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Abstract: The classical density functional theory (CDFT) is applied to investigate influences of
electrode dielectric constant on specific differential capacitance Cd and specific energy storage E of a
cylindrical electrode pore electrical double layer. Throughout all calculations the electrode dielectric
constant varies from 5, corresponding to a dielectric electrode, to εwr = 108 corresponding to a metal
electrode. Main findings are summarized as below. (i): By using a far smaller value of the solution
relative dielectric constant εr = 10, which matches with the reality of extremely narrow tube, one
discloses that a rather high saturation voltage is needed to attain the saturation energy storage in the
ultra-small pore. (ii): Use of a realistic low εr = 10 value brings two obvious effects. First, influence
of bulk electrolyte concentration on the Cd is rather small except when the electrode potential is
around the zero charge potential; influence on the E curve is almost unobservable. Second, there
remain the Cd and E enhancing effects caused by counter-ion valency rise, but strength of the effects
reduces greatly with dropping of the εr value; in contrast, the Cd and E reducing effects coming from
the counter-ion size enhancing remain significant enough for the low εr value. (iii) A large value
of electrode relative dielectric constant εw

r always reduces both the capacitance and energy storage;
moreover, the effect of the εw

r value gets eventually unobservable for small enough pore when the
εw

r value is beyond the scope corresponding to dielectric electrode. It is analyzed that the above
effects take their rise in the repulsion and attraction on the counter-ions and co-ions caused by the
electrode bound charges and a strengthened inter-counter-ion electrostatic repulsion originated in
the low εr value.

Keywords: ultra-small pore supercapacitor; dielectric discontinuity; differential capacitance; energy storage

1. Introduction

In the vicinity of a charged electrode, electrolyte solution forms an electric double
layer (EDL) that reflects the competition between electrostatic attraction of the counter-ions
to the electrode surface and the translational entropy of the ions. The EDL is a problem
of fundamental importance to subjects as diverse as colloid science [1,2], macromolecular
conformation [3,4], and biological membranes [5], and has been a subject of much research
interest over the past several decades [6–11]. It is well known that charged colloids (i.e.,
macroions) have typically a low relative dielectric constant (εr ≈ 2−5) which is much
smaller than that of the surrounding solvent (e.g., for water εr ≈ 80). In most of the simula-
tion and theoretical works [12–18], it is generally assumed that the electrolyte solution and
electrode have the same relative dielectric constant.

Usually, the electrode is a metal whose relative dielectric constant is infinite. In this
case, the resultant induced charges (caused by the electric field excited by ions in the EDL)
on the electrode surface result in an additional electrostatic force on the ions. The electrolyte
ions in the EDL excites electric field, which causes a redistribution of the free electrons in the
metal; finally, the distribution of the induced charges and salt ions reaches an equilibrium
state under the action of the total electric field generated by the induced charges and
electrolyte ions. At the same time, the electrostatic potential distribution over the electrode
and the EDL region is also determined. If other dielectrics are mixed in the electrode
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material [19,20] (in order to produce an electrode with a low relative dielectric constant),
the bound charge generated by the dielectric due to the polarization of the electric field will
also participate in the above process. As for the problem what is the primary electrostatic
force on the ions in the solutions, this depends on the ratio of dielectric material to metal
material constituting the electrode and the resulting average relative dielectric constant.
The lower the electrode relative dielectric constant, the more the bound charges play a major
role. From fundamental electrostatics the standard treatment of surface polarization at a
dielectric boundary is through imaginary image charges in the medium of the electrode and
consequent image forces. Surface polarization forces radically influence the ion distribution
and hence, the mean electrostatic potential and surface force [21–24].

Understanding the surface polarization effect can increase our ability to control the
EDL structure and disclose work mechanisms for many practical applications, such as
the design of a supercapacitor (SC) [25–28], modulating three-dimensional conformation
of polyelectrolyte brush [29], self-assembly [30,31], ionic profiles [22,23,32], and surface
force [21,33–39].

The present work aims to consider a dielectric discontinuity of the electrode interface
in the classical density functional theory (CDFT) framework. The dielectric discontinuity
denotes two phases with different dielectric constants in contact; at the phase boundary,
the dielectric constant changes discontinuously. The other two quality indicators of the
dielectric, dielectric loss and dielectric strength, are not considered, because these character-
istics are completely beyond interpretation scope of the CDFT, and they are suitable to be
considered by other theories or molecular dynamics simulations [40]. As in the usual elec-
trolyte theories or simulations, we use a general dielectric constant without considering the
dependence on temperature and frequency. The CDFT is a convenient starting point for the
microscopic structure and thermodynamic properties of inhomogeneous fluids [41,42]. It
successfully accounts for the correlation and repulsive volume effects, and is widely applied
to many fields of classical statistical mechanics, such as adsorption [43–46], phase transi-
tions [47–54], inter-surface effective interactions [55–58], electrical double layer [6,59–63],
polymer statistics [64–66], and solid [67–69].

The dielectric discontinuity CDFT is then applied to investigate influence of the
electrode dielectric constant on differential capacitance and energy storage of the EDL
inside a cylindrical pore. In the present work, the electrolyte solution is modeled by
the primitive model (PM), and the solution relative dielectric constant εr is kept fixed
at 10.0, this value is far smaller than that of bulk water. This is another novel point of
the present work as a considerable part of the works for the SC [16,70–73] employing
aqueous electrolyte solution uses the εr value corresponding to that of the bulk water. This
is necessary because as the device size becomes smaller and smaller, amount of solvent
adsorption near the interface tends to decrease [74]; moreover, correlation of the electric
dipole perpendicular to the surface also decreases. It is the two factors [75] that leads to a
decrease of the aqueous dielectric constant inside the pore.

Innovation of this work is that the classical density functional theory is applied to
dielectric discontinuity for the first time. In an earlier work [76], it was clearly written:
“However, the density functional theory and the field theoretic approach have not been
applied to the case of the polarized electrode”.

Layout of the paper is structured as follows. The CDFT approach considering the
dielectric discontinuity is briefly presented in Section 2; model calculations for influences
of the electrode dielectric constant at low bulk dielectric constant value are performed and
the relevant results are presented and discussed in Section 3; finally, the main conclusions
are summarized in Section 4.

2. Model and Method

In the present work, we consider the EDL formed by aqueous electrolyte confined by
a cylindrical pore electrode. The pore is infinitely long, and its radius is R. The cylindrical
pore wall (i.e., the electrode) is hard and perfectly smooth with dielectric constant ε1 = ε0εw

r ,
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where ε0, εw
r are vacuum dielectric constant and electrode relative dielectric constant,

respectively. The inner is charged with uniform surface charge area density σ. The model is
briefly sketched in Figure 1. The aqueous electrolyte is modeled by the so-called PM. In
the PM ions are considered as hard spheres (HS) of a diameter d±. A point electric charge
Zie is placed at center of the HS. Zi is the ion charge number (or ion valence) and e is the
elementary charge strength. The solvent is mimicked by a continuous dielectric medium of
dielectric constant ε2 = ε0εr (εr is relative dielectric constant contributed by the solvent).
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Figure 1. Diagram of the model considered. The electrical double layer is formed by +m/−n (cation
and anion electric valences are, respectively, +m and −n) PM electrolyte inside an infinitely long
cylindrical pore of radius R and with uniformly distributed charges on the inner surface of area
charge strength σ. The electrolyte fluid is with medium dielectric constant ε2, and the electrode has
dielectric constant ε1.

It is usually convenient to describe polarization of the interface by introducing image
charges. For spatially confined systems with curved interfaces or for two closely located
plane interfaces (for thin interlayers), an accurate description of polarization requires the
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introduction of an infinite series of image charges. To deal with the dielectric discontinuity
for a generic interface, it is necessary to numerically solve the corresponding boundary
value problem for the Poisson equation. Although this is usually too time consuming
to be feasible in simulations, it does not constitute any computational burden in the
CDFT calculations.

The electrostatic potential distribution ψ(r) satisfies the Poisson equation in uniform
area Vi with dielectric constant εi (i = 1, 2):

∇2ψi(r) = −
ρ(r)

εi
(1)

where ρ(r) is the free charge density in Vi which is contributed by mobile electrolyte ions.
There are two uniform areas for the present model: V1 denotes the electrode, V2 denotes
the EDL inside the cylindrical electrode pore. At the electrode surface facing the EDL, the
electrostatic potential distribution is continuous, i.e.,

ψ1(r) = ψ2(r) (2)

The potential derivative satisfies another boundary value relation:

ε2
∂ψ2(r)

∂n
− ε1

∂ψ1(r)
∂n

= −σ (3)

∂
∂n denotes the partial derivative along normal direction, pointing from V1 to V2. σ

denotes the free charge area density on the interface between V1 and V2, i.e., the electrode
surface charge area density. For metal electrode with εw

r = ∞, because the metal electrode
in the state of electrostatic balance is an equipotential body, Equation (3) reduces to:

ε2
∂ψ2(r)

∂n
= −σ (4)

By inserting the infinite value of the relative dielectric constant into Equation (1), one

infers immediately that within the metal electrode the electric field strength
→
E satisfies the

following equation:

∇ ·
→
E = 0 (5)

According to integral transformation, one has:∮
S

→
E · d

→
S =

∫
V
∇ ·

→
EdV = 0 (6)

which, combined with the Gauss theorem, gives that there is no free charge inside the
electrode hole. Obviously, this is consistent with the electrostatic equilibrium properties
of conductor.

The free charge density ρ(r) is determined by the ion density distribution ρi(r) in the EDL:

ρ(r) =
2

∑
i=1

ρi(r)Zie (7)

The summation runs over all ion species. The density distribution ρi(r) is calculated
by minimizing the grand potential Ω[{ρi}]. In the CDFT, the Ω[{ρi}] is supposed to be
a functional of ρi(r), and is related to the intrinsic Helmholtz free energy F[{ρi}] via the
Legendre transform

Ω[{ρi}] = F[{ρi}] + ∑
i

∫
drρi(r)(uwi(r)− µi) (8)
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where µi is chemical potential for the i type ion, and uwi(r) is an external potential acting
on the i type species, and for the homogeneously charged and hard cylindrical pore surface
of the present consideration, it is calculated as follows:

uwi(r) =

{
∞, r > R− di/2
Zieψw, r < R− di/2

(9)

where ψw is the electrostatic potential generated by the electrode surface charge area density
σ, and does not depend on r because of the columnar symmetry of the electrode charge
distribution. The value of ψw is not trivial because it influences the density distribution
ρi(r) in the EDL; the value can be determined by the electrical neutral condition.

The intrinsic Helmholtz energy F[{ρi}] includes the ideal gas contribution and the
excess contribution Fex. The former is analytically available from textbook of statistical
thermodynamics, and the latter originates from internal interactions within the system,
and its acquirement has to resort to approximations. In the present calculations, we use
the density functional approximations tested in literatures [77–80]. In detail, the hard
sphere repulsion coming from the internal inter-ion short-range interaction is treated by
a well confirmed fundamental measure functional, the long-range inter-ion electrostatic
interaction is dealt with by mean field approximation, and the interplay between the hard
sphere repulsion and electrostatic interaction is calculated by a second order functional
perturbation expansion whose expansion coefficient is exactly the bulk second order direct
correlation function based on a mean spherical approximation closure to the Ornstein-
Zernike integral equation. Relevant details are recorded in literatures [77–80] and not
repeated here. Particularly, literature [80] indicates that the electrical capacitance properties
of extreme nanoscale SC can still be predicted rather reliably even the prediction of density
distribution becomes worse under the extreme condition.

After numerical solution of the Poisson equation and minimization of the grand po-
tential Ω[{ρi}], both the density distribution and electrostatic potential distribution profiles
in equilibrium are available. The differential capacitance per unit area Cd is calculated
according to definition:

Cd =
∂σ

∂ψ2(R)
(10)

where, ψ2(R) is the electrode potential, which is defined with reference to potential of a
bulk electrolyte.

Accordingly, the energy stored per unit area is calculated as:

E(U) =
∫ U

0
UsCd(Us)dUs (11)

where the U is the final electrode potential, whereas the above ψ2(R) is only used to
calculate the Cd value. So, the ψ2(R) value can be any value between zero and U.

3. Results and Discussion

Four different values of the electrode relative dielectric constant εw
r are used, namely,

εw
r = 5, 500, 2000, and 108, respectively, among which, εw

r = 108 corresponds to a metal
electrode, εw

r = 5 denotes a dielectric electrode. The ion diameters considered are around
d = 4× 10−10 m, so we use d as the length unit to non-dimensionalize the cation and
anion diameters d+ and d−, respectively: the relevant reduced diameters are d∗+ = d+/d
and d∗− = d−/d; the electrode surface charge area density σ is reduced as σ∗ = σd2/e (e
is elementary charge strength); both counter-ion and co-ion adsorptions Γcounter−ion and
Γco−ion are reduced as Γ∗counter−ion = Γcounter−iond2 and Γ∗co−ion = Γco−iond2, respectively.
Four values are considered for the reduced pore radius R∗ = R/d: 2.5, 4.5, 5.5, and
7.5. +m:−n type electrolyte is considered, several representative values are chosen for
the relevant bulk mole concentration cm:n: 125 M,1 M,2,5 M,4 M. The thermodynamic
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temperature and electrolyte relative dielectric constant εr are fixed at 298.15 K and 10,
respectively. For clarity and comparison, we summarize the parameter combinations
corresponding to each of Figures 2–6 in Table 1.
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Figure 6. Same as in Figure 2 except that two values of reduced pore radius R∗ are considered. Values
of other parameters are marked in the text and figures, respectively.

Table 1. Summary of studied parameters.

Figure No c/mol L−1 εw
r R/d d+/d d−/d m:n T/K εr

Figure 2
1.0

5, 500, 2000, 108 4.5 1 1 1:1 298.15 102.5
4.0

Figure 3
0.125

5, 500, 2000, 108 5.5 1 1 2:1 298.15 102.0
4.0

Figure 4 1.0 5, 500, 2000, 108 5.5
0.6

1 1:1 298.15 100.8
1.4

Figure 5 1.0 5, 500, 2000, 108 5.5
0.8

1 2:1 298.15 101.0
1.2

Figure 6 2.5 5, 500, 2000, 108 2.5
7.5 1 1 1:1 298.15 10

The calculation results for the SC specific differential capacitance Cd and specific
energy storage E are presented in Figures 2–6. We will summarize the outcomes caused by
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the low solution εr value and different values of the electrode relative dielectric constant εw
r

by giving a detailed analysis on the present results and comparing the present results with
those based on bulk aqueous εr value, as published previously. To support the analysis,
we present in Figures 7 and 8 the co- and counter-ion adsorption curves and electrostatic
potential profiles within the pore for several parameter combinations in Table 1.

Nanomaterials 2022, 12, x FOR PEER REVIEW 13 of 22 
 

 

The calculation results for the SC specific differential capacitance dC  and specific 

energy storage E  are presented in Figures 2–6. We will summarize the outcomes caused 

by the low solution r  value and different values of the electrode relative dielectric con-

stant 
w

r  by giving a detailed analysis on the present results and comparing the present 

results with those based on bulk aqueous r  value, as published previously. To support 

the analysis, we present in Figures 7 and 8 the co- and counter-ion adsorption curves and 

electrostatic potential profiles within the pore for several parameter combinations in Table 

1. 

 

Figure 7. Co-ion and counter-ion adsorption capacities as a function of electrode surface potential. 

Three cylindrical pore radii and four values of the electrode surface relative dielectric constant are 

considered. Values of other parameters are marked in the figure. 

Figure 7. Co-ion and counter-ion adsorption capacities as a function of electrode surface potential.
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Figure 8. Electrostatic potential profiles within the pore with three different pore radii. The reduced
electrode surface charge density is fixed as σ∗ = 0.3, and four values of the electrode surface relative
dielectric constant are considered. Values of other system parameters are marked in the figure.

One of the most significant changes caused by the low εr value is that both the E value
and the Cd value reduce greatly with the low εr value dropping. Generally speaking, previ-
ous studies indicate repeatedly [73,74] that the Cd value falls within order of magnitude
of F/m2 for the normal aqueous εr value, such as εr = 78.5, whereas for the low εr value,
as considered presently, such as εr = 10, the Cd value falls within order of magnitude of
µF/cm2. i.e., the Cd value goes down two orders of magnitude for approximately equal
electrode potential. Corresponding to this, the E value at voltage of 2 V reduces to one
twentieth of the E value corresponding to εr = 78.5 [73]. We will explore the relevant
action mechanisms by analyzing the ion adsorption inside the pore and the space electrical
potential distribution. The principle of electrostatic field points out that strength of the elec-
trical potential generated by a point charge is in inverse proportion to the medium εr value.
Given equal ion distribution profile and surface charge distribution the electrical potential
strength will increase with dropping of the medium εr value. As a result, the curve of the
voltage versus surface charge becomes less steep; the Cd value and E value reduce accord-
ingly. On the other hand, with decreasing of the solution medium εr value, inter-ionic
electrostatic interaction strength increases. Considering that the counter-ions dominate the
pore unless around a zero charge potential (ZCP), on the average, the inter-counter-ion
electrostatic interaction gets more and more repulsive with decrease of the εr value. As a
result, the inter-counter-ion average separation tends to enlarge to lower the system energy;
moreover, the effect increases with decrease of the εr value. Consequently, the counter-ion
adsorption capacity is lower in εr = 10.0 than in εr = 78.5, and from the point of ion-filling,
both the Cd and E values necessarily reduce with the decrease of the εr value, as it is.

It is noted that the bulk mole concentration influence is far smaller in εr = 10.0 than
in εr = 78.5. The weakening of the influence is reflected in two aspects. First, compared
with the U − Cd curves for εr = 78.5, which change from the camel-shaped to bell-shaped
with the bulk concentration changing from 1 M to 4 M, it is difficult for the U − Cd curves
with εr = 10.0 to finish the shape transition over the same concentration range. However,
the trend of the U − Cd curve shape transition is the same, i.e., with the bulk concentration
increasing, the well depth of the camel-shaped curve around the ZCP gets shallower
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and shallower, and the shape transition trend will eventually emerge. The reason why
concentration induces the transition from camel shaped curve to bell shaped curve near
ZCP is that concentration is an adsorption driving force. Even if there is no electric field
potential energy, enough ions can be adsorbed near the electrode by bulk concentration
alone, so that a capacitance peak appears near the ZCP. Now, due to the relatively low
dielectric constant value used in the calculation, it undoubtedly increases the Coulomb
repulsion energy between the adsorbed ions, thus reducing the amount of ion adsorption
near the ZCP, making it difficult for the peak capacitance to appear. Second, influence of the
bulk concentration on the U − E curve is almost unobserved. This is not in contradiction
with the U − Cd curve concentration dependence. The U − Cd curve change caused by the
bulk concentration is mainly around the ZCP, as shown in the Figures 2 and 3; as a result,
the Cd change with the bulk concentration does not cause obvious change of the integrand
function in the integral in Equation (9). So, the influence of the Cd −U curve change does
not cause obvious change of the U − E curve, as it is. Both the bulk concentration and the
voltage serve as driving force for the ion adsorption. Because the low εr value strengths
the electrostatic interaction between the surface charge and the ion, the bulk concentration
influence is necessarily weakened. It is observed from Figure 3 that the Cd − U curve
is no longer symmetrical around the zero potential point, this is due to the ion electric
valence asymmetry. However, the minimum of the Cd does not occur at U = 0 V. From the
Figure 3, the minimum potential moves to certain positive potential without exception, this
is obviously related to the electric valence difference. When the bulk mole concentration
is very low, the adsorption capacity is very low at the zero charge potential because the
driving force coming from the concentration difference is very low. As a result of the very
low adsorption capacity, the electric valence asymmetry effect cannot be displayed, the
Cd minimum still occurs at U = 0 V. With increasing of the bulk mole concentration, the
driving force from the concentration difference increases; correspondingly, the adsorption
capacity at zero charge potential is no longer negligible, and well depth of the Cd −U curve
reduces [81]. At very close to the zero charge potential, also because of the non-negligibility
of the adsorption capacity, the electric valence asymmetry effect is displayed more and
more obviously. Because the anion charge strength is lower than the cation one, at positive
potential electrode, whose counter-ion is anion, the relevant Cd value is necessarily lower
than that at negative potential electrode. The final outcome is that the Cd minimum occurs
at an appropriate positive potential electrode.

For asymmetrical electrolytes, such as those with ion valency or ion size asymmetries,
both the U − Cd and U − E curves become asymmetrical w.r.t. the ZCP, as expected. In
detail, higher ion valency and/or smaller ion size help(s) in raising the Cd and E values
whether the bulk relative dielectric constant εr = 10 or εr = 78.5. The main difference
is that the counter-ion valency effect in εr = 10 becomes far less obvious than when it is
in εr = 78.5. As a result, the curve asymmetry caused by the valency asymmetry is not
so obvious, as when in εr = 78.5. The difference originates from a balance between two
factors working in opposite directions. On one hand, the counter-ion of higher valency
will increase the charge storage given the same ion adsorption capacity. On the other hand,
high electrical valency helps in raising the inter-counter-ion electrostatic repulsion, and this
tends to decrease the ion adsorption capacity and accordingly the charge storage; moreover,
the trend is reinforced by the low bulk εr value. As a result, of the two factors, the one
restraining the increasing of the charge storage can show its effect better in εr = 10 than
in εr = 78.5. However, one may ask: why the counter-ion size effect remains significant
enough in εr = 10? It is well-known that the hard sphere repulsion is an interaction far
stronger than the electrostatic interaction; as a result, change of the latter strength caused
by the lowering of the εr value, is far weaker than that caused by the former.

For aqueous component electrolyte solution, the electrolysis will occur at the elec-
trode once a voltage of approximately 1.25 V is applied. However, recent effort succeeds
in expanding the electrochemical window of aqueous electrolytes [82]. Moreover, by in-
creasing hydrophobicity of the ion component by using ionic liquid or molten salt, the
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electrochemical window can become wider. Molten salt and some of the ionic liquids
also can be modelled by the PM. Although these nonaqueous electrolyte systems have
lower relative dielectric constant, the present calculations are performed with low relative
dielectric constant. So, considering the limitations caused by the convergence of algorithm
used, the present calculations are performed over a range of the voltage from −2.0 V to
2.0 V. From Figures 2–6, one knows that at the maximum voltage considered the Cd value
is far from approaching zero, and the E value is far from saturation, and actually is still on
the rise. As a result, it is confirmed that a low εr value significantly increases the saturation
voltage, beyond which the E value does not further increase with the voltage applied. The
essential reason for the above phenomenon is that the low εr value strengths the inter-ionic
electrostatic interaction, and accordingly the electrostatic repulsion between the counter-
ions, the dominating ions in the pore, increases. Consequently, to keep the counter-ions
accommodated in the pore in an energetically favorable way, a higher voltage is needed
to offset the electrostatic repulsion between the counter-ions by the electrostatic attraction
between the surface charge and the counter-ions. Although a gentle U − σ curve always
enables a small value of the Cd, it causes a higher value of the voltage corresponding to
the pore closely packed state, as analyzed above. It is known that the energy storage is
roughly proportional to square of the voltage, but only proportional to the Cd value; so, the
high value of the saturation voltage caused by the low εr value significantly increases the
saturation E value. However, to make high voltage value practically possible, one must
use suitable nonaqueous electrolyte with a wider voltage window. Usually, hydrophobic
ionic liquids are of a stable electrochemical window up to 6 V. In fact, the ionic liquids
are usually free of polar solvent, value of the relevant εr is probably even lower than the
present εr = 10 to be responsible for accounting for the electronic polarization of the ions.

It is found that with the decreasing of the electrode εw
r value, both the Cd and E

values rise monotonously for all voltages considered. Generally speaking, for voltage
strength of 2 V, an E value increase rate of 15% can be achieved by reducing the εw

r value
from 108 corresponding to a metal electrode to 5 corresponding to a dielectric electrode. It
should be pointed out that the electrode surface is covered with electrolyte, the electrode
material largely affects the transfer of charge. So, the 15% increase rate is obtained at
the cost of slowed dynamic process. However, two points analyzed below make one
believe that decreasing the electrode εw

r value is still an effective way to improve synthetic
performance of the SC. First, obviously, from the changing trend of the U − E curves, one
can expect that the E increase rate will rise even faster with the voltage. Considering that a
high saturation voltage value is always associated with the low εr value electrolyte, and
the relevant stable electrochemical window for some ionic liquids can be up to 6 V, as
analyzed above, the E value increase rate far higher than 15% can be achieved. Second,
exactly, use of the dielectric electrode may slow down the relevant dynamic process; so it
is necessary to strike a balance between the energy storage density and power density of
the SC. Fortunately, use of the SC is partially encouraged by its exceptionally high power
density and fast charging and low effective series resistance, so there is room to move
the balance point to be favorable for the E value increase rate. Further work is needed to
determine the optimal parameter combination to solve this dilemma. As for why a low
electrode εw

r value always causes both the Cd and E to rise, it can be analyzed from the
perspective of dielectric polarization. With a given σ value, the higher the εw

r value is, the
more intense the electric polarization vector P caused. According to formula: |σ′| = |Pn|
(Pn is the normal component of P), the bound charge area density strength |σ′| rises with
the εw

r value. Consequence of this correlation is that more co-ions can be accumulated near
the electrode surface, and at the same time, the counter-ion adsorption in the vicinity of
the electrode drops somewhat because the counter-ions are repelled by the likely charged
bound charges when they approach the interface, and the presence of the co-ion at the
electrode surface leaves less space for the counter-ion to stay there. The two changes work
in the same direction and help in raising the surface electric potential strength. On the
other hand, the sign of the bound charge is always opposite to that of the electrode surface
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charge, so presence of the bound charge always tends to reduce the surface electric potential
strength. However, the double effects occurring inside of the pore overpasses the single
effect occurring outside of the pore, so the net effect is that the surface electric potential
strength increases with the εw

r value under circumstance of fixed σ value, and accordingly,
both the Cd and E values drop with the εw

r value, as it is. Figure 7 clearly shows the positive
correlation between the co-ion adsorption and the εw

r value and the negative correlation
between the counter-ion adsorption and εw

r value.
Figure 6 displays the pore size effect on the differential capacitance and energy storage.

It is shown that the U − Cd curves move up as a whole with the R value. It is known that a
larger pore is always associated with a smaller curvature, which makes for easy gathering
of the counter-ion around the electrode surface; this necessarily contributes to reduce the
surface electrical potential strength, as clearly shown in Figure 8, and increase the electrical
capacitance, as it is. The E value is positively correlated with the pore size. This is expected
because the larger the pore size, the more the ions can be accommodated; with increasing of
the voltage, more and more co-ions are excluded out of the near electrode region, instead,
more counter-ions are adsorbed, as shown in Figure 7. Consequently, inter-counter-ion
electrostatic repulsions play an increasingly important role; moreover, the repulsions are
strengthened by the low εr value. As a result, the pore size effect is not as big as expected as
the enhanced repulsions between the counter-ions enlarge the inter-counter-ion separation
and accordingly reduce the pore space utilization and the counter-ion adsorption capacity.
With further increase of the voltage applied, the electrostatic attraction between electrode
surface and the counter-ions increases and this helps in offsetting partially the inter-counter-
ion electrostatic repulsions and making the inter-counter-ion separation reduce and the
counter-ion adsorption increase. Consequently, the pore size effect on the E value gets
more and more significant with the voltage for low εr value. It is also shown that the
strength of the εw

r value effect is closely related with the pore size; particularly, the εw
r

value effect gets eventually unobservable for small enough pore if the εw
r value differs from

that corresponding to the dielectric electrode. This is expected because the electrostatic
attraction between the electrode surface and the counter-ions is so strong in small size pore
that the counter-ions can be closely packed regardless of the εw

r value. As a result, even if
the εw

r value changes very much, the counter-ion absorption does not change to the same
extent, and so do both the Cd and E, as it is.

We have not found literatures that provide the correlation of Cd −U and E−U curves
and electrode dielectric constant. Usually, the electrode material is made of metal. With
the progress of electrode manufacturing technology, electrodes mixed with non-metallic
materials and with adjustable dielectric constant will become more and more common.
Our data show the negative correlation between the electrode dielectric constant and
the energy storage of the SC and other concomitant effects. So, the electrode dielectric
discontinuity certainly elicits new changes of multiple dilemmas such as energy-power-
size-hysteresis; [83] solving these dilemmas will be new growth point of the SC field.

4. Summary

The present treatment about the dielectric discontinuity is rather general and applies
for any version of the CDFT as we account for the dielectric discontinuity issue by solving
numerically the boundary value problem of the Poisson equation. We employ the PM for
the electrolyte solution with a relative dielectric constant εr being fixed at 10.0, far smaller
than that of the bulk water, to reflect the actual situation of extremely small size pore.
Consequently, the present results are of practical significance. The main conclusions are
summarized as follows.

(i) The low solution εr value greatly reduces both the Cd value and the E value under
certain electrode potential, but at the same time, significantly increases the saturation
voltage, beyond which the E value does not further increase with the voltage applied,
which significantly increases the saturation E value because of the approximate pro-
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portional relation between the energy storage and square of the voltage in comparison
to the proportional relation between the energy storage and the Cd value.

(ii) Because of the low solution εr value, influence of electrolyte bulk concentration on Cd
is rather small except when the electrode potential is around the ZCP; consequently,
the energy storage curves are rather insensitive to the electrolyte bulk concentration.

(iii) Higher counter-ion valency or smaller counter-ion size help in raising the Cd and
E values. The enhancing effect of the counter-ion valency reduces greatly with drop-
ping of the εr value; whereas the counter-ion size effect remains significant enough
for low εr value.

(iv) Both the Cd and E values increase monotonously with the electrode dielectric constant
εw

r decreasing for all voltages considered; the E increase rate with the dropping of
the εw

r value rises faster with the voltages, and for voltage strength of 2 V the E value
increase rate up to 15% can be achieved by reducing the εw

r value from 108 to 5. For
small enough pore the εw

r value effect gets unobservable when the εw
r value differs

from that corresponding to dielectric electrode.
(v) Both the Cd and the E values are positively correlated with the pore size; but for

the low εr value considered the pore size effect on the E value gets more and more
significant with the voltage applied.
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