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Porous materials have applications in a wide range of research and industrial processes.
The food industry, agricultural products, biomedical and pharmaceutical technology, wood
processing, urban construction, ceramic products, gas separation, filtration processes,
drying, and catalysts are just a few examples. The scientific interest has increased in
the investigation of porous nanomaterial properties—especially the properties of hybrid
porous nanomaterials.

Hybrid nanomaterials contain two or more different components, typically, inorganic
and organic components, which are brought together by specific interactions, and the result
is the synergistic enhancement of their chemical and functional properties. These new
enhanced properties have piqued the interest of both academia and the industry towards
energy, environmental, and health applications. Hybrid nanoporous materials can provide
solutions in numerous applications, such as fuel cells, batteries, sensors and biosensors,
building materials, gas separation and storage processes, catalytic reactions, and water
treatment processes, to name a few.

Within this context, this Special Issue, entitled “Hybrid Porous Nanomaterials for En-
ergy and Environment”, offers to readers a compilation of relevant contributions exhibiting
the potentialities of emerging hybrid porous nanomaterials with potential applications
bilaterally in energy and the environment.

The current Special Issue consists of six original research papers in different, but
equally interesting, fields of porous nanomaterials with remarkable applications in energy
and environmental fields. A short description for each article of the Special Issue “Hybrid
Porous Nanomaterials for Energy and Environment” is presented herein.

A study which describes the best coating configuration for nanoparticles of a porous
metal–organic framework (MOF) onto both insulating or conductive threads and nylon fiber
is part of this collection. In this study, by Rauf et al., customized polymethylmethacrylate
sheets (PMMA) holders to deposit MOF layers onto the threads or fiber using the LB
technique were designed and fabricated. The results demonstrate a significant contribution
in terms of MOF monolayer deposition onto single fiber and threads that will contribute to
the fabrication of single fiber or thread-based devices in the future [1].

Heng et al. studied the solar-powered photodegradation of pollutant dyes using
silver-embedded porous TiO2 nanofibers. Remarkable evidence of this work is that the
use of electrospun Ag-embedded TiO2 nanofibers, as a photocatalyst, was effective in
decomposing rhodamine B and methyl orange dyes under a solar simulator in 3 h. This
showcases the potential of a simple and economic wastewater treatment system for the
removal of organic pollutants using hybrid porous nanomaterials [2].

An effective self-supported electrode for the electrocatalytic hydrogen-evolution re-
action was prepared and presented by Qi et al. This electrode was a novel porous three-
dimensional Ni-doped CoP3 nanowall array on carbon cloth. The synthesized/studied
samples exhibited rough, curly, and porous structures, which are beneficial for gaseous
transfer and diffusion during electrocatalytic processes. The achieved over-potentials of
176 mV for the hydrogen-evolution reaction afforded a current density of 100 mA/cm2,
indicating that the electrocatalytic performance could be dramatically enhanced via Ni
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doping. The Ni-doped CoP3 electrocatalysts with increasing catalytic activity should have
significant potential in the field of water splitting into H2. As the authors mentioned, their
study opens avenues for the further enhancement of electrocatalytic performance through
tuning of the electronic structure and d-band center by doping [3].

Another interesting study was performed by Alinejad et al., and concerns two porous
silica membranes, a novel structure of a hydrogen–membrane reactor coupling HI decom-
position and CO2 methanation. A 2D model was developed, and the effects of feed flow
rate, sweep gas flow rate, and reaction pressure were examined by computational fluid
dynamic (CFD) simulation. The theoretical predictions demonstrated that the best results
in terms of HI conversion were 74.5% for the methanation membrane reactor and 67% for
the simple membrane reactor [4].

In another study, conducted by Metaxa et al., the effect of different MWCNT concentra-
tions and different types of surfactants and a superplasticizer were examined to reinforce,
at the nanoscale, a white cement mortar typically used for the restoration of monuments of
cultural heritage. Carboxylation of the MWCNT surface with nitric acid did not improve
the mechanical performance of the white cement nanocomposites. The parametric experi-
mental study showed that the optimum combination of 0.8 wt.% of cement superplasticizer
and 0.2 wt.% of cement MWCNTs resulted in a 60% decrease in the electrical resistivity;
additionally, the flexural and compressive strengths were both increased, by approximately
25% and 10%, respectively [5].

Finally, the sixth paper, by Tolkou et al., examined the performance of activated car-
bon produced from coconut shells, modified by lanthanum chloride, for Cr(VI) removal
from waters. The structure of the formed material (COC-AC-La) was characterized by the
application of BET, FTIR, and SEM techniques. The results indicated that the maximum
Cr(VI) removal was observed at pH 5; a 4 h contact time and 0.2 g/L dosage of adsorbent
was adequate to reduce Cr(VI) from 100 µg/L to below 25 µg/L. The maximum adsorption
capacity achieved was 6.3 µg/g at pH 5. At this pH value, the removal percentage of Cr(VI)
reached 95% for an initial Cr(VI) concentration of 30 µg/L. At pH 7, the corresponding effi-
ciency was roughly 60%, resulting in residual Cr(VI) concentrations below the anticipated
drinking water limit of 25 µg/L of total chromium, when the initial Cr(VI) concentration
was 50 µg/L. Consecutive adsorption and regeneration studies were also conducted, and
the results showed a 20% decrease in adsorption capacity after five regeneration cycles of
operation [6].

At this point, I would like to thank the authors for choosing the Special Issue “Hybrid
Porous Nanomaterials for Energy and Environment” for submitting their excellent studies.
In fact, the collection of these articles took place during the COVID-19 pandemic, a strange
period where the laboratories, worldwide, were working in non-normal conditions.

I also hope, and wish, that all readers will enjoy the articles of this Special Issue.
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