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Abstract: In this study, highly-sensitive piezoresistive strain sensors based on gold nanoparticle
thin films deposited on a stretchable PDMS substrate by centrifugation were developed to measure
arterial pulse waveform. By controlling carbon chain length of surfactants, pH value and particle
density of the colloidal solutions, the gauge factors of nanoparticle thin film sensors can be optimized
up to 677 in tensile mode and 338 in compressive mode, and the pressure sensitivity up to 350. Low
pH and thin nanoparticle films produce positive influences to superior gauge factors. It has been
demonstrated that nanoparticle thin film sensors on PDMS substrates were successfully applied to
sense arterial pulses in different body positions, including wrist, elbow crease, neck, and chest.

Keywords: nanoparticle; PDMS; piezo-resistance; gauge factor; arterial pulses

1. Introduction

The principle of commercial pulse diagnosis devices involves attaching a radial sensor
to the artery position, where the arterial pulses introduce stress or strain to the sensor,
causing periodic voltage change or resistance change [1]. The pulse wave can thus be
transduced and recorded in the form of electrical signals. In order to enhance waveform
resolution, the improvement of sensor sensitivity is still an ongoing issue.

Among the technologies for tactile sensors, piezo-resistance devices [2], in which
the electrical resistance changes due to stress (or strain), are good candidates for such
applications. Conventional piezoresistive materials, e.g., metal foils, show very low gauge
factor (2~3). Barium titanate and Si-based semiconductors exhibit high gauge factor (>100)
but poor flexibility, which may not be suitable for human motion sensing applications. In
recent years, various kinds of nanomaterials have been used, developed as strain sensors
(Figure 1), such as polymer nanofibers (on polydimethylsiloxane, PDMS) [3], nano-carbon
nets (on parylene) [4], nano-chromium films (on polyethylene terephthalate, PET) [5],
graphene/Ag nanoparticles (NPs) (on thermoplastic polyurethane, TPU) [6], nano-gold
single wires (on PET) [7], Au nanoparticles (NPs) thin film (on polyimide, PI) [8], and ZnO
nanowires (on PET) [9]. As also shown in Figure 1, the graphene/AgNP sensors possess
a gauge factor (g) of 476 at 500% strain but only of 7 at 50% strain. The ZnO-nanowires
sensors exhibit a superior g value of up to 1813.
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in the following aspects. AuNPs, as widely known, can be easily synthesized with a well-
controlled and uniform size by reduction of HAuCl4 [13]. There are possible routes for 
replacement of the molecule encapsulating AuNPs with a different molecule length and 
functional group [14]. It is easy to assemble long-range-ordered monolayer or multi-layers 
of AuNPs by several low-cost methods, such as Langmuir−Blodgett [15], solvent evapo-
ration [16], electrostatic methods [17], entropy-driven assembly [18], and centrifugal dep-
osition [19]. The interparticle distance can be finely tuned by the lengths of ligand or linker 
molecules, resulting in electrical and optical properties for one’s need [20]. In addition, 
devices based on surface-modified AuNPs are stable and durable in their flexible and 
stretchable usage. 

Due to the quantum mechanism of electron transport between nanoparticles, films 
comprising nanoparticles can act as piezoresistive layers and thus strain gauges [11,21–
25]. The interparticle distance changes caused by applied strain result in tunneling prob-
ability change, consequently affecting the conductance of electrons. The large resistance 
change arises from the strain-sensitive hopping conduction in these NP films, based on 
the conductance formula in the weak coupling regime at high temperatures [21,26] 

𝐺𝐺 = 𝐺𝐺0𝑒𝑒−𝛽𝛽𝛽𝛽𝑒𝑒−𝐸𝐸𝑎𝑎 𝑘𝑘𝐵𝐵𝑇𝑇⁄   (1) 

where s is the interparticle spacing, and β is a constant, typically 9~13 nm−1, related to free 
space tunneling or molecule chain hopping as the interparticle conduction mechanism 
[27]. Ea stands for thermal activation energy for the single particle Coulomb charging 
effect. At room temperature, Ea is usually smaller than kBT (~26 meV when T is around 300 
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are other collective effects, such as crack junction [28] and percolations [29,30]. 

Taking advantage of the flexibility and stretchability of PDMS substrates, Au NP thin 
film sensors on PDMS substrates exhibiting g values higher than 100 have been success-
fully prepared by centrifuging method, and demonstrated to be capable of monitoring 
human pulses [31]. Compared with other tactile sensors, Au NP-thin films on PDMS show 
the advantages of high responsibility for pressure with a frequency bandwidth of kHz 
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Over a decade, intensive efforts have been devoted to building flexible sensors us-
ing conductive nanomaterials based on piezoresistive mechanisms. In particular, highly
sensitive tactile sensors can be made quite effectively with gold nanoparticles [10,11].
Compared to nanoparticles of other metals [5,12], there are several benefits to choosing
AuNPs in the following aspects. AuNPs, as widely known, can be easily synthesized
with a well-controlled and uniform size by reduction of HAuCl4 [13]. There are possible
routes for replacement of the molecule encapsulating AuNPs with a different molecule
length and functional group [14]. It is easy to assemble long-range-ordered monolayer
or multi-layers of AuNPs by several low-cost methods, such as Langmuir−Blodgett [15],
solvent evaporation [16], electrostatic methods [17], entropy-driven assembly [18], and
centrifugal deposition [19]. The interparticle distance can be finely tuned by the lengths of
ligand or linker molecules, resulting in electrical and optical properties for one’s need [20].
In addition, devices based on surface-modified AuNPs are stable and durable in their
flexible and stretchable usage.

Due to the quantum mechanism of electron transport between nanoparticles, films
comprising nanoparticles can act as piezoresistive layers and thus strain gauges [11,21–25].
The interparticle distance changes caused by applied strain result in tunneling proba-
bility change, consequently affecting the conductance of electrons. The large resistance
change arises from the strain-sensitive hopping conduction in these NP films, based on the
conductance formula in the weak coupling regime at high temperatures [21,26]

G = G0e−βse−Ea/kBT (1)

where s is the interparticle spacing, and β is a constant, typically 9~13 nm−1, related to free
space tunneling or molecule chain hopping as the interparticle conduction mechanism [27].
Ea stands for thermal activation energy for the single particle Coulomb charging effect.
At room temperature, Ea is usually smaller than kBT (~26 meV when T is around 300 K),
thereby the factor e−βs is dominating. Equation (1) only gives a microscopic and qualitative
description for the conductivity based on molecule junctions. For a real sensor, there are
other collective effects, such as crack junction [28] and percolations [29,30].

Taking advantage of the flexibility and stretchability of PDMS substrates, Au NP thin
film sensors on PDMS substrates exhibiting g values higher than 100 have been successfully
prepared by centrifuging method, and demonstrated to be capable of monitoring human
pulses [31]. Compared with other tactile sensors, Au NP-thin films on PDMS show the
advantages of high responsibility for pressure with a frequency bandwidth of kHz and
nearly isotropic piezoresistive responses. The previous report [31] provided the general
scheme to build flexible sensors using Au NPs, and explored their practical usages. To
optimize the sensor fabrication for a better sensitivity regarding to the strain and pressure
sensing, this study investigates the material parameters for Au NP preparation and film
deposition, including surfactants, particle concentrations and pH values of the colloidal
solutions. To evaluate the feasibility for practical applications, the sensors thus obtained will
be subjected to bending tests, pressure tests, and human pulse measurements at different
positions to characterize their functions.
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2. Experimental Procedures
2.1. Preparation of AuNP Thin Films on PDMS

Monodispersed gold nanoparticles were prepared by the reduction of aqueous hydro-
gen tetra-chloro-aurate (HAuCl4, Sigma Aldrich, Burlington, MA, USA) with potassium
carbonate (K2CO3, Sigma Aldrich), trisodium citrate (C6H5Na3O7, Sigma Aldrich) and tan-
nic acid (C76H52O46, Sigma Aldrich, Burlington, MA, USA) using a standard procedure [13].
Two surfactants were respectively adopted in the synthesis, i.e., 11-mercaptoundecanoic
acid (MUA, HS(CH2)10CO2H) and 3-mercaptopropionic acid (MPA, HS(CH2)2CO2H), both
of which have a negative ionic end group. To form Au NP films, acidic Au NP colloidal
solution (12 mL) was placed in a 50 mL centrifuge tube of which the inner surface was
attached to PDMS substrate using acrylic resin. The pH value and Au NP concentration
of the colloidal solutions were controlled. After being centrifuged at 10,000× g rpm for
20 min, Au NPs were condensed and deposited onto PDMS (polydimethylsiloxane) sub-
strate via centrifugal force. Before attaching to the centrifuge tube, PDMS substrates were
modified by APTMS (3-aminopropyltrimethoxysilane) for which the end of molecules has
a mono-positive charge, allowing strong electrostatic attraction to be developed between
Au NPs and PDMS.

2.2. Assembly of Strain Sensors

The PDMS substrates with Au NP thin films were cut into pieces with a size of
20 mm × 5 mm. As shown in Figure 2, commercial silver adhesives were coated on the two
ends of Au NP thin film as electrodes, and two copper wires were stuck into the adhesives.
The PDMS was further covered and joined together with another Au NP thin film-coated
PDMS substrate.
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Figure 2. Schematic diagram of the NP thin film strain sensor structure.

2.3. Characterization Measurement

The microstructures of Au NPs and the thin films were characterized with TEM
(JEM-1400, JOEL Ltd., Tokyo, Japan) and FE-SEM (Zeiss UltraPlus, Carl Zeiss Co., Ltd.,
Oberkochen, Germany), respectively. The UV-visible spectra of the NP solutions were
measured by a UV-Vis spectrometer (Jasco V-670, Easton, MD, USA) with a 10 mm quartz
cell. The resistance and piezoresistive sensitivity were inferred from the current-voltage
measurement using a bias voltage of 0.1 V. The sensors were connected to a homemade elec-
tronic amplifier and multimeters, and the electronic signals were recorded using LabVIEW
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program. The sensors were bended on the surfaces of cylinders with different radii of curva-
ture. As illustrated in Figure 3, the thin film experienced tensile strain when being bended
on a convex surface (Figure 3a), and compressive strain on a concave surface (Figure 3b).
Applied strain ranged from −0.78% to 0.72%, which was approximately calculated by
ε = t/2d, where t is the thickness of substrate (0.5 mm) and d is radius of curvature.
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As displayed in Figure 4a, pressure sensitivity was evaluated by subjecting the sensors
to normal stresses. The applied load increased step by step by intermittently stacking
polymer pieces (5 mm2 in cross sectional area and 1.8 g in weight) onto a sensor, and
unloading in the same manner afterward. Figure 4b shows the setup of human pulse
measurement. During pulse measuring, the strain sensor was attached to the skin above
the artery and fastened with a wristband. When a constant voltage bias inputted into
the sensor, the output current would change with time and be recorded by computer in
real time.
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3. Results and Discussion
3.1. Resistance of MUA Devices and MPA Devices

Figure 5 shows the UV-Vis spectra and TEM images of Au nanoparticles. The diameter
of MUA-protected Au NPs was estimated to be 17.5 ± 3.7 nm, while that of MPA-protected
Au NPs was 16.2 ± 4.0 nm. A distinct absorption peak could be seen at a wavelength of
around 520 nm.
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Taking MUA Au NPs, for instance, centrifugally-deposited Au NP films show a
uniform manner using colloidal solutions with pH value of 3.5 and NP concentration of
1.32 × 1013 mL−1 (Figure 6a), but the surface was relatively rugged when pH was slightly
decreased to 3.2 (Figure 6b). This might affect the electrical performance of the deposited films.
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As for MPA-Au NPs, Figure 7b illustrates the variation in electrical resistance of thin 
films fabricated using colloidal solutions with pH of 3.5~4.1 and particle concentrations of 
6.6 × 1012~1.32 × 1013 mL−1, corresponding to film thickness of 119~238 nm. Compared to 
MUA NP devices, the assembled MPA NP devices possessed a much lower resistance 
ranging from 1 to 16 MΩ. The difference could be attributed to the length of surfactant 
molecules. MUA was based on a 11-carbon chain, and MPA on a 3-carbon chain [32]. Alt-
hough an acid of a longer alkyl chain is more capable of preventing nanoparticle aggre-
gation and enhancing stability [33], it is found that MUA (11-mercaptoundecanoic acid) is 
too long to provide a usable device. On the other hand, the protective layer on MPA-

Figure 6. MUA-Au nanoparticle films: (a) pH = 3.5 (b) pH = 3.2.

As shown in Figure 7a, the assembled MUA devices possessed electrical resistances
ranging from 6 to 50. Using colloidal solution with NP concentration of 1.32 × 1013 mL−1,
when pH was less than 3.5, the film resistances were about five times greater than those
of 3.5 and above. This can be ascribed to the stronger agglomeration tendency of Au
nanoparticles in high acidic environment, which gave rise to a larger amount of nanoparticle
clusters formed in the solution. Those discrete lumps then stuck to the PDMS and caused
an uneven structure, as well as inferior electrical conductance. With a higher particle
concentration, the resistance of the coated films was getting higher or even undetectable
at low pH values. Because of the extremely high impedance which might lead to a low
signal-to-noise ratio in practice, MUA-Au NPs are not good choices for sensor applications.
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As for MPA-Au NPs, Figure 7b illustrates the variation in electrical resistance of thin
films fabricated using colloidal solutions with pH of 3.5~4.1 and particle concentrations of
6.6 × 1012~1.32 × 1013 mL−1, corresponding to film thickness of 119~238 nm. Compared
to MUA NP devices, the assembled MPA NP devices possessed a much lower resistance
ranging from 1 to 16 MΩ. The difference could be attributed to the length of surfactant
molecules. MUA was based on a 11-carbon chain, and MPA on a 3-carbon chain [32].
Although an acid of a longer alkyl chain is more capable of preventing nanoparticle
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aggregation and enhancing stability [33], it is found that MUA (11-mercaptoundecanoic
acid) is too long to provide a usable device. On the other hand, the protective layer on
MPA-AuNPs was much thinner and thus a shorter tunneling barrier for electrons. Figure 7b
also reveals that the resistance of sensors decreased with higher particle concentration (or
greater film thickness), and the effect of pH value was negligible except for those with NP
concentration of 6.6 × 1012~1.32 × 1013 mL−1. Considering the proper resistance range,
MPA-AuNP devices were adopted for sensing of pressure, strain and pulses.

3.2. Gauge Factor of MPA Devices

In order to evaluate the piezoresistive sensitivity of the NP thin film devices, MPA
sensors were bent with various strains. The gauge factor could be obtained by the
following equation:

g = ln(∆R/R + 1)/ε (2)

where ∆R/R is the ratio of electrical resistance change and ε is the strain. Subjected to strain
from −0.78% to 0.72%, the change of electrical resistance reached 100~3000% under tensile
strain, but was lower than 100% under compressive strain. When a MPA sensor fabricated
using colloidal solutions with pH of 3.7 and particle concentration of 8.8 × 1012 mL−1 was
subjected to strain from −0.78% to 0.72%, the tensile-mode gauge factor was 419, and the
compressive-mode gauge factor reached 260 as illustrated in Figure 8a. The tensile-mode
gauge factors for all the pH and NP concentration conditions are summarized in Figure 8b,
indicating the g factors ranged from 263 to 677. High NP concentration as well as high
pH led to smaller g factors under tension. Figure 8c illustrates that no distinct relationship
between g factor and pH value could be found. The compressive-mode gauge factor was
smaller than those in the tensile mode and ranged from 90 to 338. It can be inferred that in
the compression mode there may be other effects affecting the variation of gauge factor.
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3.3. Pressure Sensitivity of MPA Devices

Figure 9a shows the resistance change of the MPA sensor fabricated with the conditions
of NP concentration 6.6 × 1012 mL−1 subjected to increasing and then decreasing pressure
loadings, and the relationship between electrical resistance and the pressure is illustrated
in Figure 9b. The applied pressure varied step-by-step at intervals of 176 Pa as indicated
by the blue line (Figure 9a). The resistance overshot as pressure changed suddenly, and
recovered to a steady state. The steady values of resistance descended with increasing
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pressure (Figure 9b), and vice versa. The average pressure sensitivity was evaluated using
the following equation [33]:

S = (∆R/R)/∆P (3)

where ∆P and ∆R are the changes of pressure and resistance, respectively. Accordingly, S
of 350 MPa−1 can be calculated. Since S of 160 MPa−1 could be obtained when the sensor
was fabricated with NP concentration of 8.8 × 1012 mL−1, it can be surmised that pressure
sensitivity also depends on the particle concentration.
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3.4. Pulse Wave Measurement with MPA Devices

Figures 10 and 11 show the results of pulse measurement on the same person by
using MPA sensors with tensile-mode g factor of 419 and compressive-mode g factor of 260.
When the sensor was fastened on the wrist skin (Figure 10a), the arterial pulse would cause
periodic changes of resistance, which were recorded with a frequency of about 50 points
per second. As illustrated in Figure 10b, three major crests could be recognized in one
pulse wave. In order of peak intensity, they are P wave (or main peak), T wave (or pre-
dicrotic peak), and D wave (dicrotic peak) [1], respectively. Figure 11 shows the pulse
waves measured from other body positions, including elbow crease (Figure 11a), neck
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(Figure 11b), and chest (Figure 11c), by using the same sensor. Not all three peaks can be
easily identified. The T waves were not always distinct. The P waves and D waves could
be recognizable in most of the cases, while the T waves were often merged into P waves.
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Figure 11. Demonstration of strain sensors palpating pulses at different body parts: (a) elbow crease,
(b) neck, and (c) chest.

Moreover, the relative changes in resistance shown in Figure 11a–c are 1.0%, 8.0%
and 3.7%, respectively. They are apparently much smaller than the value of 50% when
monitoring at the wrist position (Figure 10b). Nevertheless, the resistance change at this
level can still be easily measured and the signal can be processed to provide the heart
rate (such as by fast Fourier transform). The characteristics of the signals recorded from
the chest (Figure 11c) are similar to those on th3 electrocardiogram (ECG) waveform [34].
The explanation of the pulse characteristics related to the physical conditions needs
further investigation.

4. Conclusions

Strain sensors based on Au NP thin films on stretchable PDMS substrates were suc-
cessfully fabricated using centrifugal method, and the Au NPs were protected by MUA
and MPA molecules respectively. The MUA-Au NP sensors had extremely high electrical
resistance of 109~1010 Ω and cannot be used in practice. The MPA Au NP sensors possessed
resistance of 106~107 Ω tensile-mode gauge factors ranging from 263 to 677, compressive-
mode gauge factors ranging from 90 to 338, and pressure sensitivity ranging from 160 to
350. Experimental results suggest that low pH and thin NP films brought about superior
gauge factors. The MPA sensors exhibited outstanding piezoresistive sensitivity compared
to other currently existing strain sensors. In the pulse wave measurement at the wrist, the
waveforms consisting of three major crests can clearly be detected by the MPA sensors. It
has been demonstrated that an MPA sensor could also be applied to sense pulses in other
body positions, including elbow crease, neck, and chest.
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