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Abstract: Carbon dots (CDs) have caught enormous attention owing to their distinctive properties,
such as their high water solubility, tunable optical properties, and easy surface modification, which
can be generally used for the detection of heavy metals and organic pollutants. Herein, nitrogen
and fluorine co-doped carbon dots (NFCDs) were designed via a rapid, low-cost, and one-step
microwave-assisted technique using DL-malic acid and levofloxacin. The NFCDs emitted intense
green fluorescence under UV lighting, and the optical emission peak at 490 nm was observed upon a
280 nm excitation, with a high quantum yield of 21.03%. Interestingly, the spectral measurements
illustrated excitation-independent and concentration-independent single-color fluorescence owing to
the presence of nitrogen and fluorine elements in the surface functional groups. Additionally, the
NFCDs were applied for the selective detection of Fe3+ and ascorbic acid based on the “turn-off” mode.
The detection limits were determined as 1.03 and 4.22 µM, respectively. The quenching mechanisms
were explored using the static quenching mechanism and the inner filter effect. Therefore, a NFCDs
fluorescent probe with single color emission was successfully developed for the convenient and rapid
detection of Fe3+ and ascorbic acid in environments.

Keywords: carbon dots; nitrogen and fluorine-doped; fluorescent sensor; ferric ion; ascorbic acid

1. Introduction

With the development of chemical industries, water pollution caused by heavy metal
ions and organic pollutants has become a major environmental and public health issue.
Ferric ion (Fe3+) is a transition metal that plays a vital role in biogeochemical processes [1,2].
As the fourth abundant element in the Earth’s crust, iron can be found in both surface and
underground waters. Moreover, the various applications of Fe-related industrial processes,
such as sewage treatment systems and a Fenton reagent, would further increase the amount
of iron in environments and thus cause potential hazards to human health [3,4]. It has been
widely recognized that a high concentration of Fe3+ is associated with various health impli-
cations, including cancers of different organs, cellular homeostasis, or metabolism [4–7].
Additionally, the permissible amount of ferric ions in drinking waters was set at 300 ppb by
the Environmental Protection Agency [1,8]. Therefore, the ferric ion level is one important
property to consider when evaluating the quality of water.
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On the other hand, ascorbic acid (AA), also named vitamin C, is one of the most impor-
tant water-soluble vitamins in the human body. The excess or lack of AA would reduce the
metabolism and redox and thus lead to various diseases [9,10]. Generally, the fluorescent
materials applied for metal ions and AA detection are divided into several groups, includ-
ing gold and silver nanoclusters [11,12], organic dyes [13,14], and so on [15,16]. However,
most of the materials have suffered from sophisticated material preparation procedures,
high toxicity, and poor water solubility, especially when dealing with living systems. There-
fore, it is of great importance and urgency to design a novel fluorescent sensor with a highly
sensitive response, facile and green synthesis approach, and excellent optical properties.

In the past few years, great efforts have been paid to develop fluorescence probes
for the detection of heavy metals or organic molecules in environments. Among all the
nanomaterials recently designed for sensing applications, carbon dots (CDs), a typical
member of the carbon materials family, have attracted enormous attention in the field of
fluorescence sensors, owing to their excellent optical properties, good biocompatibility, high
water solubility, and environmental friendliness [5,17–21]. Recently, various applications of
CDs in environmental monitoring and chemical sensing have been explored [4,5,22–25]. It
is widely known that the carbon cores and surface structure of CDs are highly related to
their optical properties and detection capability [5,26–28]. Thus, as a popular modification
approach, the heteroatom doping on the surface of the functional groups of CDs can be
further used to tune the emissive properties and thus improve the quantum yield (QY), such
as nitrogen (N), fluorine (F), sulfur (S), phosphorus (P), silicon (Si) and boron (B) [29–35].
For example, N-doped CDs were successfully constructed using a solvothermal approach
for the early detection of Fe3+ during iron corrosion in a NaCl solution. The limit of
detection (LOD) was estimated to be 0.9 µM [5]. Zhang and colleagues prepared boron
and nitrogen co-doped CDs (QY as 15.4%) and successfully used them for the detection
of Fe3+ with a LOD of 0.08 µM [17], whereas Liu et al. synthesized N/S-doped CDs with
an improved QY of 26% [36]. Furthermore, Li and colleagues applied a cobalt-doped
CD for the detection of Fe3+ and AA, respectively. The fluorescence of CDs was firstly
turned off by the Fe3+ ions, which were further rebuilt (off–on) after the addition of AA,
following an “on-off-on” mode. The Co-CDs showed an enhanced QY of 30.4% with a
blue emission upon a 350 nm excitation [26]. Cui et al. found that the N-doped CDs can
be directly quenched by AA—as a “turn-off” probe—with a LOD of 2.6 µM. From the PL
lifetime and UV spectral analyses, the NCDs/Fe3+ and NCDs/AA showed the formation
of a new non-fluorescence complex, referring to the static quenching mechanism (SQM).
Meanwhile, NCDs’ excitation spectra were found to overlap with the UV spectra of Fe3+

and AA, indicating the absorption of excitation light, which is named the inner filter effects
(IFE). The quenching mechanism was further explored as the IFE and SQM [37].

Furthermore, it has been demonstrated that the dopant atoms on the surface func-
tional groups affect the electronic transition significantly, indicating a promising strat-
egy for preparing nanomaterials with specific or tunable fluorescence emissions [38].
Among all the commonly used elements for doping, the introduction of F presents the
electron-withdrawing effects and strong hydrogen bonding interactions, which would
change the surface charge, tune the emission fluorescence and thus improve the detec-
tion capacities [39–42]. In our previous work, N-doped DL-malic acid-derived CDs were
synthesized with blue fluorescence and a QY of 9.8% [37].

Therefore, in order to tune the optical and physical properties of the CDs, novel DL-
malic acid (DL-MA)-derived carbon dots were prepared using levofloxacin (Lev) as the F
source with an efficient microwave-assisted approach (as seen in Scheme 1). The designed
N- and F-doped CDs (NFCDs) were further characterized by high-resolution transmission
element microscopy (HR-TEM), X-ray diffraction (XRD), Fourier transform infrared spec-
troscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) to confirm the morphology
and surface functional groups. In addition, the NFCDs were found to emit a green fluo-
rescence under the UV lamp, with a photoluminescence quantum yield (QY) detected as
21.03%. The optimal emission wavelengths of the NFCDs were observed at 490 nm upon a
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280 nm excitation, independent of the excitation wavelengths and concentration. The green
fluorescence can be quenched by both Fe3+ and AA, respectively. The as-prepared NFCDs
were further used for the detection of Fe3+ and AA, demonstrating LODs of 1.03 and
4.22 µM, respectively. The LODs are comparable with recent research [35–39]. Therefore,
the N and F co-doped CDs with green fluorescence were successfully synthesized with
an excitation-independent emission, high QY, and high selectivity and sensitivity for the
detection of Fe3+ and AA.
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Scheme 1. The preparation approach of NFCDs from Lev and DL-MA.

2. Materials and Methods
2.1. Materials

DL-malic acid and levofloxacin were purchased from Aladdin Biochemical Technology
Co., Ltd., (Shanghai, China). All the inorganic reagents, including sodium chloride, potas-
sium chloride, aluminum nitrate nonahydrate, manganese chloride tetrahydrate, ferric
chloride, magnesium chloride hexahydrate, nickel chloride hexahydrate, cobalt chloride
hexahydrate, calcium chloride, stannous chloride, lead (II) chloride, and barium chloride
dehydrate, were of analytical grade and obtained from Sinopharm Chemical Reagent
Co., Ltd., (Beijing, China). All the organic compounds, such as D-asparagine (D-Asn),
L-glutamic acid (LGA), L-valine (L-Val), L-methionine (L-Met), L-asparagine (L-Asn), L-
leucine (L-Leu), S-mandelic acid (S-MA), L-glutamine (L-Glu), and L-ascorbic acid (AA)
were supplied by Aladdin Industrial Corporation. The ultrapure water used was directly
obtained from the lab with a Milli-Q direct water purification system.

2.2. Synthesis of NFCDs

Firstly, the desired amounts of DL-malic acid and levofloxacin were dissolved in 10 mL
of ultrapure water, which was then heated in a microwave oven (600 W, M1-L213B, Media,
China) for 5 min. The resultant solids were dissolved in water with an ultrasound treatment
(40 KHz, F-040, Fuyang Technology group Co., Ltd., Shenzhen, China) for around 24 h
and then filtered with a filtration membrane (0.22 µm). The obtained solution was further
purified with dialysis bags (MDCO 34-1000 Da, Biomed Instrument Inc., USA) for 24 h.
Eventually, the purified NFCDs solution was obtained and further freeze-dried at −70 ◦C
for further characterization.

2.3. Characterization of NFCDs

The morphology of the NFCDs was analyzed by transmission electron microscopy
(TEM, JEM-2100, JEOL Corp., Japan). A FIR8900 Fourier transform infrared (FT-IR) spec-
trometer and X-ray photoelectron spectroscopy (XPS, Escalab 250Xi, Thermo Scientific,
Waltham, MA, USA) were used to investigate the surface groups of the NFCDs. The X-ray
diffraction (XRD) pattern of the NFCDs was obtained from the Neotoku Corporation (Japan)
with CuKα1 radiation operated at 40 kV and 40 mA. For the optical properties analysis, the
UV-vis absorbance spectra and fluorescence light (PL) spectra were collected on a U-4100
spectrophotometer (Hitachi, Tokyo, Japan) and Hitachi F-7000 fluorescence spectrometer
(150 W xenon lamp), respectively. The PL decay lifetimes were measured and estimated
based on an FLS920 spectrophotometer supplied by Edinburgh Instruments. The absolute
quantum yield (QY) was measured in the calibration sphere with a HORIBA FLS920.
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2.4. Stability of NFCDs Solution

In order to examine the photostability of the NFCDs, the solution was continuously
exposed to UV light (365 nm) for 2 h. Upon 280 nm excitation, the PL spectra were recorded
every 10 min. Moreover, the concentration-dependent PL property of the NFCDs-1 was
explored by collecting the PL spectra of solutions with different concentrations, ranging
from 0.005 to 0.5 mg/mL. Additionally, the effects of the acidic or basic environments on
the emission spectra (upon 280 nm excitation) were further investigated with different pH
values (ranging from 2.2 to 13.1), which were tuned using a NaOH solution (0.1 mol/L),
HCl solution (0.1 mol/L), and NaH2PO3 solution (0.01 mol/L).

2.5. Fluorescence Quenching Study of Fe3+ and AA

For the detection of Fe3+ and AA, based on the “turn-off” mode, the stock solution of
the NFCDs was mixed with different amounts of FeCl3 solution and AA solution. For the
detection of Fe3+, solutions with different Fe3+ concentrations ranging from 5 to 500 µM
were prepared in 0.02 mg/mL NFCDs. On the other hand, the concentration of AA was
set from 5 to 900 µM. After mixing for 5 min, the PL spectra of different solutions were
recorded upon a 280 nm excitation. All the experiments were conducted in triplicate.

3. Results and Discussion
3.1. Morphology and Structure Characterization of NFCDs

In order to explore the morphology and structure of the NFCDs particles, the HR-TEM
and XRD instruments were applied. The nanoparticles were found to be quasi-spherical
(seen in Figure 1a), and the average size was estimated to be 5.5 ± 0.1 nm, based on
83 particles using the Gaussian distribution calculation (Figure 1b). The lattice spacing was
further measured as 0.32 nm, corresponding to the (002) diffraction plane of graphite [43].
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Figure 1. The structure characterization of NFCDs: (a) The well-dispersant quasi-spherical NFCDs
particles were seen in high-resolution transmission electron microscope (HR-TEM) images. Inset: the
lattice space of 0.32 nm. (b) The average diameter of NFCDs, determined by Gaussian fitting. (c) The
002 peak in XRD confirms the graphitic nature of the NFCD seen in the HR-TEM image (a). (d) The
FT-IR spectrum of NFCDs presented the stretching vibrations of the surface functional groups.
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In addition, the morphology of the solid, detected by XRD in Figure 1c, demonstrated
a broad peak centered at 23◦, which was assigned to the disordered carbon in the NFCDs.
In order to obtain a full understanding of the structure of NFCDs, the surface function
groups were further detected by FT-IR spectroscopy, as seen in Figure 1d. A characteristic
peak at around 3400 cm−1 of the FT-IR spectrum was observed, attributed to the stretching
vibrations of the O-H and N-H functional groups. The peaks displayed in the region of
2850–2950 cm−1 were ascribed to the typical sp3 C-H stretching vibrations [44]. The peaks
located at 1735, 1616, and 1404 cm−1 were related to the stretching vibrations of COOH,
C=O, and C-N, respectively [40,45]. Moreover, the characteristic absorption peak of the C-F
bond, together with the C=C stretching vibration, was observed at 1274 and 1175 cm−1 [40].
Thus, the as-prepared NFCDs possessed different functional groups, such as the hydroxyl,
carboxyl, and amide groups, which are attributed to the fluorescence of the NFCDs [33].

Furthermore, the XPS analysis was performed to estimate the chemical compositions.
Figure 2a displayed the survey spectrum of the NFCDs, revealing four typical peaks at
284.7, 401.1, 532.3, and 687.6 eV. These binding energies were ascribed to C1s, N1s, O1s, and
F1s, respectively [34,35]. The high-resolution spectra of C1s, as seen in Figure 2b, was decon-
voluted into four typical peaks: C=C/C-C (284.49 eV) [45,46], C-N/C-O (285.76 eV) [17,47],
O=C-O (288.62 eV) [35,48], and C-F (290.3 eV) [41]. Three peaks, corresponding to the
binding energies of C-O (531.59 eV), C-O (532.97 eV), and O-C=O (534.16 eV), were obtained
from the deconvolution of the O1s spectra, as shown in Figure 2c [29,35]. Apart from this,
the splitting of the N1s peak in Figure 2d indicates the presence of pyridinic N (399.25 eV)
and graphitic N (401.24 eV) [49,50]. Lastly, the F1s spectra displayed a single characteristic
peak at 687.09 eV, assigned to the covalent C-F, respectively [40]. Thus, the XPS results
of all the existing functional groups demonstrated a close match with the FT-IR analysis,
confirming the presence of common luminescent centers [33].
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confirmed the presence of surface functional groups observed in the FT-IR spectrum.

3.2. Optical Property Characterization of NFCDs

The optical properties of the NFCDs solution were characterized. The photophysical
properties of the as-synthesized NFCDs were examined through the ultraviolet-visible
(UV-visible) and photoluminescence (PL) spectroscopies. As seen in Figure 3a, the UV-vis
spectrum demonstrated three typical absorption bands. A strong absorption peak was
observed at 210 nm, falling in the region of 210–250 nm, assigned to the aromatic π-π*
transition of the C=C bond, while the second strong absorption peak, located at 290 nm,
was related to the π-π* transitions of the C-N/C=N or C-F bonds [51,52]. Moreover, a
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distinct peak, observed at 330 nm, was attributed to the n-π* transitions of the C=O/C=N
bonds in NFCDs [27,53]. The inset displayed a colorless solution under daylight and the
one with an intense green fluorescence under UV light. Thus, the carbon cores and surface
functional groups of the NFCDs absorbed the energies provided by UV light first, for
which the excited state, in turn, drops to the ground state by emitting green fluorescence.
Moreover, an optimal emission at around 490 nm (λex = 280 nm) was displayed with the
corresponding excitation spectra in Figure 3a, demonstrating two broad excitation peaks at
280 nm and 330 nm, respectively.
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Figure 3. The optical properties of NFCDs solution at 0.02 mg/mL: (a) UV-vis absorption at 210 nm,
280 nm and 330 nm, and excitation peaks at 280 nm and 330 nm (PLE), together with 490 nm emission
PL spectra (inset: left—NFCDs solution under daylight; right—NFCDs solution under UV light).
(b) The emission spectra at 490 nm for NFCDs solution with different excitation wavelengths. (c) The
emission spectra of NFCDs with concentrations ranging from 0.005 to 0.5 mg/mL.

Figure 3b illustrates the PL spectra of the NFCDs solution upon different excitation
wavelengths. The optimal emission spectra with a maximum intensity were obtained at
around 490 nm under an excitation wavelength of 280 nm, which corresponded to the green
fluorescence seen under the UV lamp. It was found that the emission spectra centered at
490 nm hardly shifted with the change of the excitation wavelengths (less than 10 nm),
which might be a result of the monotonous surface defeats from the uniform preparation
conditions and heteroatom dopant [3,38,44,54,55]. The QY was measured as 21.03%, which
was higher than the QYs of most DL-MA-derived CDs [37,56,57].

Furthermore, the effect of concentration on the PL properties of the NFCDs was exam-
ined with different concentrations (0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.3, and 0.5 mg/mL).
As presented in Figure 3c, the emission spectra were centered at 490 nm for all the concen-
trations considered, indicating a concentration-independent optical property. Interestingly,
the PL intensity was enhanced when the concentration increased from 0.005 mg/mL until
0.06 mg/mL, after which it started decreasing from 0.06 to 0.5 mg/mL.

To further understand the PL behavior, the photoluminescence excitation (PLE) spectra
of the solutions ranging from 0.005 to 0.5 mg/mL and the 3D spectra with concentrations
of 0.04 mg/mL and 0.5 mg/mL were collected and displayed in Figure S1. Along with the
increase in the NFCDs concentration from 0.005 mg/mL to 0.06 mg/mL, the intensities of
the excitation peaks at around 280 nm and 330 nm were enhanced accordingly. At the higher
concentrations from 0.08 mg/mL to 0.5 mg/mL, the excitation peaks at 280 and 330 nm
gradually decreased, and an increase in the excitation centers at 360 nm was observed,
indicating a change in the luminescent centers. The phenomenon might be that the n-π*
transition of the aggregated hydroxyl groups absorbed 360 nm UV light, which contributes
to the fluorescence in the concentrated solutions [34]. The intensity of the excitation peak at
280 nm became lower than that at 360 nm when the concentration was over 0.3 mg/mL.
As NFCDs possess hydroxyl and carboxyl groups, at high concentrations, the surface
functional groups are more likely to aggregate than that at smaller concentrations, thus
leading to a slight change in the excitation peak heights. Therefore, the excitation peaks at
280 nm and 330nm became lower than that at 360 nm, resulting in a decrease in emission
intensities [34,58].
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3.3. Stability of NFCDs

The stability of the NFCDs was investigated under different experimental conditions,
including varying UV light exposure times, ionic strengths, and pH values. As seen in
Figure S2, the photostability of the NFCDs at 0.02 mg/mL was explored under continuous
UV irradiation at 365 nm. After 120 min, the PL intensity remained comparable with that
before any treatment, indicating an excellent photostability of NFCDs. Meanwhile, the
NFCDs possessed almost 80% of the original PL intensity when the NaCl concentration
reached 2 mol/L, presenting excellent stability with different ionic strengths, as seen
in Figure S3.

Additionally, the optical properties of the NFCDs in different acidic and basic en-
vironments were also measured and displayed in Figure 4. The results illustrated that
the PL intensity in an acidic medium decreased mildly when the pH values increased
from 2.2 to 6.1, which reached a maximum intensity at 7.0. In the basic solutions, a sharp
decrease in the PL intensities was observed for the pH values ranging from 8.0 to 13.1
as well as a blue shift of the emission peak from around 490 to 470 nm. The effects of
the solution environments on the PL properties might be attributed to the protonation or
deprotonation between the oxygen/nitrogen-containing groups and H+ or OH− ions in the
acidic or basic conditions, thus leading to a weaker fluorescence compared to the neutral
environment [59,60].
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3.4. Sensitivity and Selectivity Study of Fe3+ Ion

To assess the ability of the as-prepared NFCDs as a fluorescent probe for detecting
metal ions, the fluorescence of the NFCDs at 0.02 mg/mL with various metal ions, including
Na+, K+, Al3+, Fe3+, Mg2+, Ni2+, Mn2+, Co2+, Ca2+, Sn2+, Pb2+, and Ba2+, were measured
and displayed in Figure 5a (as dark green columns, also seen in Table S1). The presence
of Fe3+ showed the strongest quenching effects on the fluorescence, while the other ions
presented limited quenching abilities. This phenomenon might be related to the intense
affinity of the oxygen/nitrogen-contained groups for Fe3+, resulting in strong interactions
between the NFCDs and Fe3+, thus leading to a quenched fluorescence [26]. Thus, the
NFCDs can be utilized as a fluorescent probe for the detection of Fe3+ ions in a solution.
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The sensitivity to detect Fe3+ with an NFCDs probe was evaluated with various Fe3+

concentrations from 5 µM to 300 µM in a 0.02 mg/mL NFCDs solution. As shown in
Figure 5b, the PL fluorescence intensity was found to decrease sharply with the increased
concentrations of Fe3+. While the concentration reached 300 µM, around 90% of the PL
fluorescence was quenched, indicating a strong detection ability provided by the NFCDs.
A blue shift of the emission spectra was observed with increasing Fe3+ concentrations,
suggesting the formation of new fluorescence centers. The phenomenon might be explained
by the chelation reaction between the Fe3+ and -COOH, -OH, and other groups on the
surface of carbon cores [5]. Moreover, as shown in the inset of Figure 5c, a linear relation-
ship between the ferric ion concentrations and PL intensities was obtained (R2 = 0.9962)
when the concentration was from 5 to 30 µM. Additionally, the detection limit (LOD) was
estimated to be 1.03 µM, which is comparable with the values obtained from the other
systems (Table S2).

Furthermore, the selectivity of the NFCDs for Fe3+ was also investigated with various
interference ions, including Na+, K+, Al3+, Mg2+, Ni2+, Mn2+, Co2+, Ca2+, Sn2+, Pb2+,
and Ba2+. Figure 5a (yellow column) shows the PL intensity ratio (F/F0) with 500 µM
interference ions with and without the addition of Fe3+. Furthermore, the presence of
other metal ions had a negligible influence on the quenched fluorescence caused by Fe3+.
Therefore, the NFCDs solution presented high sensitivity and excellent selectivity for
Fe3+ detection.

3.5. Sensitivity and Selectivity Study of AA

The detection capabilities of the NFCDs were explored with the presence of different
organic molecules (i.e., L-ascorbic acid (AA), D-asparagine (D-Asn), L-asparagine (L-Asn),
L-glutamic acid (L-GA), S-mandelic acid (S-MA), L-leucine (L-Leu), L-glutamine (L-Glu),
L-methionine (L-Met), and L-valine (L-Val)). As shown in Figure 6a and Table S3, the
presence of organic molecules had almost no effect on the fluorescence of the NFCDs
solution, except for the AA. It was observed that 500 µM of AA in 0.02 mg/mL NFCDs has
caused an 83% reduction of the original PL intensity. The quenching phenomenon might
be due to the complex interactions between the hydroxyl functional groups of AA with the
hydrophilic functional groups of NFCDs [61].
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To further explore the detection sensitivity of the NFCDs, the fluorescence spectra of
NFCDs solutions with various concentrations of AA (0 to 900 µM) were examined and
displayed in Figure 6b. As the AA concentration increased, the PL intensity at 490 nm
decreased gradually, indicating increased quenching effects. A good linear relationship
between the quenching ratio (F/F0) and AA concentration was exhibited from 5 to 100 µM
(inset of Figure 6c), with the slope and LOD estimated as −0.0039 µM−1 and 4.22 µM,
respectively. Thus, the NFCDs can be used as a “turn-off” sensor for AA detection, which
is beneficial due to the easy sample preparation and one-step detection procedure. Table S4
presents the comparison of the current AA detection modes, linear ranges, and LODs from
recent reports. Thus, the NFCDs prepared in the present work showed comparable LODs
and linear ranges when compared with previous research [9,10,26,37].

3.6. Possible Quenching Mechanism of Fe3+ and AA

To further explore the quenching mechanism, the Stern–Volmer equation (Equation (1))
was used to model the relation between the F0/F versus Fe3+ and AA concentrations [62].

F0/F = 1 + ksv[Q], (1)

where F represents the PL intensity of the quenched solution; F0 is the original PL intensity
without the presence of Fe3+; ksv stands for the quenching constant in the Stern–Volmer
equation; kq presents the quenching constant, and τ is the PL lifetime of the NFCDs. As
demonstrated in Figure S4a, the slope of the PL intensity ratio versus Fe3+ concentration
was determined as 0.0318 µM−1, based on which the quenching rate constant was esti-
mated to be 4.14 × 1012 M−1·s−1. Additionally, the Stern–Volmer equation, modeling the
relation between the F0/F versus AA concentrations, was displayed in Figure S6a, with
the quenching rate constant, kq, determined as 7.72 × 1011 M−1·s−1. Both the quenching
constants for the Fe3+ and AA were one or two orders of magnitude higher than the general
considered dynamic quenching constant (DQM), 1.0 × 1010 M−1·s−1. Thus, the static
quenching mechanism (SQM), referring to the reactions between the NFCDs and Fe3+ or
AA, might be responsible for the quenching phenomenon caused by Fe3+ and AA [63,64].

This assumption was further supported by the UV-vis spectra and PL lifetime analysis.
Figure S4b shows the UV absorption curves of the NFCDs and NFCDs/Fe3+ solutions. The
absorption band of the NFCDs at 330 nm was gradually reduced along with the addition
of Fe3+, confirming the formation of a non-fluorescent NFCDs-Fe3+ chelating complex
(SQM). Additional evidence was supplied by the PL lifetime analysis. The fluorescence
lifetime of the NFCDs with 500 µM Fe3+ was estimated as 8.29 ns (Figure S5a), showing
a slight increase rather than a decrease compared to 7.69 ns for the NFCDs. Thus, it is
reasonable to eliminate the possibility of DQM [25]. Moreover, Figure S5b displays the
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UV-vis spectrum of the Fe3+ solution as well as the excitation and emission spectra of the
NFCDs. A broad absorption band at 280 nm was seen in the UV-vis spectrum, which
overlaps with the excitation peaks of the NFCDs at 280 nm. Thus, the possible quenching
mechanism of Fe3+ against the NFCDs might be a combination of the inner filter effect
(IFE) and SQE [65]. For the NFCDs/AA system, Figure S6b shows the UV-vis spectra of the
NFCDs and NFCDs/AA solutions, where an absorption peak centered at 250 nm appeared
and became stronger with an increased AA concentration. This observation confirmed the
formation of the NFCDs/AA complex, which contributed to the quenched fluorescence of
NFCDs and thus supported SQM.

Furthermore, the UV-vis spectrum of AA is supplied in Figure S7b, together with the
excitation and emission fluorescence spectra. The characteristic absorption of AA was in a
range from 210 to 300 nm, overlapping with the excitation centers of NFCDs. Thus, the
AA might shield the excitation light of the NFCDs, resulting in decreased PL intensities.
Additionally, the PL decay measurements illustrated that the lifetime for the NFCDs/AA
solution (8.04 ns, as seen in Figure S7a) showed a negligible difference from the NFCDs’
lifetime. Thus, an inner filter effect (IFE) was presented and contributed to the quenching
effects in the presence of AA. Therefore, NFCDs can be potentially used as a “turn-off”
sensor for the detection of AA based on the SQM and IFE processes. The possible quenching
mechanism for both Fe3+ and AA is presented in Figure 7, providing different states of
NFCDs particles and the corresponding UV-vis spectra with the excitation and emission
spectra. Thus, both the IFE and SQM contributed to the quenching phenomenon of NFCDs
with the presence of Fe3+ and AA, respectively.
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Figure 7. Possible quenching mechanism of NFCDs of Fe3+ and AA: (Top) the addition of Fe3+

with different concentrations interacts with the surface functional groups to form a non-fluorescent
complex (SQM); UV-vis spectra show overlaps from 280 to 330 nm between UV absorption (black
line) and PLE of NFCDs (red line). (Bottom) the addition of AA interacts with the surface functional
groups to form a non-fluorescent complex (SQM); UV-vis spectra show overlaps from 200 to 300 nm
between UV absorption (black line) and PLE of NFCDs (red line).

4. Conclusions

In conclusion, a fluorescent carbon-based probe with a high quantum yield of 21.03%
was directly developed using DL-malic acid and levofloxacin through a rapid and low-cost
microwave treatment. The as-prepared NFCDs exhibited excellent water dispersibility with
an average size of 5.49 nm. Additionally, the excitation-independent and concentration-
independent fluorescence behaviors of the NFCDs were observed with a single emission
of 490 nm. Moreover, the green fluorescence can be quenched by both Fe3+ and AA as
“turn-off” probes, with LODs of 1.03 and 4.22 µM. The quenching mechanisms were further
determined as a static quenching mechanism and inner filter effect, based on the lifetime
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and spectral analysis. This methodology provided a rapid and low-cost approach to the
synthesis of nitrogen and fluorine co-doped CDs with a high quantum yield, rapid response,
and high sensitivity and selectivity as fluorescent probes to detect Fe3+ and AA in biological
and environmental systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12142377/s1, Figure S1: (a,b) The normalized excitation
peaks under emission peaks at 490 nm with various concentrations of NFCDs, (c,d) 3D fluorescent
matrix scan of the NFCDs at 0.04 mg/mL and 0.5 mg/mL; Figure S2: Relationship between F/F0 and
the irradiation time, where F0 and F are the emission intensity before and after UV light irradiation,
respectively; Figure S3: Relationship between F/F0 and the ionic strength, where F0 and F are the
emission intensity in ultrapure water and NaCl solution, respectively; Figure S4: (a) Stern–Volmer
relationship between F0/F and concentration of Fe3+, (b) UV-vis spectra of NFCDs solution with
different concentrations of Fe3+; Figure S5: (a) The PL decay lifetime of NFCDs solution with and
without the presence of Fe3+, (b) UV-vis spectra of Fe3+ solution, the emission peaks excited at 280 nm
and the excitation peak at the emission of 490 nm of NFCDs solution; Figure S6: (a) Stern–Volmer
relationship between F0/F and concentration of AA, (b) UV-vis spectra of NFCDs solution with
different concentrations of AA; Figure S7: (a) The PL decay lifetime of NFCDs solution with and
without the presence of AA, (b) UV-vis spectra of Fe3+ solution, the emission peaks excited at 280 nm
and the excitation peak at the emission of 490 nm of NFCDs solution; Table S1: Selectivity and
sensitivity results of NFCDs for the detection of metal ions; Table S2: Comparison of different probes
and methods for detection of Fe3+; Table S3: sensitivity test of NFCDs with the presence of different
organic molecules; Table S4: Comparison of different probes and methods for detection of AA [66–70].
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