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Abstract: In this paper, we examine dissipative phase transition (DPT) near the critical point for a
system with two-photon driving and nonlinear dissipations. The proposed mean-field theory, which
explicitly takes into account quantum fluctuations, allowed us to describe properly the evolutionary
dynamics of the system and to demonstrate new effects in its steady-state. We show that the presence
of quantum fluctuations leads to a power-law dependence of the anomalous average at the phase
transition point, with which the critical exponent is associated. Also, we investigate the effect of
the quantum fluctuations on the critical point renormalization and demonstrate the existence of a
two-photon pump “threshold”. It is noteworthy that the obtained results are in a good agreement
with the numerical simulations.
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1. Introduction

Nowadays, dissipative phase transition (DPT) in open quantum systems is among
the most rapidly developing fields of quantum optics [1]. DPT can be observed when a
direct manipulation of the interaction constants, external driving, or dissipation rates of
the system lead to an abrupt and nonanalytical change of the system observables [2,3].
Recent publications have reported on the observation of dissipative critical phenomena and
nonequilibrium quantum states in superconducting circuits [4,5], cavity quantum electro-
dynamics systems [6–8], optomechanical resonators [9], semiconductor microcavities [10],
and atomic systems [11–14]. The experimental implementation of highly controllable open
nonequilibrium photonic systems became possible due to nonlinear reservoir engineering.
It enables the realization of the optical cavities with an engineered two-photon drive and
nonlinear dissipation [15–20]. In such systems, the presence of dissipation does not destroy
but stabilizes the quantum state, also known as the Schrödinger cat state [21–23]. Based on
this state, it is possible to prepare a dynamically protected qubit [24] for further applications
in quantum information processing [25–30].

The above-mentioned quantum systems are commonly studied with numerical meth-
ods. The most notable of these are integration of a master equation on a truncated Fock
basis [19] and diagonalization of the Liouvillian superoperator [2,31,32]. Additionally,
the complex-P-representation [33], Monte Carlo [34], quantum trajectory [35], and the
quantum-absorber methods [36] are intensively utilized to investigate the properties of the
nonequilibrium stationary state in such problems. However, numerics typically cannot
allow one to uncover physical phenomena underlying the evolution of the system. This
is one of the reasons why the DPT in open quantum systems is not well understood to
date. Within the limit of a large number of photons, a qualitative picture of the occurring
phenomena can be obtained using the so-called semiclassical approximation [37,38]. Nev-
ertheless, this approach completely neglects the quantum fluctuations (QF), which can
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play a significant role even in the case of a large average number of photons in the sys-
tem [10]. Therefore, the study of mean-field models, including QF, becomes an important
and promising direction for further research, since it can provide simple and convenient
analogies with the physics of equilibrium phase transitions. Besides, such a treatment can
offer a correct approach for constructing theories beyond the mean field description.

In this paper, we demonstrate the mean field treatment of a DPT in systems with two-
photon driven and nonlinear dissipation, which includes QF. Here, we use the formalism
of Keldysh Green’s functions [39,40], since it explicitly takes into account the effects of
QF. Recently it has been shown that the nonequilibrium Keldysh technique is a promising
way to study nonequilibrium open quantum systems [41]. It also provides a theoretical
framework for the systematic treatment of DPT [41–45]. The application of this approach
enables us to construct the self-consistent equations of motion similar to the Gorkov
equations in the mean-field approximation. We use the resulting equations to calculate the
dynamics of the system observables and to demonstrate the new effects appearing in the
steady-state. In analogy with Landau theory, we show that the presence of QF leads to a
broadening of the DPT near the critical point. This effect is caused by an “external” QF
field. Its existence leads to the power-law dependence of the anomalous average vs the
pump rate at the phase transition point with which the critical exponent is associated. In
addition, the QF effect causes the critical point renormalization. Both results are in a good
agreement with our numerical simulations.

2. Nonlinear Cavity Including Two-Photon Processes

First, we briefly revisit the system described in [24] and experimentally realized in [46].
Its schematic is depicted in Figure 1a, which shows two superconducting microwave
cavities. The first resonator has a low Q-factor associated with the presence of significant
single-photon losses at κ rate. The second resonator has a high Q-factor, so it can be used
to store and protect quantum information [23,27]. A transmission line with embedded
Josephson junction provides a nonlinear interaction between two cavities, which we denote
as readout and storage. In addition, pump and drive microwave tones are applied to the
readout cavity at frequencies ωp and ωr. The Hamiltonian of the system has the following
form (h̄ = 1):

H = H0 + Hdrive + Hint, (1)

where H0 is the Hamiltonian of two linear cavities, Hdrive represents resonant coherent
drive of the readout cavity, as shown in Figure 1a and Hint describes generation of the two
identical storage photons from the readout and pump photons, as shown in Figure 1b, and
the corresponding backward process, which is shown in Figure 1c. It is important to note
that non-resonant coherent drive is embedded into Hint [46]. Thus, H0 = ωsa†a + ωrb†b
where ωs and ωr are the storage and readout frequencies, respectively, and a/a† and b/b†

are the annihilation/creation operators corresponding to the fundamental cavity modes.
The Hamiltonian of a resonant coherent drive with amplitude εr and frequency ωr has
the form: Hdrive = εr·b†·exp[-iωrt] + εr

*·b·exp[iωrt]. The last term in the Equation (1) is
determined by the following expression:

Hint = −
1
2

µ(ξe−iωptb a†2 + ξ∗ eiωptb†a2), (2)

where µ is a nonlinear coupling constant emerging from the presence of a Josephson junc-
tion [47]. In Equation (2) pump photons are considered in the classical field approximation
with effective amplitude ξ = − i·εp/[κ/2 + i(ωr − ωp)], where εp and ωp are amplitude and
frequency of the external non-resonant coherent pump [46].
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Figure 1. (а) A schematic of the system. Two superconducting microwave cavities are coupled by a 
Josephson junction. Pump and drive tones are applied to the readout cavity, which creates a steady-
state in the storage cavity. (b,c) Four-wave mixing processes are provided by the presence of non-
linear interaction between the fundamental modes of the readout and storage cavities. One can ob-
serve (b) the conversion of the pump and readout photon onto the two storage photons and (c) 
corresponding backward process. (d) Effective description of the storage cavity: two-photon driving 
at g rate and two-photon dissipation at γ rate (see text for details). 

Since dissipative processes play a crucial role in the considered system, its behavior 
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matrix ρ from both sides and the perator b is called Lindblad operator or a quantum jump 
operator. 

Further, we assume that the characteristic time scale of the single-photon dissipation 
(1/κ) is much smaller than all other time scales of the system. Consequently, we can elim-
inate degrees of freedom associated with the readout cavity [46]. Furthermore, it is con-
venient to use a unitary transformation U = exp[− i(ωp + ωr)a†a/2], which makes the effective 
Hamiltonian time-independent. As a result, the following description of the reduced den-
sity matrix ρs = Tr[ρ]r can be obtained: 
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rate, and Δ = (2ωs – ωp – ωr)/2 is a frequency detuning. The most interesting is the regime 
where ωp ≈ 2ωs − ωr and hence Δ << ωp, ωs, ωr. Further, we suppose that the two-photon 
pump rate g is a real value. This can be easily achieved by tuning the complex phase of 
the non-resonant coherent pump amplitude. 

It is worth mentioning that g is proportional to the product of the non-resonant pump 
and resonant drive amplitudes ξ and εr. However, the absorption rate is γ ∝ ξ 2 and does 

Figure 1. (a) A schematic of the system. Two superconducting microwave cavities are coupled
by a Josephson junction. Pump and drive tones are applied to the readout cavity, which creates a
steady-state in the storage cavity. (b,c) Four-wave mixing processes are provided by the presence
of nonlinear interaction between the fundamental modes of the readout and storage cavities. One
can observe (b) the conversion of the pump and readout photon onto the two storage photons and
(c) corresponding backward process. (d) Effective description of the storage cavity: two-photon
driving at g rate and two-photon dissipation at γ rate (see text for details).

Since dissipative processes play a crucial role in the considered system, its behavior
must be described by Lindblad master equation [48]:

∂t ρ = −i[H, ρ] + κD [b](ρ), (3)

where ρ is a system density matrix, κ is a single-photon loss rate, D[b] is a Liouvillian, which
defines as D[b](ρ) = bρb† – 1

2 (b†bρ + ρb†b). Notably, Liouvillian acts on the density matrix ρ
from both sides and the perator b is called Lindblad operator or a quantum jump operator.

Further, we assume that the characteristic time scale of the single-photon dissipation
(1/κ) is much smaller than all other time scales of the system. Consequently, we can
eliminate degrees of freedom associated with the readout cavity [46]. Furthermore, it
is convenient to use a unitary transformation U = exp[− i(ωp + ωr)a†a/2], which makes
the effective Hamiltonian time-independent. As a result, the following description of the
reduced density matrix ρs = Tr[ρ]r can be obtained:

∂t ρs = −i[Heff, ρs] + 2γD [a2](ρs), (4)

where the effective Hamiltonian is given by:

Heff = ∆ a†a + i
1
2

(
g a†2 − g∗a2

)
, (5)

where g = 2ξ·µ·εr/κ is a two-photon pump rate, γ = |ξ·µ|2/2κ is a two-photon dissipation
rate, and ∆ = (2ωs – ωp – ωr)/2 is a frequency detuning. The most interesting is the regime
where ωp ≈ 2ωs − ωr and hence ∆ << ωp, ωs, ωr. Further, we suppose that the two-photon
pump rate g is a real value. This can be easily achieved by tuning the complex phase of the
non-resonant coherent pump amplitude.

It is worth mentioning that g is proportional to the product of the non-resonant pump
and resonant drive amplitudes ξ and εr. However, the absorption rate is γ ∝ ξ 2 and does
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not depend on the drive amplitude εr. As a result, a two-photon pump and nonlinear
dissipation are effectively implemented in the storage cavity due to the presence of a linear
dissipation and coherent pump in the readout cavity, as shown in Figure 1d.

3. Mean-Field Theory

From now on, we will consider the behavior of the following two system observables:

GK(t, t) = 2n(t) + 1, FK(t, t) = 2 ψ(t), (6)

where n(t) = Tr[a†aρs(t)] is an average number of photons in the storage cavity or normal
average, ψ(t) = Tr[a2ρs(t)] is a two-particle order parameter or an anomalous average of the
system, GK(t,t) and FK(t,t) are the normal and anomalous simultaneous Keldysh Green’s
functions. The unity term in the normal Keldysh Green’s function takes into account the
presence of the QF [40,41]. As a result, one can obtain equations of motion for simultaneous
Keldysh Green’s functions from the Equation (4):

∂t GK(t, t) = gFK(t, t)∗ + g∗FK(t, t)− 8γ
〈

a†2 a2〉,
(∂t + i2∆)FK(t, t) = 2gGK(t, t)− 4γ

〈
a2(2a† a + 1)

〉
,

(7)

where angle brackets denote the quantum mechanical averaging over the density matrix
of the system. As can be seen from the Equation (7), the normal and anomalous Keldysh
Green’s functions are expressed through the expectation values of higher-order operators,
due to the nonlinear dissipation arising in the system. We use the mean-field approximation
to avoid considering higher-order equations of motion. Within this approximation, the
expectation values of the operator products are replaced by the products of their expectation
values [49]. However, there are several ways to implement this decoupling [50]. The two
most common choices are as follows:〈

a†2 a2
〉
≈ ψ∗ψ, (8)〈

a†2 a2
〉
≈ ψ∗ψ + 2n2, (9)

where in (8) decoupling was carried out using only the so-called “Cooper” or “pairing”
channel [51]. In (9) an additional “density” channel appears [51]. Here, we assume (8)
to be valid for the considered system. Justification of this choice will be given in the
following text. As a result of (8), the expectation values of the higher-order operators in the
Equation (7) can be expressed through Keldysh Green’s functions as follows:〈

a†2 a2〉 ≈ 1
4 FK(t, t)∗FK(t, t),〈

a2(2a† a + 1)
〉
≈ 1

2 FK(t, t) GK(t, t),
(10)

and the mean-field self-consistent equations of motion can be obtained:

∂t GK(t, t) = geff(t)FK(t, t)∗ + geff(t)
∗FK(t, t),

(∂t + i2∆)FK(t, t) = 2geff(t)GK(t, t),
(11)

where geff(t) = g – 2γ·ψ(t) is a renormalized two-photon pump rate. We will also assume that
the initial state is a vacuum, which gives the following initial conditions: GK(0,0) = 1 and
FK(0,0) = 0. The unity term in GK emerges from the QF, as mentioned above. This enables
the parametric generation of light even if there are no photons in the initial state [52]. It
should also be noted that the resulting Equation (11) have a structure similar to the Gorkov
equations, which play a central role in the theory of superconductivity. Another point
worth mentioning is that the (11) has the following integral of motion: GK(t,t)2 − |FK(t,t)|2.
Thus, it is possible to express the normal Green’s function through the anomalous one,
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using vacuum initial conditions: GK(t,t) = (1 + |FK(t,t)|2)1/2. As a result, one can obtain
the equation of motion solely for the anomalous average:

∂t ψ(t) = −i2∆ψ(t) +
√

1 + 4|ψ(t)|2[g − 2γψ(t) ], (12)

and relate to the average number of photons:

n(t) =
1
2

(√
1 + 4|ψ(t)|2 − 1

)
. (13)

We use the resulting equations of motion of the proposed mean-field theory to calculate
the time evolution of the anomalous average ψ(t) and the average number of photons n(t).
A comparison of the time evolution obtained from the Equations (12) and (13) and the
numerical simulation of the master equation [53,54] is shown in Figure 2a,b. We perform
numerical simulations using integration of a master equation on a truncated Fock basis. For
this basis, equations of motion for the density operator matrix elements ρm,k ≡ <m|ρs|k>,
where |k> is a Fock state, will have the following form:

∂t ρm ,k = −i∆ (m− k)ρm ,k +
g
2

[√
m(m− 1)ρm−2,k −

√
(k + 1)(k + 2)ρm ,k+2

]
−

− g∗
2

[√
(m + 1)(m + 2)ρm+2,k −

√
k(k− 1)ρm ,k−2

]
− γ

[
(k(k− 1) + m(m− 1))ρm ,k−

−2
√
(k + 1)(k + 2)(m + 1)(m + 2)ρm+2,k+2

]
.
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Figure 2. Time evolution of the modulus of anomalous average |ψ(t)| (a) and the average number
of photons n(t) (b) for different values of the frequency detuning ∆. It is obtained from numerical
simulation of the Lindblad master equation on a truncated Fock basis (blue curve), numerical
integration of the mean-field Equations (12) and (13) (orange dashed curve) and the semiclassical
solution (green dash-dotted line). The normalized two-photon pump rate is set to g/γ = 20.

Since a vacuum is assumed as the initial quantum state, the initial condition for the
matrix elements was chosen as ρm,k(t = 0) = δ0,kδm,k. Here δm,k is the Kronecker delta
function, which leads to ρ0,0 = 1 and ρm,k = 0 for all other elements. As long as (14) is a
system of linear differential equations, it can be solved numerically using the fourth-order
Runge-Kutta method. Photon-number cutoff is chosen in accordance with the the value of
two-photon pump rate and is justified by checking the low probabilities for large photon
numbers. To make sure that the cutoff error is negligible, we increased the cutoff number
and checked the convergence of the solution.

Figure 2 shows that the mean-field theory qualitatively describes well the evolution of
calculated system observables. As pointed above, the influence of QF is tremendous in a
near-zero-time region by analogy with the parametric generation of light from a vacuum
state. As can be seen from Figure 2, the semiclassical solution is exact zero, since generation
cannot start without QF. At a longer time scale, the presence of QF significantly affects the
dynamics of the system observables, which leads to the formation of a stationary state.
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For the case of zero frequency detuning, the following mean-field stationary solutions
can be found from Equation (12) for the anomalous average and the average number of
photons in the storage cavity:

ψ = g/2γ, n =
1
2

(√
1 + 4 ψ2 − 1

)
. (15)

In addition, using the exact stationary solution for the density matrix for ∆ = 0 [55],
one can find ψ and n in the explicit form:

ψ = g/2γ, n = ψtanh(ψ) (16)

A comparison of the stationary solutions calculated by the mean-field theory (15) and
the exact stationary density matrix (16) demonstrates very good agreement of the anoma-
lous averages, as shown in Figure 2a. However, it can be seen that the average number
of photons differs between the mean-field and exact solutions (Figure 2b). Nevertheless,
both solutions have the same asymptotic behavior in the limit of a small (g << γ) and large
(g >> γ) two-photon pump rate.

4. Properties of the Steady State

For the case of non-zero frequency detuning, we derive the following biquadratic
equation on the modulus of the anomalous average:

∆2|ψ|2 =
1
4
(1 + 4|ψ|2)(g2 − 4γ2|ψ|2), (17)

where the unity term corresponds to the presence of QF. Dropping QF in Equation (17), one
gets a semiclassical solution [33]:

|ψ| ≈ θ(g2 − ∆2)
√

g2 − ∆2/2γ, (18)

where θ(x) is a Heaviside step function. Equation (18) yields non-zero anomalous average
ψ when the frequency detuning is below than the two-photon pump rate (∆ < g), and
zero ψ value after passing the critical point ∆ = g (green curve in Figure 3b). For open
quantum systems, this phenomenon is also known as DPT [3,33,56,57], and was studied
for a considered system earlier [2,33]. Here, we can observe DPT in the “thermodynamic
limit”, when the average number of photons n or the anomalous average ψ tends to infinity,
and one can usually ignore QF [57]. For our system, this limit can be realized in the case of
a large two-photon pump rate (g >> γ).

We will consider the situation when the average number of photons n and the anoma-
lous average ψ are the finite quantities and it is absolutely necessary to take into account
the effects of QF. Within the framework of Keldysh formalism, this leads to the following
modification of the semiclassical solution (18):

|ψ | =
(√

g2γ2 +
1
4
(g2 − ∆2 − γ2)

2 +
1
2

(
g2 − ∆2 − γ2

))1/2

/2γ. (19)

As can be seen from Figure 3a–c, the presence of QF makes the DPT wider near the
critical point. This fact is well described by the proposed mean-field theory. To obtain a
simple physical explanation for this broadening, we shall demonstrate an analogy with
Landau theory of phase transitions [58]. For that, it is necessary to rewrite the Equation (17),
sorting the contributions in descending order of powers of ψ:

4γ2|ψ|4 + (∆2 − g2 + γ2)|ψ|2 =
1
4

g2, (20)
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4B · η3 + 2A · η = h, (21)

where η is an order parameter, h is an external field, A and B are series expansion coefficients
of the thermodynamic potential Φ = Aη2 + Bη4 − hη. Minimization of the Φ yields the
expression in (21). Comparing (20) and (21), we can conclude that the presence of QF leads
to the analog of the external field h. The presence of such an external field in Landau theory
breaks the symmetry of the system. As a result, the difference between the two phases
disappears, as well as the discrete phase transition point [58]. Therefore, phase transition
itself is broadening, which is observed in our system.
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Figure 3. (a) Phase diagram of the modulus of anomalous average |ψ| as a function of the frequency
detuning ∆ and the pump rate g in units of the two-photon dissipation rate γ. The color plot is
computed from the numerical solution of the Lindblad master equation on a truncated Fock basis.
(b,c) Corresponding cross-sections at a fixed value of the pump rate g/γ = 20 (b) and frequency
detuning ∆/γ = 20 (c). (d) Double logarithmic plot of the modulus of anomalous average |ψ| vs
pump rate g at the critical point ∆ = g for g >> γ. The calculation was carried out by numerical
simulation of the master equation (red dots) and from the mean-field analytic solution (19) (blue
dashed line), as well as from the semiclassical approximation (18) (green curve).

Also, it is well known that at the phase transition point defined by a condition A = 0, the
response to the external field is nonlinear and determined by the power-law η∝(h/B)1/δ [58].
Here δ is one of the critical exponents for the nonzero external field and it is equal to δ = 3
in Landau theory. Thus, a similar phenomenon should be observed in our system as well.
To confirm this statement, we examine the behavior of the anomalous average ψ as a
function of the pump rate g at the critical point ∆ = g. Here we are interested in the regime
g >> γ. Figure 3d demonstrates a comparison between the predictions of the mean-field
theory and the exact numerical simulation, which is governed by the following power-law
|ψ|∝(g/γ)1/δ and the corresponding critical exponent: δ = 1.47 for the numerical solution
and δ = 2 for the mean-field theory.

It is important to note that the experimental verification of the predicted power-law
is very feasible within the framework of the discussed setup (Figure 1). The frequency
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detuning ∆ can be controlled by changing the non-resonant pump frequency ωp, and
the two-photon pump rate g by increasing the amplitude εp of the external non-resonant
coherent pump wave.

Second non-trivial result associated with QF in the proposed mean-field theory is the
renormalization of the critical point. Setting the coefficient before |ψ|2 in (20) to zero yields
the following expression for the case of g ≥ γ:

∆0(g) =
√

g2 − γ2. (22)

The dependence of the critical point on a pump rate g obtained from the mean-field
theory (22) is shown in Figure 4a. As one can see, the mean-field theory predicts the
existence of a threshold pump rate, which is equal to gth = γ.
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Figure 4. (a) Phase diagram of the modulus of anomalous average |ψ| in 2D space of the two-photon
pump rate g and the frequency detuning ∆ in units of the two-photon dissipation rate γ, obtained
from the mean-field theory. Critical boundary ∆0(g) (blue dashed line) separates the phases with low
(blue area) and large (red area) average number of photons. (b) The behavior of the second derivative
∂2|ψ|/∂∆2 vs the pump rate g for ∆ = 0. One can see the existence of two regimes, in which switching
occurs after passing the threshold point gth = γ. (c,d) Heat maps of the normalized susceptibility
χ = ∂|ψ|/∂g as a function of a normalized pump rate g and frequency detuning ∆ obtained from
(c) mean-field analytic solution (19) and (d) numerical simulation of the master equation. The red line
identifies the location of the maximum susceptibility and indicates that the critical behavior occurs
only after passing the cutoff pump rate gth. The susceptibility χ is normalized by the maximum value
for each frequency detuning ∆.

To understand the physical meaning of the critical point renormalization, it is necessary
to consider the case of a small pump rate (g << γ). In this limit, the anomalous average ψ is
quite small and one can neglect the quartic part in the Equation (20). Thus, the response
of the system to the fluctuation field is determined only by a quadratic contribution. The
crucial fact here is that the coefficient before |ψ|2 is a positive quantity for arbitrary
frequency detuning ∆ and g < γ. In Landau theory, such behavior corresponds to the
symmetric phase of the system (A > 0). Further increasing the pump rate g would decrease
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the corresponding coefficient (∆2 − g2 + γ2). As result, it becomes zero at the threshold
point gth = γ and ∆ = 0, which violates the linear response and makes the quartic coefficient
dominant. This transformation of the system’s response correlates precisely with the
emergence of the discussed critical behavior.

One can observe such a transition from the analysis of the second derivative ∂2|ψ|/∂∆2

in the region ∆ ≈ 0, which is shown in Figure 4b. It can be seen that its behavior changes
from the linear asymptotic ∝g to the inverse proportion ∝ 1/g after passing the thresh-
old point gth = γ. Furthermore, considering the dynamics of the system’s susceptibility
χ = ∂|ψ|/∂g as a function of the pump rate g and frequency detuning ∆, we also observe
the existence of a threshold pump gth. Its behavior in the framework of the mean-field
theory is shown in Figure 4c. One can see that for g < γ the maximum susceptibility is at the
point ∆max = 0. However, after passing the threshold point gth = γ one can observe a shift
of the maximum, which indicates the emergence of the critical behavior. The numerical
simulations of the system’s susceptibility shown in Figure 4d also predict the existence of
gth ≈ 1.952γ, which is in qualitative agreement with the proposed Keldysh formalism.

Finally, justification and constraints of our mean-field treatment should be discussed.
It is well known that the DPT in the considered system is associated with transformation
from the Schrödinger cat to the squeezed-vacuum state [33] as shown in Figure 3b. For
both states, the anomalous average ψ 6= 0, but they differ in the decoupling of channels, as
shown in Equations (8) and (9). As it turns out, the proposed decoupling is rigorous only
for a large number of photons region, which corresponds to the cat state. However, in the
region of a small number of photons, corresponding to the squeezed state, the anomalous
average |ψ| << 1. From Equation (13) follows that: |ψ| >> n. Consequently, in the region
of a small number of photons, the “Cooper” channel dominates over the “density” channel
and the proposed decoupling is valid. Also, we have shown above that and near the critical
point, the proposed description allows us to achieve a good qualitative agreement with
the exact results of numerical calculations. We believe that the observed mismatch can be
explained by the presence of a fluctuation region, where the QF significantly affects the
behavior of the system. Thus, for further exploration, it seems to be necessary to apply more
precise methods, such as the Keldysh functional integral [41], the 2PI effective action [59],
and the renormalization group [60,61].

5. Conclusions and Outlook

In this paper, we develop a mean-field theory for a system with two-photon driving
and dissipation which explicitly takes quantum fluctuations into account. Consideration of
quantum fluctuations allows us to describe properly the evolution dynamics of the system
and to demonstrate the new effects in the steady-state. We show that the dissipative phase
transition broadening near the critical point is naturally conditioned by the fluctuation
field. Its presence leads to a power-law dependence of the anomalous average at the phase
transition point with which the critical exponent is associated. This counterintuitive effect
cannot be found in the semiclassical approximation. The reason lies in the crucial role of
the quantum fluctuations, which significantly affect the behavior of a given system at the
critical point and should be taken into account even in the case of a large average number
of photons. Also, we investigate the effect of the quantum fluctuations on the critical point
renormalization and demonstrate the existence of a two-photon pump “threshold”. It is
noteworthy that the obtained results are in a good agreement with numerical simulations.
An important point here is that intuitively free energy analysis is out of consideration for
dissipative phase transitions. However, obtained counter-intuitive results are largely based
on analogies with Landau theory. We believe that further investigations will clarify this
close relationship between purely non-equilibrium formalism and traditional equilibrium
techniques. Such a relationship is most likely the result of Boltzmann-Gibbs-like stationary
distribution created by the quantum Langevin equation, which describes the additional
QF. Thus, the rigorous justification of the proposed equilibrium description based on the
thermodynamic potential is worth extensive study.
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The results presented in this paper can be applied to the development of the new
nonequilibrium quantum states with controllable properties [62,63]. They may also be bene-
ficial for applications in quantum information processing [64] and quantum metrology [65],
as we believe that the quantum photonic state and systems spectral characteristics in the
critical point have a non-conventional properties due to the observed nontrivial scaling
behavior. Investigated quantum systems, in combination with terahertz to gigahertz light
convertors [66], can be included into fully quantum photonic networks. This strategy opens
new avenues for utilization of important and promising terahertz light sources such as
quantum cascade lasers. These compact and powerful sources of light can be used for
optical drive of the studied finite-component system consisting of a several bosonic modes
interacting through a Josephson junction. In addition, quantum cascade lasers can be
very convenient as a source of broadband continuous single-mode tuning [67] due to the
experimental need to change the frequency detuning discussed above.
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