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Abstract: In this work, ab initio Density Functional Theory calculations are performed to investigate
the evolution of the electronic and optical properties of 2D Tellurium—called Tellurene—for three
different allotropic forms (α-, β- and γ-phase), as a function of the number of layers. We estimate the
exciton binding energies and radii of the studied systems, using a 2D analytical model. Our results
point out that these quantities are strongly dependent on the allotropic form, as well as on the number
of layers. Remarkably, we show that the adopted method is suitable for reliably predicting, also in
the case of Tellurene, the exciton binding energy, without the need of computationally demanding
calculations, possibly suggesting interesting insights into the features of the system. Finally, we
inspect the nature of the mechanisms ruling the interaction of neighbouring Tellurium atoms helical
chains (characteristic of the bulk and α-phase crystal structures). We show that the interaction
between helical chains is strong and cannot be explained by solely considering the van der Waals
interaction.

Keywords: Tellurium; Tellurene; Density Functional Theory; ab initio; exciton; chain

1. Introduction

Since the advent of graphene [1], much effort has been devoted to the search of two-
dimensional (2D) layered materials, which can often be obtained from layered van der
Waals (vdW) solids. Due to the naturally terminated surface with vdW interactions—
rather than dangling bonds—these 2D materials are generally stable in ambient conditions,
offering extraordinary mechanical, electrical and optical properties. Thanks to the quantum
confinement effect, 2D materials possess distinct characteristics from their corresponding
bulk counterparts, thus receiving wide attention from science and industry. The possibility
of further modifications by means such as stacking, doping, twisting, gating, etc., provides
new potential in the application to electronics, optoelectronics and energy storage devices,
superconductors and so on. Up to now, a large number of 2D materials has been discovered
and fabricated. In particular, elemental 2D materials have gained special interest in the last
years. So far, at least 15 types of elemental 2D materials have been experimentally realised
or theoretically predicted [2–14].

The subject of this work, Tellurene, is a new-emerging elemental 2D material, with fas-
cinating electronic and optical properties, dramatically differing from its bulk counterpart,
which has come to us owing to its unique chained structure. Tellurene is the 2D form of
Tellurium (group VI-A), whose existence was first predicted in 2017 by Zhu et al. [14] and
then verified by several experimental analysis [15–17].
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Tellurene (Te) simultaneously overcomes shortcomings such as the zero-bandgap of
graphene, the air instability of black phosphorus and the small carrier mobility of MoS2.
In further explorations, it was found that Te or Te-based devices present excellent thermo-
electric properties, piezoelectric properties, quantum Hall effect, high carrier mobility and
superb optical properties—especially nonlinear optics characteristics—and many others.
Similarly to other 2D materials, electronic and optical properties of Te can be modulated
by virtue of strain, defects, edges, substrate-induced modulations and so on [18]. All
these interesting features, along with a proven good environmental stability, are critical for
exploring the fundamental properties and the technological prospects of Te or Te-based
devices [19], such as field effect transistors (FETs) [20,21] and chemical sensors [22–24]
above all, as well as many others [25–29].

Monolayer (ML) Te can exist in three different allotropic forms, i.e., the most stable
1T-MoS2-like structure (γ-Te), the metastable orthorhombic (β-Te) and 2H-MoS2-like (ε-Te)
structures [14]. Noticeably, ML α-phase—which is characterised by parallel helical chains,
similarly to the stable bulk Te-I phase—is unstable and can be transformed into ML β-
phase without barrier [30]. From a practical point of view, α-, β- and γ-phase exhibit very
interesting physical properties, good environmental stability and can be more importantly
feasibly fabricated using different experimental techniques [15,17,31,32]. For these reasons,
in this work we focus our attention on these three allotropic forms of 2D Te. Here, the
different phases will be identified following the notation introduced in Refs. [33,34], where
the alphabetical order represents the formation energy of these phases, above the ML, in
ascending order, in contrast with the notation of Ref. [14], where α-Te and γ-Te stand for
our γ-Te and ε-Te, respectively.

In addition to MLs mentioned above, further theoretical calculations have shown that
α-Te should be the most stable phase if the thickness is beyond 1 layer [30], leading directly
to the formation of bulk Te-I for increasing number of layers.

The main intent of this work is to provide a better understanding of the evolution
of the physical properties of Te for increasing number of layers. By means of ab initio
calculations, using Density Functional Theory (DFT), structural relaxations, electronic
bandstructures and optical absorption calculations have been carried out systematically
for three different allotropic forms (α-, β- and γ-phase), for increasing number of layers
(Figure 1). Our studies confirm the results of Refs. [14,30] and provide new outcomes
concerning aspects such as stacking, stability and geometry configurations of 2D Te, the
dependence of electronic bandstructures and optical absorption spectra on the number of
layers (with newfound values of the gaps for the α-phase) and, using an analytical model
for 2D materials [35,36], we evaluate the excitonic binding energies and radii [37–39] of the
studied systems. Finally, in the case of the bulk and α-phase, novel details concerning the
interaction between helical chains of Te atoms are provided.

Figure 1. Perspective and side views of the crystal structures of bilayer (2L) α-, β- and γ-phase
of Tellurene.
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2. Materials and Methods

ab initio calculations have been performed, within the DFT framework, using the GGA-
PBE exchange-correlation functional, as implemented in the Quantum ESPRESSO (QE)
integrated suite [40,41]. Norm-conserving, full-relativistic pseudopotentials with a kinetic
cutoff of 105 Ry have been adopted for all the considered structures. All calculations have
been performed with and without the inclusion of spin-orbit corrections (SOC). For every
system, a full-structure relaxation has been carried out, including different van der Waals
(vdW) corrections, in order to provide optimised lattice parameters. Through a comparison
with previous works in the literature, the Grimme’s DFT-D2 vdW correction [42] was found
to be the most suitable. In order to investigate—properly ab initio—the nature of the of
the interaction between the Te atoms helical chains (characteristic of the bulk and α-phase
crystal structures), the Tkatchenko-Scheffler vdW dispersion correction [43] has also been
used. Electronic bandstructures and optical absorption spectra have been calculated at the
single particle level. Convergence tests were separately conducted on both the k-points
mesh in the Brillouin Zone (using Monkhorst-Pack grids) and empty electronic bands (for
the optical spectra). A vacuum thickness of at least 15 Å has been considered to separate
each replica in the out-of-plane direction.

3. Results
3.1. Geometry and Stability

As mentioned above, Zhu et al. [14] predicted three (meta-)stable phases for 2D ML
Te, namely, β-, γ- and ε-phase, while ML α-phase is unstable and can be transformed
into β-phase without barrier. In this work, the attention is focused on the more stable
and interesting β- and γ-phase — concerning the ML form — also including α-phase for
increasing number of layers, up to a number of 4. In this sense, we provide a complete
and systematic analysis of the evolution of the total energy per atom of the systems (as
shown in Figure 2), also reporting new quantitative results regarding stability, stacking
configurations and lattice parameters.

Figure 2. Total energy per atom (rescaled with respect to an isolated Te atom), for increasing number
of layers, of the three studied phases. The γ-phase is the most stable in the ML configuration, while
the α-phase is preferred for larger layer thicknesses. Note that the ML α-phase is unstable.

Starting from the results obtained for a single layer, our structural relaxations con-
firmed that α-phase is unstable and spontaneously evolves towards the β-phase structure.
The optimised lattice parameters of ML β- and γ-Te are shown in Table 1. The obtained
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results are in very good agreement with other theoretical outcomes [14,44]: remarkably,
in the case of β-Te, starting from an orthorhombic conventional cell with 3 Te atoms, the
axes are slightly tilted, losing all its internal symmetries; γ-Te, on the contrary, possesses a
conventional cell with hexagonal symmetry, containing 3 Te atoms. The γ-phase appears to
be the most stable, with an energy gain of about 53 meV per atom.

Table 1. Optimised lattice parameters (a, b) and (average) buckling parameter (dz), for increasing
number of layers, of the three studied phases. Results from the literature are also reported below
each related value. Note that ML α-Te is unstable. In the case of γ-phase, a = b.

1L 2L 3L 4L

a, b (Å) dz (Å) a, b (Å) dz (Å) a, b (Å) dz (Å) a, b (Å) dz (Å)

α-phase
This work - - 5.79, 4.23 2.10 5.88, 4.28 2.08 5.92, 4.30 2.11

[30] 5.80, 4.27 5.88, 4.31 5.92, 4.34

β-phase
This work 5.48, 4.17 2.17 5.81, 4.18 2.08 5.92, 4.20 2.04 5.96, 4.20 2.03

[14,45] 5.49, 4.17 2.16 5.71, 4.13 5.81, 4.13 5.85, 4.14

γ-phase
This work 4.15 3.68 4.19 3.71 4.19 3.71 4.20 3.72

[14] 4.15 3.67

We discuss now the results obtained for the Te bilayer (2L) structures. In this work,
two different configurations have been studied for both β- and γ-phase, corresponding
to the AA and the AB stacking. For what concerns β-Te, the AB stacking is found to be
more stable than the AA pattern, with an energy difference of about 16 meV per atom.
On the contrary, for γ-Te, the AA stacking results to be the most stable configuration,
with an energy difference of about 30 meV per atom with respect to the AB arrangement.
The 2L γ-phase still maintains its hexagonal symmetry structure, with 6 atoms per unit
cell. Overall, 2L β-phase is more stable than the γ-phase, with an energy difference of
36 meV per atom. In addition, in this case, the optimised lattice parameters, reported in
Table 1, are in fairly good agreement with those reported in Ref. [45]. Interestingly, the
presence of two layers makes the formation of the α-phase energetically sustainable, which,
in this configuration, results to be more stable than both β- and γ-phase, with an energy
difference with β-phase of about 10 meV per atom (see Figure 2). The conventional cell is
orthorhombic, with 6 atoms forming two layers of shifted parallel helical chains.

Starting from 2L α-Te and following an alternate pattern of parallel helical chains,
one can construct three-layer (3L) and four-layer (4L) α-Te: indeed, for increasing number
of layers, the stability of the α-phase becomes prevalent, eventually leading to bulk Te-I:
the energy difference with the β-phase increases to 13 meV per atom (3L) and 16 meV
(4L). The optimised lattice parameters, reported in Table 1, are in very good agreement
with the results of Qiao et al. [30], possibly the only reference concerning ground-state
properties of few-layer (FL) α-Te (obtained with optB86-vdW functional). The 3L and 4L
lattice parameters of β- and γ-phase are also reported in Table 1.

3.2. Electronic Bandstructures

The electronic bandstructures of all three phases have been calculated for an increasing
number of layers, with and without the inclusion of SOC. We have found out that SOC
are essential for a proper description of the electronic properties of Te; hence, here we
present only bandstructures with SOC included. The evolution of the electronic bandgap
for increasing number of layers is displayed in Table 2.
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Table 2. Calculated DFT electronic bandgaps, for increasing number of layers and with the inclusion
of SOC, of the three studied phases. When the bandgap is indirect, we also report the direct bandgap
value (in square brackets). Note that ML α-Te is unstable and 4L γ-Te is metallic.

1L 2L 3L 4L

EG (eV) EG (eV) EG (eV) EG (eV)

α-phase − 0.67 [0.86] 0.50 [0.62] 0.42 [0.48]
β-phase 1.02 0.31 0.051 0.006 [0.075]
γ-phase 0.42 [0.54] 0.15 [0.26] 0.026 [0.19] 0

In the case of the β-phase, bandstructure calculations were performed along the high-
symmetry directions given by the k-path Y → Γ → X → S → Y in the orthorhombic 2D
Brillouin Zone (BZ) (Figures 3 and 4). Interestingly, in ML β-Te (as well as in 2L and 3L) the
inclusion of SOC induces a transformation from an indirect to a direct bandgap at the Γ
point, in agreement with Zhu et al. [14]. By increasing the number of layers, the electronic
bandgap of the β-phase decreases from 1.02 eV (in agreement with Refs. [14,46]), in the ML
case, to 0.31 eV (2L), 51 meV (3L) and 6 meV (4L), in which the valence band maximum
(VBM) and the conduction band minimum (CBM) move away from the Γ point, giving rise
to an indirect bandgap.

(a) (b)

(c)

Figure 3. Electronic bandstructures, obtained by using a PBE functional, with the inclusion of SOC,
for ML γ-Te (a) and β-Te (b). Energy rescaled with respect to the VBM. 2D hexagonal (c, left) and or-
thorhombic (c, right) BZ, with the high symmetry points used in electronic bandstructure calculations.

Regarding the γ-phase, the calculations were performed along the high-symmetry
directions Γ → M → K → Γ in the hexagonal 2D BZ (Figures 3 and 5). In this case, the
inclusion of SOC does not modify the nature of the gap, which remains indirect, but still
moves the position of the VBM from the K → Γ to the Γ → M direction, with the CBM
remaining fixed at Γ, except for 4L γ-Te, which apparently undergoes a semiconductor-to-
metal transition, with the conduction band exceeding the valence band at Γ. In addition,
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also in this case, the electronic bandgap decreases with increasing number of layers, going
from 0.42 eV (ML, in agreement with literature [14]) down to 0.15 eV (2L), 26 meV (3L)
and then vanishing with a semiconductor-to-metal transition when the number of layers
is equal to 4 (see Table 2). This metallic transition may be due to the fact that the γ-phase
is expected to completely transforms—at 5 layers—into a further phase, called α′ (which
however is still less stable than β- and α-phase) [30] and it is thus subject to increasing
strain.

(a) (b)

(c)

Figure 4. Electronic bandstructures, obtained by using a PBE functional, with the inclusion of SOC,
for 2L β-Te (a), 3L β-Te (b) and 4L β-Te (c). Energy rescaled with respect to the VBM. High-symmetry
points related to Figure 3 (orthorhombic BZ).

In Figure 6, we report the bandstructures calculated for the α-phase, considering a
standard high-symmetry directions path Γ → X → S → Γ in the orthorhombic 2D BZ.
Starting from the bandstructures of Figure 6, we extrapolate GGA-PBE indirect energy gaps
of 0.78 eV (2L), 0.64 eV (3L) and 0.46 eV (4L), which are similar to the ones of Ref. [30],
obtained by using the same functional, that is, 0.71, 0.52 and 0.44 eV, respectively. However,
this path is not the best choice to evaluate the bandgaps of FLs α-Te. Indeed, a very dense
sampling of the BZ has revealed that both the VBM and CBM should be found out of
high-symmetry directions—approximately around k-point (0.21, 0.20, 0), nearby the X → Y
direction—for all the layers, giving overall novel lower values of the electronic bandgaps,
that is, 0.67 eV (2L), 0.50 eV (3L) and 0.42 eV (4L). As in the previous cases (see Table 2
and Figure 3), the electronic bandgap decreases for increasing number of layers, slowly
tending to the estimated PBE-SOC limit of bulk Te-I of about 30 meV [46]. Band-splitting,
due to SOC, lowers the value of the electronic bandgaps without changing their nature,
which remain indirect. Overall, the inclusion of SOC makes α-phase bandstructures very
dense and tangled, with the emergence of recurring linear or nearly-linear band dispersions
below and above the Fermi level, especially at high-symmetry Γ and X points.
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(a) (b)

(c)

Figure 5. Electronic bandstructures, obtained by using a PBE functional, with the inclusion of SOC,
for 2L γ-Te (a), 3L γ-Te (b) and 4L γ-Te (c). Energy rescaled with respect to the VBM (and Fermi
energy for 4L). High-symmetry points related to Figure 3 (hexagonal BZ).

(a) (b)

(c)

Figure 6. Electronic bandstructures, obtained by using a PBE functional, with the inclusion of SOC,
for 2L α-Te (a), 3L α-Te (b) and 4L α-Te (c). Energy rescaled with respect to the VBM. High-symmetry
points related to Figure 3 (orthorhombic BZ). Note that lower values of the gaps were found out of
high-symmetry directions and they are reported in Table 2.
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3.3. Optical Absorption

We now move on to discuss the optical properties (in particular, the optical absorp-
tion) of the three studied phases for increasing number of layers, with SOC included. A
detailed convergence of the optical spectra requires the use of dense k-mesh grids, that
is: 180× 180× 1 for MLs, 120× 120× 1 for 2Ls, 90× 90× 1 for 3Ls and 45× 45× 1 for
4Ls. Due to their unique features, results obtained for the ML β- and γ-Te are discussed
separately.

From the linear response theory for a homogeneous medium, the absorption coefficient
A(ω) is given by:

A(ω) =
ω

c
ε2(ω)Lz (1)

where c is the speed of light in vacuum, ε2(ω) is the imaginary part of the dielectric function,
defined as ñ2(ω) = ε(ω) = ε1(ω) + iε2(ω), and Lz is the length of the supercell in the
(out-of-plane) z-direction. In this way, the calculated absorbance is independent of the size
of the vacuum in the z-direction of the periodic supercell. In the dipole approximation,
ε2(ω) can be defined—save for a constant factor—through the Fermi’s golden rule as:

ε2(ω) ∝
1

Vω2 ∑
c,v

∑
k
|〈ψc,k|ê · p|ψv,k〉|2 δ(Ec,k − Ev,k − }ω). (2)

In our approach, absorption spectra are calculated without including phonon contri-
butions, that is, only direct transitions are permitted (i.e., q = 0). As a consequence, the
absorption energy threshold is uniquely determined by the direct energy gap of the system.
Moreover, we neglect quasiparticle and excitonic effects, which will be the subject of a
further work.

Here, ε2(ω) is computed using the pw2gw tool of the QE package, which gives
separate contributions in the axis directions; then, by taking the mean value of the x and y
components, the in-plane optical absorbance has been calculated starting from Equation (1).

Optical absorption spectra calculated within the single-particle approximation for
the ML β- and γ-Te are reported in Figure 7. Due to the smaller direct energy gap, γ-Te
shows a lower absorption energy threshold than β-Te. Moreover, it shows a more intense
optical response in the range of energies 0.8–4 eV. In β-Te (Figure 7a), intense peaks stick
out roughly between 1.5 and 2 eV and between 2.5 and 3 eV. Interestingly, we found that
ML β-Te shows a strong optical anisotropy at low photon energies. In fact, an analysis
of the dipole matrix elements (see Equation (2)) reveals that the peak at around 1.5 eV is
mainly due to transitions for light polarised along the in-plane y direction, which thus
gives a major contribution to the mean overall behaviour.

(a) (b)

Figure 7. In-plane optical absorbance of (a) ML β- and (b) γ-Te, with the inclusion of SOC. Absorption
energy threshold estimated values of 1.02 eV and 0.54 eV, respectively.
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Increasing the number of layers, the optical response gradually grows, especially in the
case of the γ-phase (Figure 8a), which shows a very large absorbance between 1 and 2 eV,
with two very intense peaks at about 1 and 1.6 eV (4L) as well as a non-neglibile activity
between 7 and 8 eV; as for β-phase (Figure 8b), a significant optical absorption appears to
start at very low energies, with a very pronounced peak (for 3L and 4L) at around 1 eV.
Very interestingly, β-phase appears to almost completely lose its optical anisotropy when
the number of layers is increased, despite its crystal structure. The general reduction of
the energy gap with increasing number of layers (see Table 2) leads, for both phases, to a
lowering of the absorption energy threshold, which reach the lower value for the metallic
4L γ-Te system (see Table 2).

(a) (b)

(c)

Figure 8. In-plane optical absorbance comparison between 2L, 3L and 4L γ- (a), β- (b) and α-Te (c),
with the inclusion of SOC. Overall, the absorption energy threshold decreases for increasing number
of layers (see Table 2).

Finally, the optical absorption of the α-phase is shown in Figure 8c. Also in this case,
the absorption energy threshold decreases with increasing number of layers (see Table 2).
This effect is associated to a non-negligible increase of the optical response in the range of
energy up to 3 eV.

3.4. 2D Exciton Model

In this section, we apply analytical methods, introduced by Keldysh [35] and Ry-
tova [36], for estimating, as a good approximation, the exciton binding energies (EB) and
exciton radii (rex) of 2D-Te. These methods have been already successfully applied to hydro-
genated group IV 2D sheets (graphane, silicane, germanane, and hydrogenated SiC) [38]
and group III 2D ML nitrides [39].

In the limit of isolated sheets of vanishing thickness, that is, 2D structures formed by
few layers within a simulation box, sufficiently large to avoid spurious interaction between
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replicas, the statically (ω → 0) screened electron-hole interaction can be described by the
Rytova-Keldysh potential, that is:

W(ρ) = −πe2

2ρ0

[
H0

(
ρ

ρ0

)
− N0

(
ρ

ρ0

)]
(3)

where H0 is the Struve function, N0 is the Neumann-Bessel function of the second kind,
and ρ0 is the screening radius ρ0 = 2πα2D, with α2D the static electronic sheet polarizability,
given by:

α2D =
L

4π
ε
‖
2(0). (4)

In Equation (4), L is the cell thickness along the periodic direction (z-axis) and ε
‖
2(0)

is the immaginary part of the in-plane zero-frequency dielectric function, that can be
calculated using an independent particles approach, as discussed in Section 3.3.

The exciton binding energies and radii can be determined by solving a 2D Schrödinger-
like equation: {

EG −
}2

2µ
∇2

ρ + W(ρ)

}
φn(ρ) = Enφn(ρ) (5)

which describes the internal motion of an electron-hole pair with a reduced mass µ, at a
distance ρ, in a material with energy gap EG. This simple, single particle approach of the
electron-hole problem generally provides a rather reliable qualitative (and even quantita-
tive) description of the studied systems, regarding the lowest-energy excitons. Equation (5)
can be analytically solved only in the limit ρ/2πα2D � 1 [47,48]. Otherwise, by applying
a variational approach with a trial wavefunction, we can obtain an analytical expression
for both EB(λ) and rex(λ), which depend explicitly on the variational parameter λ and also
through the parameter β(λ) = aex/8πλα2D, where aex = aBm/µ is the Bohr radius renor-
malised by the effective reduced mass µ in the units of the electron mass m (see Ref. [38] for
more details). The exciton binding energy EB(λ) has to be maximised with respect to λ and
can then be calculated for different values of 4πα2D/aex. The result is shown in Figure 9.
The binding energy (red solid line) decreases with increasing polarizability α2D, while
the exciton radius (blue solid line) increases. The left-hand limit (β(λ)� 1) corresponds
to having an unscreened 2D Coulomb potential in Equation (5), i.e., W(ρ) = −e2/ρ. On
the other hand (β(λ)� 1), we have a logarithmic behaviour for the screened interaction
(W(ρ) ∝ ln(4πα2D/ρ)).

For the considered 2D Te structures, the electron (hole) effective mass has been calcu-
lated starting from the electronic bandstructure, evaluated nearby the CBM (VBM) (see [49]
for more details). The obtained results, averaged in the x and y directions and renormalised
by m, are reported in Table 3 for all the considered systems, except for metallic 4L γ-Te.
Here, it is worth highlighting that, while γ-phase exhibits a perfect isotropy in the two
in-plane directions, α- and (especially) β-phase display a noteworthy anisotropy, with
higher values of the effective mass in the x direction.

The estimated values of the exciton binding energies EB are reported in Table 3. When
possible, they are compared with the results obtained within GW-BSE calculations [46,50],
showing a very good agreement. Further to this point, we just point out that, in the case
of ML β-Te, Pan et al. [46] performed calculations, without SOC, with polarized light,
obtaining a binding energy of EB = 0.47 eV in the x direction and EB = 0.67 eV in the
y direction [46], thus an in-plane mean value of about EB = 0.57 eV. To the best of our
knowledge, there is no such calculation for FL α-Te.
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Figure 9. Numerical solutions of the 2D exciton model, for EB/Rex (red) and rex/aex (blue), as
expressed by Equation (5), showing the two limits discussed. EB and rex are the exciton binding
energy and radius, respectively; Rex = RH

µ
m is the 3D hydrogenoid Rydberg RH , renormalised by

the ratio between the effective reduced mass µ and the free electron mass m; aex = aB
m
µ is the Bohr

radius aB, renormalised by the free electron mass and the effective reduced mass ratio. Results for Te
are all from this work. Credits to [37–39] for the other results reported (see top left inset): InN (green),
GaN and Graphane (grey), BN (orange), AlN (cyan), Plumbene:H (magenta).

Table 3. Exciton binding energy (EB) and radius (rex), as calculated within the Rytova-Keldysh
model, compared to reported GW-BSE results in literature (EBSE

B ). Extrapolated exciton reduced mass
renormalised with respect to the free electron mass (µ/m) is also reported.

µ
m EB (eV) rex (Å) EBSE

B (eV)

2L α-Te 0.36 0.26 15
3L α-Te 0.34 0.17 19
4L α-Te 0.26 0.12 25
1L β-Te 0.34 0.57 9 0.57 [46]
2L β-Te 0.17 0.15 26
3L β-Te 0.09 0.06 57
4L β-Te 0.02 0.01 267
1L γ-Te 0.10 0.20 27 0.15 [50]
2L γ-Te 0.07 0.07 63 0.10 [50]
3L γ-Te 0.13 0.06 52 0.07 [50]

As expected, by increasing the number of layers, we observe a decreasing of the
exciton binding energy. This is due to the related decreasing of the bandgap, accompanied
by a more effective electronic screening. Moreover, we generally observe a reduction of the
exciton reduced mass for increasing number of layers. This results in an increasing of the
exciton radius, as shown in Table 3.

Physically, the model allows us to get insights into the features of the systems: as
shown in Figure 9, the values we obtained lie beyond those of other previously studied
systems [37,39], towards the logarithmic limit (β(λ)� 1). This means that, in our case, the
bound state formed by the electron-hole pair cannot be described in terms of a quasiparticle
in a hydrogen-like, 2D unscreened Coulomb potential (β(λ) � 1). We can also deduce
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that these systems should possess an important electronic screening, thus showing weakly
bound, widespread excitons.

3.5. Tellurium Interchain Interaction

The most stable structure of bulk Te at room pressure is trigonal and it is known as
Te-I. It consists of helical chains parallel to the c-axis, which are arranged in a hexagonal
array. This arrangement characterises also the FL α-Te, which shows a structure organised
in shifted layers of parallel chains (see Figure 1). In order to properly study the struc-
tural properties of these systems, it is necessary to investigate the mechanisms ruling the
interaction between these helical chains.

In Te structures, chemical bonds are mainly formed through the involvement of 5p
states. For each Te atom in a chain, two p-electrons covalently bond with two adjacent Te
atoms along the chain, while lone pairs of electrons (the remaining two p-electrons of each
Te) are allocated between the chains. This kind of electronic coupling should give rise to
strong interactions along the chain (intrachain interaction) as well as to weaker interactions
between neighbouring chains (interchain interactions).

A vdW-like force was initially invoked to describe the interchain interaction between
chained Te layers [51]. This picture was however argued by Yi et al. [52] that, starting from
the results obtained by measurements of electrical resistivity, Hall coefficient, and thermo-
electric power [53], proposed a scheme where the interchain interaction was ascribable
to the formation of weak chemical bonds between the electron lone pairs of Te atoms of
neighbouring chains. In this picture, each Te atom in the chain behaves as both an electron
acceptor and an electron donor to and from the neighbouring chains, creating an interchain
bond relatively weaker than the covalent ones along the chains. Nonetheless, the actual
nature of this interchain interaction remains debated.

As a starting point in our investigation, we adopted the analysis proposed by
Alvarez [54], which establishes robust geometric and bonding criteria to identify elements
and compounds characterised by vdW-like interactions. Noticeably, this approach was
also adopted by Marzari et al. [55] to predict, by high-throughput calculations, a set of
novel, stable and promising 2D materials. By extracting, for a given couple of elements, a
vdW peak (see Figure 10) from an histogram sampling the experimental bonding distances,
and by introducing the vdW radii sums as the point of maximum slope of the vdW peak
(e.g., the distance corresponding to the full width half maximum of the vdW peak), S. Al-
varez defines a simple semi-quantitative guide to address a given intermolecular distance
between an atom pair, that is:

• interatomic distances between±0.7 Å the vdW radii sum fall into the vdW peak, while
longer distances should indicate non-interacting atoms;

• distances shorter than the vdW radii sum by more than about 1.3 Å correspond most
likely to a chemical bond, and those between 0.7 to 1.3 Å shorter fall within the so
called “vdW gap” (see Figure 10), thus suggesting a special bonding situation that
asks for a deeper analysis.

Figure 10. Pictorial scheme of a general atom-atom bonding length distribution, as described by
Alvarez [54].
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The above analysis is unambiguously valid whenever the chemical bond peak and
the vdW peak (both with a proper width) are clearly discernible, that is, when they are
separated by a vdW gap, a range of distances at which practically no other peaks are found.
This is qualitatively schematised in Figure 10. Otherwise, this scheme cannot be somehow
predictive. In our case of interest, Alvarez found a non-neglibile superposition between
the tails associated to the above-mentioned peaks; that is, the Te-Te interaction distribution
is characterised by a “pseudo” vdW gap. Considering the calculated average interchain
equilibrium lengths of 2L, 3L and 4L α-Te, which are, respectively, 3.25, 3.31 and 3.34 Å, they
clearly appear to be borderline within the 0.7 spread around 3.98 Å, which corresponds to
the Te vdW radii sum given by Ref. [54]. Thus, a simple analysis of the interchain distance,
starting from the systems under study, does not unambiguously clarify the role played by
the vdW interaction in our situation and a different approach is needed.

In order to deepen our understanding on this matter, we performed DFT calculations
for a pair of helical chains, adopting both (i) semi-empirical Grimme’s DFT-D2 [42] and the
(ii) ab initio Tkatchenko–Scheffler vdW dispersion correction [43].

Preliminarly, structural properties of a single chain consisting of a unit cell of 3 Te
atoms have been converged within the DFT framework, both with and without the inclusion
of vdW corrections. Then, in order to investigate the role played by the vdW corrections
in the interchain distance, two different simulations have been performed. First, we have
followed the most simple approach, in which two parallel chains have been rigidly and
gradually moved closer and studied with and without the inclusion of the Grimme’s vdW
correction. The results of this analysis is shown in Figure 11, where the interchain binding
energy is reported as a function of the interchain distance and the equilibrium interchain
separation is highlighted. Secondly, we refine our approach, by letting the whole system
to fully relax at each chosen interchain distance, with and without the inclusion of the
Tkatchenko–Scheffler vdW correction.

Figure 11. Interchain binding energy as a function of the interchain distance, with and without the
inclusion of the Grimme’s DFT-D2 vdW correction. In both case, the chains possess the same fixed
geometry. Red dots correspond to the equilibrium interchain separation of minimum energy for the
two cases. Energy rescaled with respect to the relative isolated chains (with and without vdW).

Remarkably, the two approaches led essentially to the same conclusion, that is, the
inclusion of the vdW correction does not imply substantial changes in the equilibrium
interchain length. In the first case, indeed, the calculated values were 3.53 Å and 3.60 Å,
respectively with and without the inclusion of Grimme’s vdW correction (see Figure 11),
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in good agreements with the results of Ref. [52]. In the second case, even though the
two chains ended up twisting while remaining parallel, we found similar values (3.46 Å
and 3.53 Å) for the equilibrium interchain length, respectively with and without inclusion
of Tkatchenko–Scheffler vdW correction. In conclusion, the analysis of the interchain
distance alone cannot clarify the role played by the vdW interaction in the case of interest
(see [56] for more information). The situation becomes instead clear if we analyse the
energy contributions involved in the interchain interaction, as explained in the following.

From an energetic point of view, the strength of the interaction between the heli-
cal chains can be estimated by computing the interchain binding energy Eb, defined by
Eb = Ec − 2Es, where Ec is the total energy of a couple of interacting chains and Es that
of a single isolated chain; in this way, we identify only the energetic contributions related
to the interaction between the chains, as it is shown in Figure 11. We can see that, when
vdW corrections are included, Eb is about 721 meV (the minimum energy of the black
solid line in Figure 11), while it reduces to 538 meV when vdW corrections are not consid-
ered (the minimum energy of the blue dashed line in Figure 11). Thus, the net difference
between these two values (about 183 meV) should be attributed to the vdW correction
alone. Here, two interesting points may be underlined: first, the value of Eb obtained
including the vdW correction corresponds to about 120 meV/atom (we have considered
systems with 6 atom per unit cell), somehow compatible with the one calculated for bulk
Te-I by Yi et al. [52], with a GGA-PBE functional. Noticeably, it is much larger than the
experimentally observed interlayer binding energy of graphite (ranging between 31 and
35 meV/atom [57,58]) or those calculated with different computational approaches and
functionals for bilayer graphene (between 18 and 72 meV/atom [59–64]). These results
underline that Te helical chains are strongly interactive if compared to systems in which a
vdW-like force is responsible for the interlayer interaction. Secondly, the vdW contribution
to Eb appears to be nearly just the 25% of the total, which, on one side, points out that the
vdW interaction is clearly not the principal contribution to the interchain interaction; on
the other, that the vdW interaction cannot be neglected for this kind of structure.

The relevance of the strongly interacting nature of the chains can be revealed by
computing the Electron Localisation Function (ELF), following the analysis given by
Koumpouras et al. [65]. The ELF is the probability density of finding another electron near
a reference electron with the same spin and it is associated with the electron density of the
system. The ELF is a relative (adimensional) measurement of the electron localisation and
it takes values between 0 and 1. When it is close to unity (>0.7), the electrons have to be
considered as localised (core, covalent bonding regions or lone pairs); on the other hand,
when it is in the range between 0.2 and 0.7, the electron localisation is similar to that of
the electron gas and hence it is proper of metallic bonds. Here, we compare the ELF of
two adjacent Te atoms along the chain with that of the two nearest-neighbours Te atoms
between two parallel chains. The ELF is shown in Figure 12 as 2D plots on vertical planes
axially cutting a Te-Te bond along a chain or between chains. They manifestly display
the different nature of the two bondings, as indicated by the bond lengths found in our
calculations: a very localised, covalent-like bonding character along the chains (>0.7) and a
weakly localised, metallic-like bonding character between the chains (slightly above 0.2).
It is important to stress the fact that, in the latter case, the ELF between the chains is low
but not zero, as it would appear for a vdW-like interaction. This residual value of the
ELF could be due to the uneven distribution of the highly localised regions of the outer
shells, seemingly corresponding to the lone pairs of electrons associated with each Te atom.
Indeed, while one pair is localised also along the bond axis (Figure 12b, left atom), the other
is moved away from it (Figure 12b, right atom).
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(a) (b)

Figure 12. Electron localization function (ELF) for two Te helical chains. Vertical 2D plot cutting
through a Te−Te bond axis along a chain (a) and between the chains (b).

Apparently, these results show that the interchain interaction should definitely not
possess a covalent (or chemical) character; however, its borderline behaviour (in the terms
expressed by Alvarez [54]), together with the arguments brought by Yi et al. [52] and,
finally, our results, may lead to think that the lone pairs of the valence electrons allocated
between the chains, repelling each other and attracted by these so-created depleted zones,
in competition with a vdW-like interaction, could likely cause the interchain distance to
reduce, giving life to this hybrid, apparently ambiguous result.

4. Conclusions

By means of first-principles calculations, using DFT, we provide novel results in the
characterisation of the evolution of the physical properties of three different allotropic
forms (α-, β- and γ-phase) of 2D Tellurium (Tellurene), for increasing number of layers.

Our calculations confirm that γ-phase is the most stable in the monolayer config-
uration, while α-phase is more stable when the number of layer is greater than 1. The
calculation of the electronic properties necessarely requires the inclusion of SOC corrections.
Overall, the bandgap appears to decrease with increasing number of layer for all the studied
phases. Moreover, lower values of the gaps were found, out of symmetry directions, in the
case of the α-phase, thanks to a very dense sampling of the Brillouin Zone. The studied
systems share a strong optical absorption with characteristic differences between 0 and
4 eV. The 2D exciton model shows that the exciton binding energy tends to decrease by
increasing the number of layers. This is due to the related decreasing of the bandgap,
accompanied by a more effective electronic screening. Moreover, we generally observe a
reduction of the exciton reduced mass for increasing number of layers, which results in
an increasing of the exciton radius. Finally, our calculations show that, despite the vdW
interaction is not negligible, the equilibrium minimum interchain separation should be
mainly attributed to the lone pairs of the valence electrons allocating between the chains.
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