecommunications to health monitoring, the automotive and military industries,
agriculture, aerospace, and smart cities [14-19].

Most commercial low-power electronic devices require rectifier circuits to convert the
variable output current of nanogenerators into direct current (DC). In addition, several
researchers have used rectifiers coupled with antennas to design rectennas, which can
harvest radio frequency (RF) energy and convert it to direct current [20-25]. Supercapacitors
can also be integrated into nanogenerators to store their output power [26,27]. Thus, rectifier
circuits and supercapacitors can enable the nanogenerators to have a consistent output
power. In addition, hybrid nanogenerators may gather multiple green energy sources
using two or more acquisition processes [28-31]. Due to this performance characteristic,
hybrid nanogenerators can increase their output power densities in comparison to a single
nanogenerator. The hybrid nanogenerators can power electronic devices for longer periods
of time by utilizing various green energy sources (e.g., wind, heat, rain, solar radiation, and
mechanical vibrations). These hybrid nanogenerators may be capable of harvesting a mix
of green energies to continuously power electronics and sensors. This might enable the
conversion of accessible green energy sources into electricity both during the day and at
night, as well as in both indoor and outdoor environments.

More research is needed to increase the performance, stability, and reliability of
nanogenerators. For instance, optimization methods may be utilized in the design of
nano-generators for each individual application to forecast the best electrical and structural
configurations and material selection. This optimized nanogenerator design can increase
output power density and service time. Another idea is to employ wearable and flexible
materials to create nanogenerators that are adaptive to the human body and gather biome-
chanical energy [32,33]. Additionally, effective packaging solutions for nanogenerators
are necessary to improve their wear resistance and resistance to high temperature and
humidity fluctuations. Better packing materials and the usage of long-lasting materials for
nanogenerators can improve their reliability. The sensitivity of rectification circuits used
in nanogenerators can be improved in the electronic section to produce a higher output
DC power. Furthermore, these circuits may be manufactured utilizing microelectronic
technology to reduce their size [34,35].

We present new research on nanogenerators that transform various green energy
sources into electricity. This review looks at the principles of operation, materials, per-
formance, and applications of several nanogenerators, including multiple green energy
acquisition processes. The performance advantages of hybrid nanogenerators are also
explored. We also consider the problems and views of nanogenerators, including their
design phase, materials, energy storage, fabrication method, and dependability. Nanogener-
ators technology is an alternative solution for replacing traditional batteries and powering
future electronic devices and sensors in the IoT and military industries, IoMT for healthcare
systems, consumer electronics, telecommunications, automotive sector, robotics, wearable
optoelectronics, and other fields.

2. Operation Principle
2.1. Vibration Energy

The vibration energy from the environment can be harvested using nanogenerators
with transduction mechanisms such as piezoelectric, electromagnetic, triboelectric, and
piezotronic effects. For instance, these nanogenerator types can convert mechanical vibra-
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tions caused by the wind effect, sound, water waves, human body motion, machines, and
vehicles into electrical energy.

2.1.1. Piezoelectric Nanogenerators

The piezoelectric nanogenerators (PENGs) use the piezoelectric effect to capture green
energy from ocean water waves, wind, biomechanical movements, and environmental
mechanical vibrations. The output voltage of this type of nanogenerator is affected by me-
chanical deformations and the parameters of its piezoelectric layer. Mechanical vibrations
in the environment can induce varied deformations in the piezoelectric nano-generators
that generate the AC output voltage. A piezoelectric layer, a substrate, and two electrodes
make up these nanogenerators. PENGs feature a basic structural design, easy performance,
a simple construction method, high stability, and a low cost [36—44].

2.1.2. Electromagnetic Nanogenerators

Electromagnetic generators (EMGs) employ magnetic materials and coils to function
according to the Faraday law. These generators may convert the kinetic energy of flowing
water into electricity [45]. This wave flow is utilized to vary the location of the magnet
material relative to the coil, resulting in a changing magnetic field that induces a voltage
in the coil. However, as compared to triboelectric nanogenerators, these generators can
have a larger volume and weight. Furthermore, EMGs require support structures that let
them float on the water’s surface [46]. The performance of electromagnetic nanogenerators
is determined by the rate of change of the magnetic flux. EMGs can be made to function
at frequencies comparable to those of ocean waves to scavenge energy from them. Ocean
waves move randomly at low frequencies of roughly 1 Hz [47]. The EMGs’ performance
is limited by their low frequency. Due to wind sources and environmental mechanical
vibrations, which may function at higher frequencies, EMGs are ideal for scavenging
green energy.

2.1.3. Triboelectricity Nanogenerators

Triboelectric nanogenerators (TENGs) may gather green energy from irregular sur-
roundings at low frequencies by connecting contact electrification with electrostatic in-
duction. Blue energy, for example, may be extracted from ocean wave motion, which is
fundamentally random and travels at low frequencies (near to 1 Hz) [48—60]. The benefits
of triboelectric nanogenerators are their small weight, low cost, simple operation prin-
ciple, and lack of sophisticated production [61-64]. To attain the highest performance,
the triboelectric materials and electro-mechanical designs of the nanogenerators must be
optimized [65-71]. As a result, optimizing the design of triboelectric nanogenerators is
critical for improving the conversion of green energy into electric energy.

TENGs may be configured to function in four basic modes (Figure 1): vertical contact-
separation (CS), lateral sliding (LS), single-electrode (SE), and freestanding triboelectric-
layer (FSTL). TENGs usually require two triboelectric surfaces and two electrodes. Electron
attraction between two triboelectric surfaces creates an electrostatic charge transfer from one
surface to another in these operational modes. The displacement of the triboelectric layers
changes their initial electrostatic state, resulting in an electric potential difference between
the layers. The potential difference drives the current through the external load to balance
the electrostatic state. The movement of the triboelectric layer in the opposite direction will
generate a difference in the current flow. TENGs can therefore have alternating current
(AC) voltages between their two output electrodes, depending on the triboelectric material
type, operating mechanism, and green energy source.

2.1.4. Piezotronic Nanogenerators

The piezotronic nanogenerators harvest low-frequency vibration/friction energy into
electricity by using the linked piezoelectric and semiconducting capabilities of nanowires/
nanobelts, as well as the influence of a Schottky barrier at the metal-semiconductor [73,74].
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These nanogenerators might be incorporated into textile strands to recycle energy generated
by human movement. Thus, the piezoelectronic nanogenerator is a potentially useful
technology for harvesting /recycling energy from the environment to power self-powered
nanodevices that may be operated wirelessly and remotely. This technique will enable self-
powered wireless nanosystems and nanodevices to have a sustained energy supply [75].

T —— . (b)

/| Vertical contact-separation N Linear sliding mode

~
¥\ Freestanding triboelectric-layer
mode

Figure 1. Several potential applications of TENGs using different operational modes: (a) vertical
contact-separation, (b) linear sliding, (c) single-electrode, and (d) freestanding triboelectric-layer.
Reprinted with permission from [72]. Copyright ©2014, Royal Society of Chemistry.

2.2. Thermal Energy

Thermoelectric and pyroelectric nanogenerators can transform thermal energy from
the environment into electrical energy to power electronic devices.

Thermoelectric and Pyroelectric Nanogenerators

Another sort of green energy that may be obtained from the environment is thermal
energy. This energy may be transformed into electric energy and used to power low-power
electronic devices employing thermoelectric nanogenerators (TEGs) [76]. TEGs produce
electricity by using the Seebeck effect to scavenge thermal energy caused by tempera-
ture differences between two thermoelectric (TE) materials (Figure 2). This temperature
differential causes charge carriers to migrate from a high-temperature TE material to a low-
temperature TE material [77,78]. A TEG’s voltage output is proportional to the temperature
gradient. TEGs, on the other hand, need significant temperature gradients across TE mate-
rials. TEGs are classified into two types: rigid thermoelectric nanogenerators and flexible
thermoelectric nanogenerators, with the latter depending on their deformation properties.
Stretchable, compressible, collapsible, lightweight, tiny in volume, affordable, and simple
are advantages of TEGs [79-81]. Flexible TEGs have the potential to be employed in waste
heat recovery [82-84], portable electronics [85-87], and human health monitoring due to
their properties [88-90].

Pyroelectric nanogenerators (PyENGs) use the variation in spontaneous polarization
inside pyroelectric materials to transform heat energy into electric energy. This is generated
by oscillations of electric dipoles caused by a change in time-dependent temperature [91,92].
The creation of electric current through materials having a non-center symmetrical crys-
talline structure when subjected to a time-dependent temperature gradient is referred to as
the pyroelectric effect [93,94].
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Figure 2. Reduced graphene oxide poly(3,4-ethylenedioxythiophene): poly (styrenesulfonate) (rGO-
PEDQOT:PSS) film-coated fabric of the flexible and washable thermoelectric nanogenerator fabricated
by Khoso et al. [78]. This nanogenerator has potential application for harvesting green energy from
human body heat. FESEM images with magnifications of (a) 500 pm and (b) 250 um rGO-coated
fabric and (c) 200 pm of rGO-PEDPT:PSS coated fabric. (d—f) Color mapping of SEM images’ infrared
rendering. Reprinted with permission from [78]. Copyright ©2021, Royal Society of Chemistry.

Pyroelectric nanogenerators have been identified as the energy collectors of the future,
with the potential to be a viable energy technology for scavenging thermal energy in
everyday life [94]. Thus, PyENGs and TEGs may have significant uses in powering future
intelligent electronic sensors and IoT-connected wearable devices. More investigations on
inorganic and organic materials, structure, performance, and reliability are required for the
development of these nanogenerators.

2.3. Hybrid Nanogenerators

In the meantime, hybrid nanogenerators may harvest/recycle green energy from the
environment by using several energy acquisition mechanisms or numerous connected
nanogenerators with the same energy acquisition method (Figure 3). In hybrid nano-
generators, for example, piezoelectric, pyroelectric, triboelectric, and electromagnetic
phenomena can be used. In comparison to individual nanogenerators, this nanogen-
erator type can provide high and efficient power density [95]. Recent research has led to
the development of hybrid nanogenerators based on piezoelectric—pyroelectric [96-98],
triboelectric-piezoelectric [31,99-117], electromagnetic-triboelectric [118-132], triboelectric—
piezoelectric-pyroelectric [133-136], triboelectric—piezoelectric—electromagnetic [137-148],
and photovoltaic-triboelectric effect [149-154].
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Figure 3. Potential applications of hybrid nanogenerators.

3. Performance and Applications

Hu et al. [155] designed an eco-friendly fabric-based TENG for converting biomechani-
cal energy into electric energy, which can then be utilized to drive self-powered gadgets and
wearable electronic sensors. This energy may be acquired by everyday human movements
including leaping, jogging, walking, arms lifting, arms bending, and leg lifting. This TENG
is made up of cellulose-based conductive macrofibers with key properties such as being
super-strong, biodegradable, and washable. As illustrated in Figure 4, these microfibers
were created by wet-stretching and wet-twisting bacterial cellulose (BC) hydro-gel with
polypyrrole (PPy) and carbon nanotubes (CNTs). The microfibers were woven into a nylon
fabric to generate the cellulose-based /nylon macrofiber. In this scenario, nylon serves
as a positive triboelectric material, and a silver thin membrane is attached to a PDMS
thin membrane to form a PDMS/silver film. As a result, the TENG features a cellulose-
based /nylon macrofiber fabric that acts as a friction layer/electrode and a PDMS/silver
layer that acts as a second friction film/electrode. The proposed microfibers demonstrated
great tensile strength (449 MPa), strong electrical conductivity (5.32 Sem~!), and good
stability. The highest open-circuit voltage of the TENG is 170 V, the short-circuit current is
0.8 pA, and the output power is 352 uW. (Figure 5). Furthermore, these TENG may function
as self-powered devices for tracking human body motions (Figure 6).

Zhao et al. [156] produced a triboelectric—electromagnetic hybrid nanogenerator
(TEHG) that can gather wind energy while also powering electronic gadgets. This nano-
generator is made up of a TENG that operates in the sliding independent triboelectric-layer
mode and an EMG that operates in the rotating mode. Figure 7 depicts the structure and
materials of the TEHG, which is made up of a rotor and a stator. The stator has a cylindrical
shell that is sealed, while the rotor has a disk and a projecting cylinder. This cylinder fea-
tures an inside cylinder that can accommodate wind cups to convert environmental wind
energy into mechanical energy. The cylindrical magnets of the EMG are positioned in ten
cylindrical grooves on the upper surface of the rotor disk. The completed TEHG structure
has an outside diameter of 80 mm and a height of 20 mm. The TENG employs PTFE and
nylon as triboelectric layers that are in touch with one another. The PTFE functions as a
0.3 mm thick negative friction layer, while the nylon acts as a positive friction substance. Six
aluminum electrodes are joined as interdigital electrodes on the nylon layer. Furthermore,
the bottom of the shell has nine grooves for installing the copper coils of the EMG. These
coils are wired in series to boost the output signal. The rotation of the TEHG structure
caused by the wind source causes surface charge transfer between the two triboelectric
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(a)

(b)

layers. During the TEHG rotation process, an alternating current with a changing direction
is produced. Figure 8 displays the TEHG’s output open-circuit voltage and short-circuit
current readings at various rotation speeds. Peak-to-peak voltage and peak-to-peak current
of the TENG grow from 106 V to 190 V and 2.27 pA to 14.6 uA, respectively, with rotation
speeds ranging from 100 rpm to 900 rpm (14 m/s of wind speed). The output response of
the EMG is determined by the relative rotation of the magnet and coil based on electromag-
netic induction (Faraday’s law). The peak-to-peak voltage and peak-to-peak current rise
from 5V to 38 V and 3.3 mA to 20 mA, respectively, as the rotation speed increases from
100 rpm (5 m/s of wind speed) to 900 rpm. The TENG has a maximum average output
power of 0.33 mW at an ideal load resistance of 12 M(). The EMG, on the other hand, has a
maximum average output power of 32.87 mW and a maximum load resistance of 1.25 K().
The TEHG was evaluated for its ability to provide energy to wireless sensor network nodes.
For this, Zhao et al. designed a circuit that incorporates a test device for measuring voltage
changes and a cell phone for receiving data from the node (Figure 9). The TEHG was used
to light up 200 LEDs in tandem and power an ambient humidity and temperature sensor at
a rotation speed of 400 rpm (9 m/s of wind speed).

BC Hydrogel BC/CNT Hydrogel BC/CNT/PPy Hydrogel
o Polymerization
Doping CNT of PPy
L —— O ——
@ Wet-stretching '
I @ Wet-stretching (D Wet-stretching
@ Wet-twisting /\ @ Wet-twisting (@ Wet-twisting

BC macrofiber

-

PPy particle (]

BCI/CNT macrofiber BC/CNT/PPy macrofiber

Figure 4. (a) Schematic view of the fabrication process of BC, BC/CNT/PPy macrofibers used in
the fabric-based TENG developed by Hu et al. [155]. Images of (b) BC macrofibers, (¢) BC/CNT
macrofibers, and (d) BC/CNT/PPy macrofibers. Reprinted with permission from [155]. Copyright
©2022, Springer Nature.
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Figure 5. (a) Schematic view of the main components and materials of the fabric-based TENG
designed by Hu et al. [155]; (b) two operating modes of the fabric-based TENG, (i) contact-separation
mode and (ii) single electrode mode. Response of the (c) short-circuit current, (d) open-circuit voltage,
and (e) transferred charges of the fabric-based TENG under different frequencies. (f) Results of the
instantaneous power in relation to external load resistance, measurements of the output voltage of
the fabric-based TENG considering (g) several impact forces at 1 Hz, (h) relative humidity variations,
(i) before and after washing, (j) contact-separation mode with a frequency of 1 Hz during 100 s, and
(k) mechanical strains with repetition of 100 cycles. Reprinted with permission from [155]. Copyright
©2022, Springer Nature.
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Figure 6. Applications of the fabric-based TENG were reported by Hu et al. [155]. (a) Diagram of
the fabric-based TENG with rectifier bridge circuit for charging capacitors and powering electronic
devices. (b) Response of the charging process of three commercial capacitors when the TENG
is working in contact-separation mode with a frequency of 1 Hz. (c) Real-time measurements of
the capacitor voltage, which is used for powering an electronic watch. (d) An electronic watch,
(e) a temperature-humidity meter, and (f) a calculator powered using the fabric-based TENG with
capacitors of 22 uF, 47 uF, and 100 pF, respectively. (g) Photographs and output voltages of the fabric-
based TENG working as a self-powered device fixed to different sections of the human body for
monitoring the body motion, (i) walking, (ii) running, (iii) jumping, (iv) arm lifting, (v) arm bending,

and (vi) leg lifting. Reprinted with permission from [155]. Copyright ©2022, Springer Nature.

()

TIRRNN

Bearing
Magnet
PVC
Copper
PTFE
Nylon
Aluminum

Copper coil

Figure 7. The TEHG structure developed by Zhao et al. [156]. (a) Schematic view of the main
components and materials of the TEHG. (b) Image of the sealing cover of the cylindrical shell.
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(c) Image of the rotor disk. (d) Image of the cylindrical shell. (e) Image of the assembled structure of
the TEHG. Reprinted with permission from [156]. Copyright ©2021, John Wiley and Sons.
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Figure 8. The output response of the TEHG was reported by Zhao et al. [156]. (a,b) The output open-
circuit voltage of the TENG and EMG under several rotation speeds. (¢,d) The output short-circuits
current under several rotation speeds. (e,f) The output voltages and currents of the TENG and EMG
as a function of external load resistance at a rotation speed of 400 rm. (g/h) The average output
power of the TENG and EMG as a function of external load resistance at a rotation speed of 400 rpm.
Reprinted with permission from [156]. Copyright ©2021, John Wiley and Sons.
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Figure 9. The application of the TEHG was proposed by Zhao et al. [156]. (a) Schematic view of the
designed circuit for continuously supplying energy for the wireless sensor network node. (b) Mobile
phone display to receive sensor data. (c) Mobile phone display to receive voltage data. (d) The test
circuit of the TEHG to power the wireless sensor network node. (e) TEHG used to light up 200 LEDs.
(f) TEHG supplies power to the thermometer and hygrometer device. (g) TENG is used to charge
different capacitors. (h) TEHG is employed to charge several capacitors. (i) Relationship between the
output voltage frequency, wind speed, and rotation speed. Reprinted with permission from [156].
Copyright ©2021, John Wiley and Sons.

Wu et al. [157] introduced a hybrid energy cell (Figure 10) that combines a TENG, an
electrochemical cell (EC), and eight amorphous silicon-based solar cells (SCs) to gather
wind, chemical, and solar energies from the environment simultaneously or independently.
This hybrid energy cell might power low-power electronic devices such as wind speed
sensors and temperature sensors. The key benefit of this technology is its capacity to
scavenge three separate energy sources at the same time, which improves the usage of
energy from the environment. A polytetrafluoroethylene (PTFE) film and an Al film are
bonded to two acrylic tubes to form the TENG. The periodic contact/separation between
the PTFE film and the Al film can generate charge transfer between the Al electrode and
the ground by utilizing the coupling between the triboelectric effect and the electrostatic
effect (Figure 11). First, both the Al and PTFE films are in an aligned position, where the
two surfaces are completely in touch with one other. The two films have opposing charge
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polarities and are entirely balanced in this configuration, resulting in no electron flow
across from Al film to PTFE film. This sequence is completed, and the mismatch between
the two films is obtained. Since the relative rotation of both films continues, the PTFE
film travels back to touch the Al film, creating electrons that flow from the Al electrode
to the ground. This electrostatic induction action can lead the TENG’s output signals to
increase, indicating that the charges are entirely balanced. An alternating electric shape
output is obtained during a TENG operation cycle. Figure 12 depicts the manufactured
TENG’s output signals. This TENG has an open-circuit voltage approaching 90 V, a short-
circuit current density close to 0.5 mA/m?, and a maximum power density of 16 mW/m?,
allowing it to power up 20 blue light-emitting diodes directly (LEDs). For charging a
capacitor, the hybrid energy cell outperformed separate energy units significantly. The
hybrid device’s gathered energy can be stored in a Li-ion battery as a controlled power
module for powering electronic equipment. Increasing the surface roughness and effective
surface area of the triboelectric material induces a higher triboelectric charge density and
improves TENG output performance.

(a)
@ rie

E
- Solar cell
. Cu

Figure 10. (a) Schematic view of the main components of the hybrid energy cell developed by
Wau et al. [157]. (b) Image of the fabricated hybrid energy cell that includes solar cells and electro-
chemical cells placed on and in the TENG, respectively. (c) SEM image of Al film surface of the TENG,
which was modified using nanostructures. Reprinted with permission from [157]. Copyright ©2014,
Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

The collagen fibrils of vegetables, fruits, and plants may be the responsible constituents
of these natural materials’ piezoelectricity. The piezoelectricity in collagen fibrils is caused
by intermolecular hydrogen bonding, which results in a uniaxial orientation of the molecu-
lar dipoles [158]. Tomato peels (TPs), for example, include 16 different amino acids [159]
and non-centrosymmetric properties due to their low symmetrical orthorhombic and mono-
clinic space groups, which might contribute to the piezoelectric effect [159]. Furthermore,
the TPs feature structures with significant porosity, which causes additional displacement
owing to applied external stresses, boosting the TPs” piezoelectricity [160,161]. Further-
more, the hydroxyl groups in TPs’ lutein and zeaxanthin contribute to their piezoelectricity.
Hydrogen bonding occurs in the hydroxyl group due to the extremely electropositive
hydrogen and electronegative oxygen atoms [160]. According to the findings of these
studies, TPs can be employed to generate piezoelectric energy.
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Figure 11. Stages of the operation principle of the TENG used in the hybrid energy cell fabricated by
Wau et al. [157]. Reprinted with permission from [157]. Copyright ©2014, Tsinghua University Press
and Springer-Verlag Berlin Heidelberg.
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Figure 12. (a) Experimental results of the open-circuit voltage and short-circuit current density of
the TENG using one strip unit. (b) Output voltage and current density of the TENG with one strip
unit considering a load resistance of 100 MQ). (c) Variation in the output voltage and current density
of the TENG as a function of load resistance. (d) Response of the power density as a function of
load resistance. (e) Output voltage and current density of the TENG with two strip units. Reprinted
with permission from [157]. Copyright ©2014, Tsinghua University Press and Springer-Verlag
Berlin Heidelberg.
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Saqib et al. [160] examined the triboelectric and piezoelectric action of tomato peel (TP)
in order to build a hybrid nanogenerator (TP-TPENG) with bio-organic nature materials
for collecting green energy with potential applications in pollution-free and self-powered
devices. The tomato’s very porous structure boosts the TP-output TPENG’s responsiveness.
The open-circuit voltage, short-circuit current, and highest instantaneous power of a TP-
based piezoelectric nanogenerator (TP-PENG) are 24.5V, 2.5 pA, and 19.5 uW, respectively.
The open-circuit voltage, short-circuit current, and highest instantaneous power of the
TP-based triboelectric nanogenerator (TP-TENG), on the other hand, are 135V, 81 pA, and
3750 uW, respectively. The combination of triboelectric and piezoelectric effects resulted in
an enhanced TP-TPENG output response with a rectifier circuit. The rectified open circuit
voltage, short circuit current, and maximum instantaneous power of this TP-TPENG are
150 V, 84 pA, and 5400 uW, respectively. Thus, TPs may be used to create unique non-
toxic and eco-friendly hybrid nanogenerators based on their piezoelectric and triboelectric
capabilities. This hybrid nanogenerator powered 141 commercial LEDs while also charging
a 10 pF capacitor. Figure 13 depicts the primary components and materials of the hybrid
nanogenerator. The TPs” hydroxyl and carbonyl groups contribute to their piezoelectric
and triboelectric characteristics. Furthermore, TPs offer high flexibility and robustness.
Figure 14 depicts the electrical output behavior of the TP-based nanogenerator when
the piezoelectric and triboelectric effects are taken into account. The electrical output
performance of the TP-TENG is superior to that of the TP-PENG. On the other hand, the
combined responsiveness of TP’s piezoelectric and triboelectric capabilities allows for a
TP-TPENG with more superior electric output response than both TP-PENG and TP-TENG.
The alternating output signal of the hybrid nanogenerator is rectified using two rectifier
circuits. In addition, the hybrid nanogenerator was used to charge four different capacitors
(0.22 uF, 10 pF, 50 pF, and 100 uF). The three nanogenerators were used to power several
commercial LEDs. In addition, TP-TENG and TP-TPENG with rectifier circuits were used
to power many commercial stopwatches (Figure 15).

Gokana et al. [91] developed a pyroelectric nanogenerator (PyNG) capable of produc-
ing electric energy from waste heat in the environment. As illustrated in Figure 16, this
PyNG is made using a screen-printed serpentine electrode (SRE) that has been modified
with cesium tungsten bronze (Csy33WO3). Furthermore, Cs( 33WO3 was applied to both
the electrode and the PVDF sheets. With a load resistance of 20 OM, the PyNG with 7 wt%
Cs033WO3 can reach a temperature of 121 °C and electrical output voltage, current, and
power density of 4.36 V, 214 nA, and 23.38 W /m?, respectively. A liquid crystal display
(LCD) and four LEDs were powered by the proposed PyNG. This PyNG is an alternate
source for capturing solar energy and powering low-power electrical gadgets. Figure 16
depicts the various materials and components utilized in the fabrication of the PyNG, as
well as the temperature values of its electrodes determined by IR thermographic imaging.
The thermoelectric conversion behavior of the PyNG was evaluated by measuring its
thermal and electrical output responses during heating and cooling at 8 mHz switching
frequency. Under near-infrared (NIR) radiation, the PVDF PyNG with 7 wt% Cs 33WO3
quickly registered 75 °C and reverted to 29 °C after 60 s of radiation removal. Using the
same experimental conditions, PVDF PyNG without Csj 33WO3 reached 58 °C and reverted
to 29 °C. As a result, the rate of temperature changes of PVDF/Cs(33WO3; PyNG was
increased by over 27% when compared to pure PVDF PyNG. Furthermore, as compared to
the pure PVDF PyNG, the electrical output voltage and current of the PVDE/ Cs(33WO3
PyNG increased by around 26% and 16%, respectively (Figure 17). The PyNG’s better
performance might be attributed to its high photothermal conversion behavior and NIR
light absorption. When NIR light is shone on the improved PyNG with a 10 puF capacitor,
the PyNG may activate four LEDs and display an LCD, as illustrated in Figure 18.
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Figure 13. (a) Images of (i) peeling of a tomato, (ii) unfolded TP, (iii) folded TP, and (iv) rolled TP.
(b) Schematic view of the main elements and materials used in the hybrid nanogenerator. (c) Struc-
tures of the three amino acids (alanine, glycine, and lysine) of the TP that allow the presence of C,
O, N, and H. (d) Schematic view of the carbonyl and hydroxyl groups in the chain of the TP pectin
structure. (e) Response of TP ferroelectric hysteresis considering a frequency of 20 Hz. Reprinted
with permission from [160]. Copyright ©2021, John Wiley and Sons.
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Figure 14. Electric output performance of the TP-PENG, TP-TENG, and TP-TPENG fabricated by
Saqib et al. [160]. (a) Open circuit voltage and (b) short circuit current of the TP-based nanogenerator
without considering the combination of both piezo and triboelectric effects. Output current and
instantaneous power of the (¢) TP-PENG and (d) TP-TENG as a function of the load resistance.
(e) Schematic view of the main elements and materials of the hybrid nanogenerator. (f) Open circuit
voltage and (g) short circuit current of the TP-TPENG. (h) Variation in the generated output current
and instantaneous power of the TP-TPENG related with several external load resistances. (i) Charging
curve of four different capacitors employing TP-TPENG. (j) The charging and discharging behavior
of capacitor using hybrid nanogenerator. Reprinted with permission from [160]. Copyright ©2021,
John Wiley and Sons.
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Figure 15. Application of the TP-based nanogenerators reported by Saqib et al. [160]. (a) Schematic
diagram and (b) application of the TP-TPENG with rectifier circuit to light up LEDs. Lighted LEDs
using (c) TP-PENG, (d) TP-TENG, and (e) TP-TPENG, respectively, under a simple hand pressing
force. (f) Schematic diagram of the TP-TPENG with rectifier circuit and energy storage unit. Different
stopwatches are powered using (g) TP-TENG and (h) TP-TPENG, respectively. Reprinted with
permission from [160]. Copyright ©2021, John Wiley and Sons.
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Figure 16. The main components and materials of the PyNG were reported by Gokana et al. [91].
(a) Schematic diagram of the elaboration of the serpentine electrode (SRE) using screen-printing.
(b) Schematic diagram of structural design and materials of the SRE PyNG. (c) Dimensions of the
SRE pattern. FESEM images of (d) surface and (e) cross-sectional view of the PyNG. (f) Temperature
response of the PyNG using IR thermographic. Reprinted with permission from [91]. Copyright
©2022, Elsevier B.V.



Nanomaterials 2022, 12, 2549

18 of 31

~_~
-]
~—
®
]

Temperature (°C)

~
(]
-’

Voltage (V)

~
Voltage (V) s
R -

<

6
PVDF/Cs, ,,WO, (b) PVDF/Cs, WO,
ol . PVDF
PVDF o
60 (&)
<
= ot
50 4
=
-]
40+ 3}
30F
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Time (s) Time (s)
6 - (d) PVDF/Cs,,,WO,
PVDF/Cs,,,WO, 200 PVDF
PVDF
-
3 < 100
=
=
-
= of
ot 2
5
_|00.
Q
-3r —200
—300 . L L L N .
-6 L s : : L 200 400 600 800 1000 1200
0 200 400 600 800 1000 1200 Ti
. ime (s
Time (s) ®
(f) =
250 . o
| NE 20 /
H 200 =
z E 15
! |so§ > )
- 5
H 10 5 s 10r
E =
= -
50 O g st
’ . 3 -
-— - 10 A 0 )
0 50 100 150 200 0 50 100 150 200
Loading Resistance (MQ) Loading Resistance (MQ)

Figure 17.

The thermal and electrical output performance of the PyNG developed by

Gokana et al. [91]. (a) Temperature variation, (b) rate of temperature shift, (c) output voltage, and
(d) output current of both pure PVDF PyNG and PVDF/Cs( 33WO3 PyNG. (e) Output voltage and
current of PVDF/Cs(33WO3 PyNG as a function of load resistance. (f) Output power density of
PVDF/Csq33WO3; PyNG as a function of load resistance. Reprinted with permission from [91].
Copyright ©2022, Elsevier B.V.
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Figure 18. Application of the PVDF/Cs(33WO3; PyNG designed by Gokana et al. [91]. (a) Experi-
mental setup of the PyNG to turn on (b) four lighted LEDs and (c) display LCD. (d) Charging and
discharging voltage of 10 pF capacitor using the PVDF/Cs( 33WO3; PyNG. Reprinted with permission

from [91]. Copyright ©2022, Elsevier B.V.
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Table 1 reported the comparison of the main characteristics of various nanogenerator
types, including the transduction mechanism, energy source, materials, advantages, and
weaknesses. For a single transduction mechanism, the triboelectric nanogenerators have
important characteristics such as high electrical output performance, good stability, simple
structure, and cost-efficient fabrication. In addition, this nanogenerator can be designed
to convert different energy sources (e.g., biomechanical, water waves, environmental
vibrations, and wind) into electrical energy. On the other hand, the hybrid nanogenerators
present an enhanced electrical output performance in comparison with nanogenerators
based on a single transduction mechanism. The hybrid nanogenerators that include the
triboelectric effect have the best operation parameters such as compact and simple structure,
good flexibility, stability, low-cost manufacturing, and high electrical output performance.

Table 1. Summary of the main characteristics of several nanogenerators used to harvest different
green energy sources.

. Energy .
T;/a[l:cs}(;i:;it;;n Source and Advantages Weaknesses APOtl(;:::;gn Reference
Main Materials PP
High electro-mechanical
Biomechanical performance, large-area Self-powered sensory
liant. 1 . Performance depends on ) ical
Piezoelectric compliant, long-time the Gly-MoS, systems, biomedica [37]
PVDE/Gly-MoS, output signal stability, , monitoring, and
R nanosheet’s content .
composite film and low-power wearable electronics
manufacturing
Biomechanical o
Low-cost fabrication and Self-powered
Piezoelectric flexible and Performance depends on biocompatible [38]
PDMS/PPy . the PPy content path :
composite film robust devices electronic devices
Biomechanical Biowaste materials,
simple fabrication Performance power Biomedical devices
Piezoelectric PVDEF/coconut husk process, and good depends on the CHP and sustainable [39]
powder (CHP) electromechanical content sensors
composite film stability
Biomechanical . . Electromechanical Self-powered blood
. . Flexible materials and . . pressure sensors and
Piezoelectric . behavior requires [42]
. low-cost fabrication wearable
PVDF film more tests . . .
biomedical devices
Biomechanical
Flexible materials and . . .
Piezoelectric 3D PPy/PVDEF-poly- good performance Performance dependson  Flexible b1'omed1ca1 [44]
a1 the 3D PPy content devices
hexafluoropropylene stability
(PHFP) composite film
Water waves and wind High output power Output power is highly Shll;? Sg?n(i(e);irlfors,
Triboelectric Cu electrodes, deionized density, simple structure, dependent. on the devices, and [50]
. and easy acceleration of 1
water, and fluorinated L . ultra-sensitive
fabrication process water motion
ethylene—propylene tube sensor systems
Water waves High surface charge Self-powered marine
density, high output sensors, ocean buoys,
Triboelectric . ! Wear of film by friction and self-powered [51]
Stainless steel electrodes power, and low distributed ener
and PTFE film friction-induced loss energy
for the marine IoT
Water waves Compact structure, ease Output performance Cg:i?gg:gg’ Eeaarf)n
Triboelectric of integration, and depends on the wave S . . [52]
Cu electrodes and simple operation direction and amplitude in night ime marine
PTEFE balls pieop P operations
Water waves High electrical output ?;i;ﬂ?:g;igéﬁig
Triboelectric . performance for any Complex structure L [55]
Spring steel sheet and S distributed power
. direction of movement .
PFTE film systems in oceans
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Table 1. Cont.

. Energy .
TI\IZ ns}cliuc.t ron Source and Advantages Weaknesses APotle‘:nt:‘al Reference
echamism Main Materials pplication
Biomechanical, Self-powered flexible
environmental vibration . . sensors, health
and wind Biodegradable materials, monitoring of subtle
Triboelectric simple and cost-efficient Performance depends on rossures [64]
Ag electrodes fabrication, and high the chitin concentration non—cli)ntact serrlsing
commercial VHB 4905 output performance and human-machine
and Chitin films interfaces
Biomechanical Flexible electronic
Triboelectric Cu electrodes, flourinated Simple operation and Wear of film by friction dev1.ces.for real-time [67]
ethylene propylene easy fabrication process monitoring of human
(FEP) film physiological states
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Triboelectric Cu and Ni fabrics and - . Complex fabrication motions, portable [71]
PDMS with BaTiO, mechanical durability, ower sources, and
. 3 and cyclic washing ability P . 7
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human-machine
interfaces
Human body heat Improved thermoelectric =~ Complex manufacturing Self- red flexibl
. efficiency, high flexibility, = process and performance e powersd textb'e
Thermoelectric rGO and devices and wearable [78]
PEDOT:PSS-coated textile breathable, washable, and depends on the rGO o-textiles
’ fabric bendable textile fabric concentration
Human body heat
. Good flexibility and high ~ Complex manufacturing  Self-powered flexible
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and (BiXSb1,X)2Te3
Thermal Complex manufacturing
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nd M S’ Jer h. o ! shape-adaptive depends on the temperature sensors
a coo rr\zp(;gsiig ene MoS, / graphene content
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body heat Complex manufacturing
. . . High flexibility and good  process and performance Wearable electronic
Thermoelectric waﬁlEe ]c::l)?;[r.ggi/nsalﬁgiibe bending durability depends on the devices [85]
(SWCNT) SWCNT content
composite fibers
Human body heat Self-powered
. ble sensors for
. . Portable and good Complex manufacturing wearab:
Thermoelectric PI?MS /boro nitride, flexibility process momFormg of human [90]
n-BiyTez, and p-Sb,Tes physiological signals
composite films and body motions
Near-infrared light High output performance S tiIrIrl:Ell:tr(l) ’i‘akl)llie h
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y PVDF/Cs(33WO3 charge/discharge the Cs 33WO3 content Y !
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electronic devices
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Table 1. Cont.
. Energy .
T;Z:C:i:;it;;n Source and Advantages Weaknesses APOtIE;:::ia;n Reference
Main Materials PP
Biomechanical . . Complex manufacturing Biomedical sensors
. . High electrical output . )
Piezoelectric— erformance and high process and performance integrated with IoT [96]
pyroelectric MWCNT doped PVDF pmechano—sensitivitg depends on the and remote care of ?
nanofibers Y MWCNT content infectious diseases
Biomechanical
. . Graphene oxide (GO), Improved electrical Complex manufacturing . .
Piezoelectric— process and performance ~ Wearable biomedical
- graphene (Gr), and output performance and . [97]
pyroelectric . s depends on the content of devices
halloysite (HNT) thermal stability GO, Gr. and HNT
nanofillers and PVDF e
nanofibers
Self-supported structure,
. . Biomechanical high electrical output For low-frequency and Self-powered flexible
Triboelectric— performance, low-cost 1 N
- ) ow amplitude pressure sensors and [31]
piezoelectric Ag and Cu electrodes, and large-scale mechanical vibrations electronic devices
PTFE, Nylon, PVDF films  fabrication process, and
high stability
Mechanical vibrations Self-powered SENSOrs
for body motion
Al electrodes and Large deformatlgns, monitoring,
. . o low-cost fabrication Performance depends on  functional keyboards,
Triboelectric— polyvinylidene . . .
. . 1 process, high electrical the concentration of and self-powered [99]
piezoelectric fluoridetrifluoroethylene . ;
: output performance, and PVDEF-TrFE and BTO electronic devices
(PVDEF-TrFE), barium . . . .
. stable electrical behavior placed in vehicles,
titanate (BTO), and bicvcles, and
PDMS composite yees
pavements
. . . Self-powered sensors
Biomechanical Large deformation, for bodv motion
Triboelectric— stretchable, and high Performance depends on monitori}r,1 e-skin [101]
piezoelectric BTO/silicon rubber (SR) electrical output the BTO content and ﬂexibleg\//vearabie
composite film performance .
electronics
Mechanical vibrations
Triboelectric— Au electrodes, antimony  Simple and cost-effective Low-output C];?l‘;:r};ov:izrn [111]
piezoelectric selenoiodide (SbSel) fabrication process power density 1 mpHo!
nanowires, and electronic devices
Kapton film
Mechanical vibrations
Self-powered flexible
Triboelectric— Cu foil electrode, Improved electrical Large volume of magnets gas and motion [120]
electromagnetic polypropylene (PP) film, output performance and coils monitoring, and
six magnets and charge smartphones
nine coils
Wind
Trlboelectrlc—. Cu electrodes, FEP film, High electrical output Large Volu.me of Self-p.owere(.i [129]
electromagnetic two magnets, and four performance electromagnetic module electronics devices
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and biomechanical Self-charging power
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electromagnetic Al electrodes, performance the BTO content and electronic ’
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Table 1. Cont.
. Energy .
T;Z:C:i:;it;;n Source and Advantages Weaknesses APOtlei::iia;n Reference
Main Materials PP
Mechanical vibrations Self- d
and biomechanical cl-powere
Small structure, portable dev1Fes for
Triboelectric— NdFeB magnet array ultra-low-frequency, Complex assembly of the b.o dy. motion
. . . - monitoring, sensors )
piezoelectric— structure, Cu coils, multi-stable, portable, three nanogenerators for detection of [142]
electromagnetic beryllium bronze and high electrical output modules . .
; bridge motions, and
electrodes, lead zirconate performance construction safet
titanate (PZT) sheets, FEP monitorin y
films, and Cu electrodes &
Wind
. . . Compact and small Self‘PowerEd
Triboelectric— PVDEF/PET film, PTFE structure. and high Complex assembly of the wireless
piezoelectric— film, PVDF film, PET electric;;l out ugt three nanogenerators environmental [146]
electromagnetic sheet, Al electrodes, and P modules monitoring system in

eight NdFeB magnets
and six Cu coils

performance

subway tunnels

4. Challenges and Perspectives

This section discusses the main difficulties and prospects for nanogenerators in terms
of design, materials, output performance, reliability, and prospective applications.

4.1. Design

The nanogenerator’s design phase is critical to achieving the greatest performance for
certain applications. This stage of design must take into account the various requirements
and working circumstances of the prospective application of the nanogenerators. Thus,
nanogenerator designers should investigate the required electric power, size and weight
limitations, working time, and environmental conditions (relative humidity, temperature,
pressure, radiation, wind, vibrations, dust, and so on), green energy acquisition mecha-
nisms, materials more suitable for nanogenerator electromechanical behavior, fabrication
process, packaging type, minimum electronic components, and so on. Analytical and nu-
merical modeling may be utilized in the design of nanogenerators to find the best operation
principle, materials, and electromechanical configuration that allow for the safety and
reliability of the nanogenerators under various working conditions.

Furthermore, numerical simulation tools such as ANSYS, COMSOL, NASTRAN,
ABAQUS, and MATLAB may be used to evaluate the performance of nanogenerators. As
a result, the designers may create bidimensional or tridimensional models of the nano-
generators, complete with their major components, materials, and operating conditions.
However, due to errors in the selection of the materials’ characteristics, load values and
analysis types, boundary conditions, and mesh size, the findings of the analytical and
numerical simulation models of the nanogenerators might have a large error percentage
in comparison to experimental results. To reduce this error percentage, designers should
evaluate the important elements that determine the performance of the nanogenerators,
such as genuine values of material characteristics, the right selection of load and boundary
conditions, and the mesh quality and type of the suggested models.

4.2. Materials

The appropriate material selection for nanogenerators is critical for improving their
performance and reliability for each prospective application. Each nanogenerator applica-
tion necessitates unique performance characteristics in order to maximize the green energy
collecting process from various natural sources and under varying climatic conditions.
Thus, the design of a specific nanogenerator requires superior materials to meet the electri-
cal signal requirements and performance stability for future applications. Nanogenerators
for biomechanical applications, for example, may need stretchable, lightweight, and flexible
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materials to improve their output electrical responsiveness and mechanical behavior [162].
These materials must have the structural strength to minimize wear and mechanical fail-
ures in this application, as well as low density to reduce the weight of the nanogenerators.
Furthermore, the operation of nanogenerators might be harmed by environmental damp-
ness. The application of hydrophobic materials or materials to nanogenerator packing
can be used to solve the humidity problem. For instance, nanogenerators for blue energy
harvesting are built with specific packaging made of low-density materials that are resistant
to corrosion and solar radiation. Nanogenerators that operate under mechanical vibra-
tions, on the other hand, should be designed with materials that have adequate structural
strength to reduce structural failures caused by cracks, wear, fatigue, or fracture. Recent
nanogenerator research [39,63,64,160,163-169] has focused on organic or waste materials
from the environment, such as tomato, chitin, eggshell, fish swim bladder, spider silk,
peanut shell, sunflower husks, rice paper, garbage soda cans, silk fibroin, coconut husk,
and so on. However, measuring the piezoelectric and triboelectric properties of these
materials is extremely difficult. Another significant constraint is the analytical modeling of
the piezoelectric and triboelectric response of organic materials. More research is needed to
determine the piezoelectric and triboelectric effects of organic or waste materials employed
in nanogenerators for green energy harvesting.

4.3. Energy Storage and Electrical Interfaces

The electrical output performance of nanogenerators can be impacted by changes in
ambient circumstances and green energy stability, which can vary over time and exhibit
erratic behavior. Due to these circumstances, the output electrical signals of nanogenerators
might exhibit erratic behavior. In addition, most electronic equipment must be powered
by DC voltage and current. The nanogenerators require rectifier circuits to convert their
AC output electrical impulses into DC signals in order to power these devices. These DC
signals must also be stored in capacitors or batteries in order to power electronic devices
with controlled electrical signals. The development of effective energy storage devices is an
intriguing research problem for nanogenerators.

Another important challenge of the nanogenerators is the development of electrical
interfaces that achieve high efficiency with minimum power consumption [170-172]. For
instance, these electrical interfaces could be self-powered and consider cold-start circuit
architectures [173,174]. To reduce the size of the nanogenerators, the electrical interfaces
should have a small footprint. It could be obtained using the Application-Specific Integrated
Circuit (ASIC) implementation. Moreover, the electrical interfaces could be adaptive in
order to maximize the harvested power, considering low-power maximum power point
tracking (MPPT) algorithms [174-177].

4.4. Fabrication

To create nanogenerators for commercial uses, large-scale manufacture should be
enabled. Alternatives to this difficulty include no-complex manufacturing procedures
and new infrastructure with flexible phases for new nanogenerator designs and use. Fur-
thermore, a low-cost production technique with few processing steps is critical for the
market feasibility of nanogenerators. Another possibility to reduce nanogenerator manu-
facture costs is to re-use inorganic or organic materials from trash [63]. Furthermore, future
nanogenerator manufacturing processes may contain biodegradable and environmentally
benign materials.

4.5. Reliability

Future studies will focus on the stability and reliability of the electromechanical
behavior of nanogenerators. For commercial applications, nanogenerators must provide
output electrical signals that are stable throughout time. During the life of a nanogenerator,
its electrical and structural components may have performance issues owing to abrasion,
mechanical impact, crack development, fatigue, humidity, radiation, high temperature,
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environmental pollution, and other factors. To extend the life of nanogenerators, basic
structural layouts with the fewest number of electrical and mechanical components should
be considered. Electrical or mechanical failures of some of these components can affect
the operation of nanogenerators with complicated structural designs that involve multiple
components. To decrease the possibility of electrical and mechanical failures in the various
nanogenerator components, the use of robust materials and appropriate packaging might
increase the service life of nanogenerators.

5. Conclusions

The most recent advances in nanogenerators for green energy harvesting via various
transduction processes were discussed. Triboelectric, piezoelectric, electromagnetic, and
thermoelectric effects were all explored in these processes. The principles of operation
and materials of several nanogenerators are reviewed. In addition, the behavior of the
output electrical signals (voltage, current, and power) of multiple nanogenerators was
considered, taking into account the combination of green energy acquisition processes. It
was stated that nanogenerators were used to power several commercial electronic products.
This review also discussed the problems and perspectives of nanogenerators in design,
materials, energy storage, fabrication, and reliability.
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