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Abstract: Considering how important rare earth elements (REEs) are for many different industries, it
is important to separate them from other elements. An extractant that binds to REEs inexpensively
and selectively even in the presence of interfering ions can be used to develop a useful separation
method. This work was designed to recover REEs from spent nickel–metal hydride batteries using
ammonium sulfate. The chemical composition of the Ni–MH batteries was examined. The operating
leaching conditions of REE extraction from black powder were experimentally optimized. The
optimal conditions for the dissolution of approximately 99.98% of REEs and almost all zinc were
attained through use of a 300 g/L (NH4)2SO4 concentration after 180 min of leaching time and a 1:3
solid/liquid phase ratio at 120 ◦C. The kinetic data fit the chemical control model. The separation
of total REEs and zinc was conducted under traditional conditions to produce both metal values
in marketable forms. The work then shifted to separate cerium as an individual REE through acid
baking with HCl, thus leaving pure cerium behind.

Keywords: rare earth elements (REEs); cerium; zinc; recovery; Ni–metal hydride (Ni–MH) batteries

1. Introduction

Rare earth elements (REEs) refer to the lanthanides (57–71) besides scandium (Sc) and
yttrium (Y). REEs are involved in a broad range of products [1–4]. Electric vehicles and
wind energy are becoming more widespread. This means there is a higher demand for
REEs. There is a possibility that their supply could be disrupted due to geological paucity,
extraction difficulties, and national dependence on their use. Thus, they are considered to
be truly essential raw commodities that are riskier to obtain and have a greater economic
impact on Europe’s monetary union [5]. With regards to the development of sources
beyond primary sources, the use of REEs promotes their long-term sustainability. Spent
battery consumption is expected to be the fastest-growing category of WEEE. Rechargeable
batteries have a life cycle of about 1000 cycles. Every 3–5 years, the cycle turns into
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municipal solid waste. Extensive application of lithium-ion batteries (LIBs) results in
greater battery usage. As a result, there has been a dramatic decrease in the usage of
nickel–metal hydride (Ni–MH) batteries; thus, the production of Ni–MH batteries has
decreased. In addition, spent Ni–MH batteries pose an environmental hazard that can
be managed through effective management, making the recycling of metals from these
devices an important topic of study [6,7]. The Ni–MH battery is not rechargeable for
further use; the electrode is made of, e.g., a porous 30.0% rare earth metals alloy such as the
La10.5Ce4.3Pr0.5Nd1.4Ni60.0Co12.7Mn5.9Al4.7 alloy (where the numbers represent atomic
percentages of elements) [8]. For the metallurgical recovery of REEs from these batteries, the
number of metallurgical operations must be considered. Poor energy efficiency and severe
environmental pollution are characteristics of spent Ni–MH battery pyro-metallurgical
processes. Electric arc furnaces and non-ferrous smelters have low waste concentrations;
therefore, REEs are commonly reverted to the slag phase to deal with the wastes there. This
can make economical recovery more difficult. Decreased energy consumption and low
investment costs are among the key advantages of hydrometallurgical processing, in which
several mineral acids are used to leach Ni–MH scrap [9–14].

Large concentrations of REEs and nickel in its metallic formula mean that, with organic
acids, the REEs and nickel almost completely dissipate. Because organic acids are less
effective than inorganic acids at leaching Ni and Co, the low efficiency of metal recovery as
a whole is apparent. Sulfuric acid is more commonly found in household and commercial
applications. It is an alternative treatment to hydrochloric acid for Ni–MH power batteries
because it is inexpensive and good for the environment. Since it is resistant to oxidation
and corrosion and has a boiling point of 78 ◦C, it is not a good choice for a leaching
agent, for example. Ni becomes oxidized when exposed to sulfuric acid. At the same
temperature, rare earth elements and cobalt dissolve in water [15–17]. Due to the low
amount of energy needed and minimal greenhouse gas emissions, hydrometallurgical
processing for metal recovery is advantageous. Leaching with HCl [12] and H2SO4 [18]
followed by a mixture of separation procedures is used to treat spent Ni–MH batteries [19].
Other metal ions were separated by solvent extraction in the majority of prior studies after
H2SO4 leaching, REE precipitation, and solvent extraction. Under the aforementioned
circumstances, neodymium (Nd) was recovered in high concentrations at 99.1%, while
Sm was recovered at 98.4%, Pr was recovered in high concentrations at 95.54%, and Ce
was recovered in high concentrations at 89.0% [20]. Separate research into selective metal
extraction was undertaken primarily to reduce acid usage compared to conventional
leaching methods such as direct sulfuric acid leaching. According to Meshram et al., the
acid baking process changes the metal’s reactivity and generates sulfates, breaching the
impenetrable barrier [21].

Several studies have focused on selectively recovering REEs. Expended nickel–metal
hydride battery acid was leached in two stages, followed by acidic pH precipitation. In
the first stage of traditional leaching, 2.5 M of H3PO4 for 60 min at 25 ◦C was employed to
eliminate large amounts of heavy metals such as Ni, Co, Cd, and Zn, and more than 90.0%
of the rare earth metals were transformed into insoluble phosphate precipitates (PO4). The
second-stage process included subcritical water extraction and a low H2SO4 concentration
was utilized to extract all of the rare earth elements. As the concentration of leachant acid
increased, the leaching efficiency of REEs increased, and 100% of the REEs, Co, Ni, and
Mn were leached using 1.0 M of H2SO4 (20 g/L) for 30 min at 125 ◦C. At low pH (0.5–2.0),
REEs precipitate as NaREE(SO4).2H2O and separate from other metals. Acidification at pH
1.0 resulted in the formation of hexagonal rod crystals composed of 82.59% La, 85.77% Nd,
and 90.0% Ce [22]. Diphenyl phosphate (DBP) has a high precipitation efficacy for RE3+

ions; it precipitates La3+, Nd3+, Pr3+, and Ce3+, which can attain 97.84, 99.70, 100, and 100%,
respectively. Nonetheless, less than 1.75% of Co2+, Ni2+, and Mn2+ ions were precipitated.
DBP can also be recycled easily and reused. After five cycles, the precipitation efficiency of
DBP did not change [23].
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On the other hand, ammonium sulfate plays a foremost role in the selective extraction
of REEs and Zn from various media. Ammonium compounds have become one of the
most popular leachants for extracting rare earth elements in recent years. Moldoveanu and
Papangelakis used (NH4)2SO4 to leach and recover REE ions [24,25]. Kim et al. also used
a 1.0% concentration of (NH4)2SO4 to leach REEs from Vietnamese ore [26]. The use of
ammonium sulfate has the advantages of reduced reagent use and increased final product
purity [27].

In this work, suggested procedures for the efficient recovery of REEs from spent nickel–
metal hydride batteries were applied to leach all REEs and almost all zinc using ammonium
sulfate. The work then shifted to individually separating cerium from the REE cake using
HCl. Moreover, statistical studies related to the leaching process were conducted.

2. Materials and Methods
2.1. Preparation of Spent Nickel–Metal Hydride (Ni–MH) Batteries

The samples recycled in this work were AA- and AAA-type cylindrical spent (Ni–MH)
batteries produced in Japan (Figure 1a). These batteries were collected from local scraps.
To remove the steel case with its associated battery electrode and the nylon separator
from the expended batteries, they were ground and crushed in a scutter cutter using
deionized water as the medium. Table 1 shows the battery components of the batteries,
their weight, and their proportion. The electrode material spread in the deionized water
as the heavier particles, primarily the steel casing, dropped to the bottom. The lighter
nylon separator then floated away. After the removal of the float fraction (nylon) from the
solution, the suspended fraction (black powder) was wet screened. The electrode powder
(approximately 73.17 g) was accumulated and washed repeatedly with water in order
to eliminate any possible metals (e.g., Na and K) that could behave as an activator for
double sulfate precipitation, which causes REE damage throughout the acid dissolution
process, from the working electrolyte [28]. After that, the battery powder was dried at
80 ◦C for 24 h. The obtained black powder was subjected to calcination at 550 ◦C to remove
organic matter [29]. After milling and calcining, the weight of the battery black powder
was detected. The powder was analyzed for its chemical composition, particle size, and
morphological characteristics.
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Table 1. Weight and proportions of the spent nickel–metal hydride battery parts after physical separation.

Components Weight (g) Proportion (%)

Iron case 23.68 22.77
Separator 6.88 6.62
Poly cap 0.3 0.29

Electrode powder 73.14 70.32

2.2. Apparatus and Chemicals

Many different analytical techniques were used to characterize the raw or fresh original
materials, the leaching residues, and the resulting products. ICP–OES (Ultima Expert,
Horiba Scientific, Kyoto, Japan) was used to measure the concentration of REEs and heavy
metals in the solution. The morphologies of the black powder and the final products
(REEs as double sulfates) were identified using a scanning electron microscope (SEM–
EDX) (LEO 1450VP, Carl Zeiss Microscopy GmbH, Jena, Germany). X-ray diffraction
(XRD) (D8 Discover Family, Bruker, Billerica, MA, USA) was utilized to investigate the
structure of the crystalline materials. Furthermore, the chemicals employed in the leaching
and precipitation of the products were analytical-grade compounds. NaOH, (NH4)2SO4,
H2SO4, HCl, HNO3, and H2O2 were supplied by Sigma-Aldrich, St. Louis, MO, USA.

3. Results and Discussion
3.1. Pre-Treatment and Characterization of the Battery Powder

In the beginning, the black powder of the Ni–MH battery was treated with H2O2 to
prevent iron leaching during the leaching process (Figure 1b); H2O2 acts as an oxidizing
agent for the oxidation of Fe(II) to Fe(III) ions. This was performed by treating the battery
powder with 30.0% H2O2 using a 4:1 S/L ratio at 100 ◦C for 2 h. The obtained data showed
that no ferrous iron was present in the sample and all iron content was ferric. This may
have been due to the fact that ferrous iron reacts easier with ammonium sulfate to form
Mohr’s salt [30].

REEs, including lanthanum (La), cerium (Ce), neodymium (Nd), and praseodymium
(Pr), are essential to the nickel–metal hydride (Ni–MH) battery supply chain since they are
found in high concentrations in Ni–MH batteries. REEs may have a secondary resource
in the form of recovered metals from work on spent Ni–MH batteries. The REEs were
collected from discarded Ni–MH batteries via selective alkaline leaching with ammonium
sulfate solution. Almost all the REEs were leached from the electrode active material
of the discarded Ni–MH batteries. The chemical composition of the Ni–MH batteries is
tabulated in Table 2. The SEM of the obtained black powder is shown in Figure 1c. The
latter shows the morphology of the black powder, which clearly demonstrates scattered
metal aggregates with a high degree of nickel-based phase intercalation.

Table 2. Chemical characterization of spent Ni–MH battery powder.

Element Ni Co Zn Mn Fe Ce La Pr Nd Others

Wt. (%) 45.813 4.225 1.56 2.875 6.3 6.225 5.502 1.9199 2.438 7.282

3.2. Leaching of REEs from Spent Ni–MH Batteries
3.2.1. Influence of (NH4)2SO4 Concentration

The leaching procedure was conducted using 1.0 g of Ni–MH black powder, 120 min,
and 500 rpm at 90 ◦C to investigate how much of the spent Ni–MH powder leached REEs
at various concentrations of (NH4)2SO4 (50–400 g/L). Using an agitator set to 500 rpm
kept the particles in suspension and reduced the lixiviant diffusion layer that formed
around them. We found that the dissolution of rare earth ions increased progressively
as the concentration of (NH4)2SO4 was raised, up to 300 g/L. The efficiency dissolution
process of all REEs remained practically constant even after increasing the concentration of
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(NH4)2SO4. As a result, 300 g/L of (NH4)2SO4 was the optimum concentration for leaching
in this experiment. With 300 g/L (NH4)2SO4, 98% Nd, 76.3% Pr, 71.9% Ce, 64.2% La, and
80.7% Zn were leached out in 120 min (Figure 2).
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Figure 2. Influence of ammonium sulfate concentration on the dissolution of REEs and Zn from spent
Ni–MH battery powder (T: 90 ◦C, t: 120 min, 1:2 (S/L) ratio).

3.2.2. Influence of Time

A 300 g/L (NH4)2SO4 and 1:2 (S/L) ratio solution was used to test the time effect
on rare earth metal leaching at 90 ◦C and a pulp density of 100 g/L. The obtained results
in Figure 3 demonstrate that the amount of REEs recovered improved as the amount of
leaching time increased. A La leaching efficiency of 74.1%was achieved after 180 min;
further leaching efficiencies were found as 88.4% for Nd, 89.1% for Pr, and 81.5% for
Ce. Any additional increment in the leaching time after 180 min had no influence on the
leaching efficiency of the five elements. We found that 180 min of leaching yielded the
greatest amount of dissolution of the REEs and also attained about 92% leaching efficiency
for zinc.
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3.2.3. Influence of The Solid/Liquid (S/L) Ratio

REE dissolving efficiencies were studied in the range between 1:1 and 1:6 depending
on the solid/liquid ratio. For these trials, the stable dissolution conditions included 300 g/L
(NH4)2SO4 and an incubation time of 180 min with a dissolving temperature of 90 ◦C.
REE leaching efficiency was found to increase with increasing the S/L phase ratio to 1:3,
followed by a reduction as the S/L ratio increased from 1:4 to 1:6 (Figure 4). This may be
because REEs precipitate as mono-sulfates. It is clear that all the available REEs reacted
with ammonium sulfate in the solution until achieving equilibrium, after which any excess
of (NH4)2SO4 had no effect on the REE leaching efficiency. As a result, a S/L phase ratio of
1:3 yielded the highest possible dissolution efficiencies of 91.7, 89.4, 94.7, and 95.9% for Ce,
La, Nd, and Pr, respectively, and almost 100% for Zn.
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(300 g/L (NH4)2SO4, T: 90 ◦C, t: 180 min).

3.2.4. Influence of Temperature

The effect of temperature on the solubility of various REEs extant in spent Ni–MH
powder was investigated throughout a temperature ranging between 25 and 150 ◦C. The
obtained data in Figure 5 show temperature’s substantial influence on obtaining the highest
REE leaching efficiency. At ambient temperature and experimental conditions of 300 g/L
of (NH4)2SO4, 180 min, and a 1:3 S/L phase ratio, 62.81, 55.3, 53.4, and 68.7% of Ce, La, Nd,
and Pr were leached, respectively. The dissolution efficiency reached its maximum when
raising the leaching temperature to 120 ◦C and any further raise in temperature did not
demonstrate any significant improvement in the leaching of the REEs. Consequently, we
found that the satisfactory dissolution temperature of Ce, La, Nd, and Pr was 120 ◦C under
the previously mentioned conditions.

According to a prior examination of the effectiveness of leaching REEs from spent
NiMH battery powder using ammonium sulfate, the optimal dissolution conditions for
dissolving approximately 99.98% of REEs and almost all zinc are as follows: 300 g/L of
(NH4)2SO4, 180 min, 1/3 for the S:L phase ratio, and 120 ◦C.
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3.3. Dissolution Kinetic Analysis of REEs

Three methods can be used to identify the rate of reaction: chemical reaction at the
core surface of the particle, diffusion through the solid product layer, or diffusion via
the fluid. The rate of the procedure is dictated by the progress of the slowest phase in
succession [31]. In the shrinking core model (SCM), the reactions occur on the solid’s
outer layer and decline towards the center. Meanwhile, the fluid–solid reaction models are
considered the most influential models that have been applied [32]. In the combination
model, the reaction occurs on the outer surface of the solid and declines towards the center,
when a solid particle (M) is submerged in a fluid (N) and reacts with the fluid based on the
following equation:

N( f luid) + bM(solid)→ products

The required time (t) for solid reaction can be determined using the next equation if
the reaction rate is controlled by fluid N diffusion through the ash layer:

1− 3(1− x)
2
3 + 2(1− x) =

6bDCot
CBr2

o
= K1t

where x is defined as the fraction of dissolved REEs, D (m2/s) represents the diffusivity of
the REEs from the ash layer, Co and CB (mol/L) correspond to fluid concentration outside
the particle and the concentration of solid reactant, respectively, ro (m) is the initial outer
radius of the particle, K1 as well as K2 both stand for the rate constant, and t (min) denotes
the solubilization time. If the chemical reaction controls the reaction rate, the equation of
the integrated rate is calculated as follows:

1− (1− x)
1
3 + 2(1− x) =

bkdCot
CBro

= K2t

Figures 6 and 7 demonstrate diagrams of 1 − 3(1 − x)2/3 + 2(1 − x) as well as
1 − (1 − x)1/3 against dissolution time; they indicate how temperature affects REE re-
action kinetics. The plots show straight lines for Ce, La, Nd, and Pr at various temperatures.
As presented in Figure 6, the kinetic data are not a good fit for the diffusion control model.
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Nevertheless, the calculated R2 values in Figure 7 are above those of the diffusion control
model, indicating that the kinetic results match well with the chemical control model.

The activation energy of the dissolution reaction (Ea) is calculated using the Arrhenius
equation and the rate constants of Kchem:

ln K =
−Ea

RT
+ ln A

where Ea (kJ/mol) is attributed to the activation energy, A corresponds to the Arrhenius con-
stant, and R is 8.314 J/mol K. Figure 8 illustrates a plot of lnK against 1/T. According to the
calculations, the activation energies of cerium, lanthanum, neodymium, and praseodymium
in the temperature range of 323–393 K are 38.33, 34.67, 31.43, and 24.44 kJ/mol, respectively,
which was determined from the slope. As a result, the obtained results are rather suitable
for the model of a shrinking core (SCM) with a chemical reaction as a rate-determining
step [33,34].
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3.4. Regression and Correlation Results between Leaching Factors and REEs

The Pearson correlation is a multiple linear regression model that measures the
strength of the linear relationship between two variables. It has a value between −1
to 1, with a value of−1 meaning a total negative linear correlation between leaching factors
and elements. In this study, it was applied in order to investigate the relationship between
different leaching factors ((NH4)2SO4 concentration, time, S/L ratio, and temperature) of
REEs (Ce, La, Nd, and Pr) and Zn. All factors were considered as explanatory variables
along with the leaching efficiencies (%) of REEs as dependent variables. The results of
the regression model demonstrate that there was a positive relationship with significant
significance between the (NH4)2SO4 conc and all of the explanatory variables (REE leaching
efficiency, %). This was inferred from the R2 value, which indicates the magnitude of the
relationship between the set of predictors in the regression and the outcome variable; and
the beta coefficient, which represents the degree of variation in the outcome variable for
every 1 unit of change in the predictor variable, with its associated p-value and Pearson
correlation; alongside covariance, which indicates the value of the reverse relationship.
The explanatory variables explain more than 75.0% of the variations in leaching efficiency,
signifying that there was a very strong relationship between all REE leaching efficiency
variations and the explanatory variables ((NH4)2SO4 concentration, time, and tempera-
ture). This was with the exception of Ce and temperature, which had a moderate positive
relationship with no significant relationship.

The results also show a strong negative relationship with significant significance
between the S/L ratio and La with Nd, but the other REEs had a moderate negative
relationship with no statistical significance with the S/L ratio.

Variance inflation factors (VIFs) are used to measure how much the variance of the
estimated regression coefficients is inflated as compared to when the predictor variables
are not linearly related. VIFs are used to verify how much amount of multicollinearity
(correlation between predictors) exists in a regression analysis. The value of the VIF of the
model was 1, indicating the non-existence of multicollinearity problems (Tables 3 and 4).
Thus, the results indicate the following regression model equations.

Figures 9–13 display the scatter plot of the linear regression fit for the leaching ef-
ficiency of the five elements against different factors, which confirmed the same results
with regards to where the relationship was positive and strong with the (NH4)2SO4 con-
centration, leaching time, S/L phase ratio, and temperature. It is noteworthy to mention
that at the start point there was no leaching and that if any variable was set to equal 0,
there was no possible leaching. Additionally, it is of note that the (NH4)2SO4 concentration
and time of Ce, Pr, and Zn leaching had a stronger positive effect than temperature, while
the impacts of temperature and time on Nd and La were stronger than that of (NH4)2SO4
concentration. On the other hand, it is clear that there was a strong negative relationship
between the solid/liquid phase ratio and the leaching efficiency of the REE metals.

Table 3. Regression model equations.

(NH4)2SO4 Concentration and S/L Ratio Time and Temperature

Ce leaching efficiency, % = 50.87 + 0.06 × (NH4)2SO4 conc. Ce leaching efficiency, % = 52.89 + 0.13 × Time
Ce leaching efficiency, % = 93.77−24.66 × S/L ratio Ce leaching efficiency, % = 64.64 + 0.3 × Temp.

La leaching efficiency, % = 51.26 + 0.778 × (NH4)2SO4 conc. La leaching efficiency, % = 47.04 + 0.13 × Time
La leaching efficiency, % = 90.62−34.25 × S/L ratio La leaching efficiency, % = 60.67 + 0.3 × Temp.

Nd leaching efficiency, % = 66.28 + 0.03 × (NH4)2SO4 conc. Nd leaching efficiency, % = 60.74 + 0.13 × Time
Nd leaching efficiency, % = 99.17 − 41.14 × S/L ratio Nd leaching efficiency, % = 52.79 + 0.3 × Temp.

Pr leaching efficiency, % = 66.43 + 0.03 × (NH4)2SO4 conc. Pr leaching efficiency, % = 53.61 + 0.17 × Time
Pr leaching efficiency, % = 93.72 − 20.36 × S/L ratio Pr leaching efficiency, % = 55.36 + 0.35 × Temp.

Zn leaching efficiency, % = 57.46 + 0.07 × (NH4)2SO4 conc. Zn leaching efficiency, % = 39.91 + 0.25 × Time
Zn leaching efficiency, % = 122.72 − 34.24 × S/L ratio Zn leaching efficiency, % = 71.88 + 0.22 × Temp.
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Table 4. Regression and correlation results between leaching factors and REEs.

Regression and Correlation Results Ce La Nd Pr Zn

(NH4)2SO4
concentration (g/L)

Pearson correlation 0.966 ** 0.882 * 0.890 * 0.968 ** 0.965 **
Sig. (p-value) 0.007 0.048 0.043 0.007 0.008
Covariance 1219.250 791.625 540.100 569.250 1405.750

R2 0.934 0.778 0.792 0.937 0.931
Beta (unstandardized) 0.06 0.04 0.03 0.03 0.07

N 5 5 5 5 5

Time (min)

Pearson correlation 0.941 * 0.945 * 0.952 * 0.949 * 0.872
Sig. (p-value) 0.017 0.015 0.013 0.014 0.054
Covariance 701.850 662.100 667.200 881.550 1310.100

R2 0.885 0.893 0.906 0.900 0.761
Beta (unstandardized) 0.13 0.13 0.13 0.17 0.25

N 5 5 5 5 5

S/L ratio

Pearson correlation −0.788 −0.858 * −0.840 * −0.664 −0.742
Sig. (p-value) 0.063 0.029 0.037 0.150 0.091
Covariance −2.422 −3.363 −4.040 −2.000 −3.362

R2 0.621 0.736 0.705 0.441 0.551
Beta (unstandardized) −24.66 −34.25 −41.14 −20.36 −34.24

N 6 6 6 6 6

Temperature (◦C)

Pearson correlation 0.786 0.955 ** 0.948 ** 0.896 * 0.859 *
Sig. (p-value) 0.064 0.003 0.004 0.016 0.028
Covariance 629.143 627.127 759.577 745.683 469.635

R2 0.617 0.913 0.899 0.803 0.739
Beta (unstandardized) 0.300 0.3 0.36 0.35 0.22

N 6 6 6 6 6

*: correlation is significant at the 0.05 level; **: correlation is significant at the 0.01 level.Nanomaterials 2022, 12, x FOR PEER REVIEW 12 of 21 
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3.5. Separation of Zinc and REEs Products

For studying the recovery procedures for REEs from the spent Ni–MH battery powder,
proper ammonium sulfate leach liquor was prepared using the previously studied opti-
mum leaching conditions. Leached REEs can be recovered through precipitation as their
hydroxides or else via selective REE precipitation as sulfates or oxalates. Leached Zn and
REEs can be recovered via co-precipitation as their hydroxides at a pH of 8.0. Zn(OH)2 can
be precipitated from its salt solution by adding a suitable base. An excess of alkali base
quickly dissolves Zn(OH)2 as sodium zincates such as NaZn(OH)3 and Na2Zn(OH)4 [35].
The Zn was removed from the solution using CO2 gas to precipitate it as ZnO, as seen
in Figure 14a. After removing ZnO, the rare earth elements were precipitated as double
insoluble sulfate salts using sulfuric acid, which was validated by XRD, as presented in
Figure 14b. There were several phases detected in the solution such as the following salts:
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NaCe(SO4)2.H2O, NaPr(SO4)2.H2O, NaNd(SO4)2.H2O, NaNd(SO4)2, NaLa(SO4)2H2O, and
NaLa(SO4)2. Additionally, the EDX spectrum confirmed the structure of REEs, as given
in Figure 14c. The concentration of elements in the product was determined to be 45.7%
S, 17.5% La, 14.83% Ce, 11.17% Nd, and 10.8% Pr. The SEM image in Figure 14d shows a
hexagonal shape of RE sulfate salts, which are fully developed. It shows well-structured
and tiny particles of 5–6 µm in length and 1–2 µm in width.

Nanomaterials 2022, 12, x FOR PEER REVIEW 16 of 21 
 

 

can be precipitated from its salt solution by adding a suitable base. An excess of alkali 
base quickly dissolves Zn(OH)2 as sodium zincates such as NaZn(OH)3 and Na2Zn(OH)4 
[35]. The Zn was removed from the solution using CO2 gas to precipitate it as ZnO, as seen 
in Figure 14a. After removing ZnO, the rare earth elements were precipitated as double 
insoluble sulfate salts using sulfuric acid, which was validated by XRD, as presented in 
Figure 14b. There were several phases detected in the solution such as the following salts: 
NaCe(SO4)2.H2O, NaPr(SO4)2.H2O, NaNd(SO4)2.H2O, NaNd(SO4)2, NaLa(SO4)2H2O, and 
NaLa(SO4)2. Additionally, the EDX spectrum confirmed the structure of REEs, as given in 
Figure 14c. The concentration of elements in the product was determined to be 45.7% S, 
17.5% La, 14.83% Ce, 11.17% Nd, and 10.8% Pr. The SEM image in Figure 14d shows a 
hexagonal shape of RE sulfate salts, which are fully developed. It shows well-structured 
and tiny particles of 5–6 µm in length and 1–2 µm in width. 

 
Figure 14. (a) EDX spectrum of ZnO product; (b) XRD spectrum of RE sulfate salts; (c) EDX spec-
trum of REE product; (d) SEM image of REE product. 

3.6. Separation of Ce(IV) Individually 
The dried REE powder was subjected to another leaching process in order to separate 

cerium individually from the REE mixture (Ce, Ln, Nd, and Pr) using hydrochloric acid 
[36,37]. For the chemical separation of Ce(IV) from the REEs in the generated mixture (Ce, 
Ln, Nd, and Pr), the trivalent lanthanides were dissolved in a 10.0% HCl solution, whilst 
the insoluble Ce(IV) was left behind. The efficiency of Ce(IV) separation was primarily 
influenced by the pH of the chloride leach liquor and the time required for the REEs com-
bination to dissolve. 

  

Figure 14. (a) EDX spectrum of ZnO product; (b) XRD spectrum of RE sulfate salts; (c) EDX spectrum
of REE product; (d) SEM image of REE product.

3.6. Separation of Ce(IV) Individually

The dried REE powder was subjected to another leaching process in order to sepa-
rate cerium individually from the REE mixture (Ce, Ln, Nd, and Pr) using hydrochloric
acid [36,37]. For the chemical separation of Ce(IV) from the REEs in the generated mixture
(Ce, Ln, Nd, and Pr), the trivalent lanthanides were dissolved in a 10.0% HCl solution,
whilst the insoluble Ce(IV) was left behind. The efficiency of Ce(IV) separation was primar-
ily influenced by the pH of the chloride leach liquor and the time required for the REEs
combination to dissolve.

3.6.1. Influence of pH

The solution pH is the most important and effective parameter affecting cerium purity
and recovery from a REE mixture. The pH value of chloride solutions was studied in
the range from 2.0 to 4.0 that was used for the leaching process with stirring at ambient
temperature. The obtained results presented in Figure 15a show that the recovery of Ce(IV)
improved gradually as the pH increased from 92.7 to 98.1%; as a result, a chloride leach
liquor pH of 3.5 was selected as the sufficient pH value for the recovery of cerium, which
was not leached with other associated REEs.
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3.6.2. Influence of Time

The impact of the stirring time on the cerium separation efficiency from the REE
mixture was studied between 10–60 min (Figure 15b). It was observed that by raising the
leaching time from 10 to 40 min, the leaching of the other associated trivalent REEs in the
chloride solution at a pH value of 3.5 was increased so that the best dissolution time for
cerium recovery from the REEs mixture was 40 min.

3.6.3. Cerium Oxide Separation

The yellowish insoluble Ce(IV) was separated from the chloride leach liquor. Subse-
quently, several washes with distilled H2O were performed to eliminate the excess of Cl−

ions from the yellowish Ce(IV) precipitate. The obtained product was confirmed using
SEM–EDX and XRD analysis, as shown in Figure 16.
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3.7. Flowsheet

Figure 17 displays the flowsheet of the recovery process of rare earth elements, zinc,
and cerium(IV) from spent Ni–metal hydride batteries.
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4. Conclusions

The recovery of REEs and zinc from spent nickel hydride batteries was performed
using ammonium sulfate as a leachant; the optimal conditions of alkali baking were
attained using a 300 g/L (NH4)2SO4 concentration, after 180 min of leaching time and a 1:3
solid/liquid phase ratio at 120 ◦C. The dissolution percentage was 99.98% in both the REEs
and zinc; we found the kinetic data to be in good agreement with the chemical control
model. After a nearly complete leaching of both the zinc and REEs, the separation between
them through conventional techniques was nearly completed. Subsequently, Ce ions were
individually separated from the total REE cake using 10.0% of HCl at pH 3.5 for 40 min
at ambient temperature. Several washes with distilled H2O were performed to remove
the excess of Cl− ions from the yellowish Ce(IV) precipitate. Both XRD and SEM–EDX
techniques were applied to detect the pure cerium(IV) product.
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