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Abstract: We investigate a high-sensitivity surface plasmon resonance (SPR) biosensor consisting of
a Au layer, four-layer MoS2, and monolayer graphene. The numerical simulations, by the transfer
matrix method (TMM), demonstrate the sensor has a maximum sensitivity of 282◦/RIU, which is
approximately 2 times greater than the conventional Au-based SPR sensor. The finite difference
time domain (FDTD) indicates that the presence of MoS2 film generates a strong surface electric
field and enhances the sensitivity of the proposed SPR sensor. In addition, the influence of the
number of MoS2 layers on the sensitivity of the proposed sensor is investigated by simulations and
experiments. In the experiment, MoS2 and graphene films are transferred on the Au-based substrate
by the PMMA-based wet transfer method, and the fabricated samples are characterized by Raman
spectroscopy. Furthermore, the fabricated sensors with the Kretschmann configuration are used
to detect okadaic acid (OA). The okadaic acid–bovine serum albumin bioconjugate (OA-BSA) is
immobilized on the graphene layer of the sensors to develop a competitive inhibition immunoassay.
The results show that the sensor has a very low limit of detection (LOD) of 1.18 ng/mL for OA,
which is about 22.6 times lower than that of a conventional Au biosensor. We believe that such a
high-sensitivity SPR biosensor has potential applications for clinical diagnosis and immunoassays.

Keywords: biosensor; MoS2; graphene; SPR sensor; high sensitivity

1. Introduction

Surface plasmon resonance (SPR) is one of the most powerful optical-sensing tech-
nologies due to its high sensitivity, real-time, and label-free detection [1–6]. SPR-based
biosensors have many practical applications, such as medical diagnostics, food safety, virus
detection, etc., as they can be coupled with various molecular recognition elements, either
chemical receptors (nanomaterials, molecularly imprinted polymers (MIPs), etc.) or biore-
ceptors (enzymes, nucleic acids, antibodies, etc.) [7–10]. In general, Ag and Au are widely
used as plasmonic materials for SPR sensors. Au film is preferred because of its excellent
resistance to corrosion and oxidation in different external environments [11]. However,
bioreceptors are poorly immobilized on the surface of Au film, limiting the sensitivity of
the Au-based SPR biosensor.

Many chemical methods are used to enhance the immobilization of bioreceptors.
Among them, the self-assembly monolayer (SAM) has been widely proven to be particularly
effective because of its simplicity of fabrication, reproducibility, and good temperature
stability [12–14]. Many studies have reported using SAMs to improve the sensitivity of SPR
sensors. Taylor et al. [13] report a limit of detection (LOD) of 0.3 ng/mL for Tetrodotoxin
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(TTX) by using a mixed SAM layer. Kawaguchi et al. [14] employ the PEG-based SAM
layer for detecting TNT with a LOD of 0.008 ng/mL.

In addition to these chemical methods, many biosensors, based on metallic nanoslits [15]
or nanoholes structures [16,17], are proposed to enhance the sensitivity of the SPR sensors.
However, the fabrication processes of these structures often involve complicated steps
or require expensive, time-consuming electron beam lithography. Moreover, large-area
fabrication is challenging.

To solve this problem, a large-area thin graphene layer is used to cover the Au film
surface to improve the sensitivity of the SPR sensor [18,19]. Graphene is a monoatom thin
planar sheet of sp2 carbon atoms well organized in the form of a honeycomb lattice. It
provides better support for biomolecule adsorption due to its rich π conjugation structure
and large surface area, making it a suitable dielectric layer for SPR sensing [20,21]. For
example, Verma et al. [22] exploit graphene and silicon to improve the sensitivity of
SPR biosensors. Wu et al. [23] employ 10-layer graphene to improve sensitivity, and the
performance can be nearly 25% enhanced. At a certain wavelength range, more graphene
layers result in higher sensor sensitivity. However, due to the large imaginary part of
graphene, too many graphene layers will produce excessive an amount of damping in
plasmonic waves, resulting in reduced detection accuracy.

In addition to graphene, other 2D materials, such as molybdenum disulfide (MoS2),
have gained much attention for sensing applications. Monolayer MoS2 has many unique
advantages, such as higher light absorption efficiency (5%), large direct bandgap (1.8 eV),
and larger work function (5.1 eV), so it is widely used in the field of SPR sensing [24–26].
For example, Xue et al. [27] design a high-sensitivity SPR sensor by coating seven layers
of MoS2 on the surface of a sensor. They demonstrate that the highest sensitivity is about
190◦/RIU and the LOD of Hg2+ for the sensor is 1.0 pM. In addition, the emergence of the
chemical vapor deposition (CVD) technique makes the large-area growth of MoS2 possible,
which further facilitates the development of MoS2-based SPR sensors [28].

In this work, we propose a high-sensitivity SPR biosensor based on the graphene–
MoS2 structure. MoS2 films are used to absorb more light energy and the monolayer
graphene is used as the biomolecular recognition element due to its large surface area. The-
oretical optimization, based on the transfer matrix method (TMM), shows that a maximum
sensitivity ~282◦/RIU is achieved, when the Au-based substrate is modified with four-layer
MoS2 and monolayer graphene. The mechanism of sensitivity enhancement is discussed
and explained theoretically. In the experiment, a PMMA-based wet transfer method is used
to transfer MoS2 and graphene film on the Au-based substrate and the high-refractive-index
(RI) sensitivity of the fabricated sensor is verified. In addition, the proposed biosensor
is used to detect okadaic acid (OA) by the indirect competitive inhibition method. The
experimental results demonstrate that the graphene–MoS2 hybrid structure can greatly
reduce the LOD of the SPR biosensor.

2. Numerical Simulation
Design the Proposed SPR Biosensor

In Figure 1, the designed SPR sensor is based on a prism, Cr layer, Au layer, few-layer
MoS2, and monolayer graphene. In this structure, BK7 glass is used as a coupling prism and
Au is used as a plasmonic material to excite the SPR effect. Few-layer MoS2 films are used to
absorb more light energy and the monolayer graphene is used as the biological recognition
component, which further improves sensor sensitivity. In the simulation, the thickness of
the Cr layer is 5 nm and the thickness of the Au layer is 50 nm. The wavelength of the
incident light source is 632.8 nm. At this wavelength, the RI of BK7 glass is 1.516 [29]. The RI
of Au is obtained from the Drude–Lorentz model [30]. The RI of graphene is 3 + 1.1487i [31]
and its thickness can be expressed as dG = L∗0.34 nm, where L is the number of graphene
layers. The RI of the MoS2 layer is 5.9 + 0.8i [32] and its thickness can be denoted as
dM = M∗0.65 nm, where M is the number of MoS2 layers.
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Figure 1. Schematic illustration of the designed SPR sensor.

To evaluate sensing performance, we compare the RI sensitivities of three different
structures: the conventional Au-based sensor, the MoS2-based sensor, and the graphene–
MoS2 hybrid-structure sensor. TMM is used to calculate the reflectivity curves of various
structures and the calculated results are shown in Figure 2. The sensitivity calculation
formula of the SPR sensor is S = ∆θ/∆n, where ∆θ is the variation in resonance angle and
∆n is the variation in the RI of the sensing medium. Figure 2a is the reflectivity curves
of the conventional Au-based sensor, and the thickness of the Au film is 50 nm. From
this figure, the resonance angle increases ∼0.71◦ when ns changes from 1.330 to 1.335.
Thus, the sensitivity of the Au-based sensor is 142◦/RIU. In Figure 2b, we use the four-
layer MoS2 to enhance the sensitivity and the sensitivity is calculated to be 256◦/RIU. The
high sensitivity is because the presence of the MoS2 layer increases the efficiency of light
absorption of the sensor. Most of the incident light energy is transferred to free electrons on
the sensor surface, so more surface plasmons are generated, which results in the higher
sensitivity [33,34]. In Figure 2c, the monolayer graphene is covered on top of the MoS2 layer
to further improve the sensitivity. The resonance angle shifts by ∼1.41◦ and the sensitivity
increases to 282◦/RIU. Obviously, the monolayer graphene does not significantly enhance
the RI sensitivity of the proposed sensor. This is due to the fact that the light absorption
efficiency of graphene is lower than that of MoS2. The primary function of the monolayer
graphene is used as a biomolecular recognition component. In biological experiments, the
graphene provides a large surface area for adsorbing biomolecules, which lowers the LOD
of the sensor [35].
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Figure 2. Reflectivity curves change with incident angles for (a) conventional Au-based sensor,
(b) MoS2-based sensor, (c) graphene–MoS2 hybrid-structure sensor.

To study the influence of the number of MoS2 layers on the sensitivity of the graphene–
MoS2 hybrid-structure sensor, we calculate the reflectivity curves in a different sensing
medium, as shown in Figure 3. According to Figure 3, the SPR curves become wider and
the resonance angle obviously shifts to higher angle values with the increase in the MoS2
layers. This is due to the relatively high RI in the real parts of the MoS2 material, which
produces excessive amount of damping in the plasmonic wave [36]. Furthermore, we
can see that the sensitivity first increases and then decreases with the increase in MoS2
layers. This can be explained that as the number of MoS2 layers continuously increases,
the resonance angle will increase to 90◦, but the detection angle cannot reach 90◦, limiting
the sensitivity of the SPR sensor [37]. When the number of MoS2 layers is four (M = 4), the
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highest sensitivity of 282◦/RIU is obtained, which is significantly improved as compared
to the other reported works [22,23,27].
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in different sensing medium, where the number of MoS2 layers increases from M = 1 to M = 6.

In order to clearly demonstrate the electric field enhancement of the proposed sensor,
we compare the electric field distribution in two configurations of the conventional Au-
based sensor and the graphene–MoS2 hybrid-structure sensor with four-layer MoS2 at
resonance condition. The finite difference time domain (FDTD) method is used to simulate
the electric field distribution and the calculated results are shown in Figure 4. Compared
with the Au-based sensor, the electric field of the proposed sensor in Figure 4b can have an
evident improvement by coating the MoS2 and graphene film. On one hand, the graphene–
MoS2 hybrid structure improves the absorption of light energy. On the other hand, the
absorbed light energy is transferred to the free electrons, resulting in strong coupling on
the graphene surface, ultimately enhancing the surface electric field. The electric-field-
enhanced region has a more sensitive response to the slight variation in RI of the sensing
medium.
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3. Experiment
3.1. Materials and Reagents

NaCl, H2SO4, HCl, NaOH, H2O2, anisole, KOH, acetone, and poly (methyl methacry-
late) (PMMA, molecular weight ≥20,000) were obtained from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). N-hydroxysuccinimide (NHS), 1-ethyl-3-(3-dimethylaminopro
pyl)-carbodiimide hydrochloride (EDC), ethanolamine and phosphate-buffered saline (PBS)
were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. Okadaic acid
(OA) with >95% purity (HPLC-grade), the okadaic acid–bovine serum albumin bioconju-
gate (OA-BSA), and anti-OA monoclonal antibody (OA-mAb) were purchased from Anti
Biological Technology Co., Ltd. (Shenzhen, China). A 0.2 M NaOH solution was used
as the regenerant. All reagents and solvents are analytical grade and were used without
further purification. Deionized water (18.2 MΩ·cm) was used throughout the work.

3.2. Sample Fabrication
3.2.1. The Fabrication of the Conventional Au-Based Sensor

The conventional Au-based sensor and graphene–MoS2 hybrid-structure sensor with
different numbers of MoS2 layers are fabricated in this paper and the fabrication processes
are shown in Figure 5. First, a 5 nm Cr layer and 50 nm-thick Au layer were sequentially
deposited on the polished BK7 glass substrate by magnetron sputtering, where the Cr layer
was used as an adhesion layer (See Figure 5c,d). The SEM image of Au-based sensor is
shown in Figure 6. We can see that the thickness of the Au film is 49.6 nm.
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Figure 5. Schematic diagram of fabrication processes of the graphene–MoS2 hybrid-structure sen-
sor. (a) MoS2 deposition using CVD, (b) PMMA spin-coating, (c) Cr deposition using magnetron
sputtering, (d) Au deposition using magnetron sputtering, (e) separation of PMMA/MoS2 from
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SiO2/Si substrate using KOH, (f) PMMA/MoS2 transferring to Au-based substrate, (g) PMMA
removal using acetone, (h) monolayer-graphene deposition using CVD, (i) PMMA spin-coating,
(j) etching the Cu foil using FeCl3, (k) PMMA/graphene transferring to MoS2-based substrate,
(l) PMMA removal using acetone.
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3.2.2. The Transfer Process of MoS2 Film

Continuous 2~6-layer MoS2 film purchased from SixCarbon Technology was grown
on SiO2/Si substrate by CVD technique. The few-layer MoS2 films were transferred onto
the Au-based substrate by a PMMA-based wet transfer method [38]. In the MoS2 transfer
process, first, MoS2 grown on SiO2/Si substrate was spin-coated with PMMA (4% in anisole)
at 3000 rpm for 1 min and baked at 120 C for 3 min. Then, samples with the PMMA coating
were then soaked in a 2 mol/L KOH solution for 2 h, in which the PMMA/MoS2 layer was
separated from the Si substrate due to etching of SiO2. Next, the PMMA/MoS2 layers were
washed in DI water, scooped using an Au-based substrate, dried under ambient conditions,
and baked at 80 ◦C for 1 h. Finally, the acetone was used to dissolve the PMMA. We can
complete the transfer of MoS2 to obtain the MoS2-based substrate (See Figure 5a–g).

3.2.3. The Transfer Process of Graphene Film

The monolayer graphene purchased from SixCarbon Technology was synthesized
on Cu foil using the CVD technique. Similar to the transfer method of the MoS2 layer,
we transferred the monolayer graphene on MoS2-based substrate to obtain the proposed
biosensor. First, a thin layer of PMMA was spin-coated onto the surface of graphene/Cu
foil at 500 rpm for 10 s, followed by 20 s at 2500 rpm. Then, the PMMA/graphene/Cu foil
was baked at 120 ◦C for 3 min; then, the Cu foil was etched in a 1 mol/L FeCl3 solution
for 1 h. After the Cu foil was dissolved, the PMMA–graphene film was repeatedly washed
with sufficient DI water. Next, the PMMA/graphene sample was carefully transferred onto
the surface of MoS2-based substrate. Then, the sample was dried at 90 ◦C for 60 min to
enable the PMMA–graphene layer to firmly adhere to the substrate. Finally, the acetone
was used to dissolve the PMMA and the fabricated samples were thoroughly washed with
DI water (See Figure 5h–l). Through the above steps, we fabricated the graphene–MoS2
hybrid-structure sensor with different numbers of MoS2 layers.

The photograph of the fabricated graphene–MoS2 hybrid-structure sensor with dif-
ferent layers of MoS2 and monolayer graphene is shown in Figure 7. We can see the
different colors correspond to the different numbers of MoS2 layers. Raman spectra of
fabricated samples are characterized by EnSpectrR532 at a laser wavelength of 532 nm and
the corresponding spectra are shown in Figure 8. In the low-frequency region, two strong
peaks E1

2g and A1g, which locate at 382.9 cm−1 and 406.5 cm−1, respectively, are shown
in Figure 8a. As the layer number increases from 2-layer to 6-layer, a slight red shift in
the E1

2g band and a slight blue shift in the A1g band are observed. These findings suggest
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that MoS2 films are successfully transferred in graphene–MoS2 hybrid structure [39]. In
the high-frequency band, the black line in Figure 8b indicates two characteristic peaks of
graphene at 1581.2 cm−1 (G-band) and 2679.1 cm−1 (2D-band). According to previous
reports, the number of graphene layers depends on the intensity ratios I2D/IG. When the
I2D/IG of this spectrum is approximately 2, it represents a typical spectrum of monolayer
graphene [40]. In addition, for the red, blue, and pink lines, both the G and 2D peaks of
graphene appear in the same location. These results indicate that monolayer graphene film
was successfully transferred in a graphene–MoS2 hybrid structure.
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3.3. RI-Sensing Experiments

In this section, we compare the RI sensitivity of the Au-based sensor and the proposed
sensor with different layers of MoS2. The Abbe refractive index meter was used to mea-
sure the RI of the NaCl solutions at room temperature (26 ◦C). The NaCl solution with
concentration ranges of 0.1 g/L, 0.25 g/L, 0.5 g/L, 1 g/L, 2.5 g/L, 5 g/L, and 10 g/L were
prepared, and their corresponding refractive indices are 1.33152, 1.33154, 1.33158, 1.33165,
1.33189, 1.33229, and 1.33308, respectively. In the experiment, deionized water was first
injected into the sensor for a sufficient time to ensure the stability of the baseline. Then, the
NaCl solution and deionized water were sequentially injected as a cycle, and the process
was repeated to test different concentrations of NaCl solutions. Every concentration was
measured three times, and the results were recorded in computer software. Figure 9 shows
the response signal for the conventional Au-based biosensor in different RI solutions. From
the linear fitting curve of Figure 9b, the RI sensitivity is 13,951.2 pixel/RIU with linearity
of 0.98519. Similarly, NaCl solutions with different concentrations were injected into the
sensing region of proposed sensor with different layers of MoS2. The response spectra are
shown in Figures 10a, 11a and 12a. In Figures 10b, 11b and 12b, linear fittings are conducted
to obtain the corresponding sensitivities. The sensitivity values are 17,003.4, 25,819.9, and
21,783.3 pixel/RIU for the proposed sensors with 2, 4, and 6 layers of MoS2, respectively,
and all the correlation coefficients (R2) are higher than 0.98. When the number of MoS2
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layers is four, the maximum sensitivity is obtained, which is 1.85 times that of conventional
Au-based sensor. A good agreement is observed between the experimental results and the
theoretical calculation results.
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3.4. Okadaic Acid Detection Experiment
3.4.1. Fabrication of SPR Immunosensor

The surface of graphene has abundant functional groups, which can be covalently
bound to antigen or antibody molecules. For the pretreatment of the graphene-based
SPR-sensing chip, the chip was rinsed thoroughly with plenty of water, and dried with
nitrogen. Then, the carboxyl group of graphene was activated by NHS/EDC mixture solu-
tion (M:M = 4:1, v:v = 1:1) for 30 min, followed by washing in plenty of water. Afterwards,
the OA-BSA conjugate (1 mg/mL) was dissolved in PBS buffer and was dropped onto the
chip surface and incubated for 1 h. Finally, a 1 mol/L ethanolamine solution (pH 8.5) was
used to block the nonspecific interaction on the biosensor surface.

3.4.2. Determination of OA

The low-molecular-weight analyte OA was detected by the proposed SPR sensor with
four-layer MoS2 by an indirect competition inhibition method [41,42], and the schematic
diagram of the detection process for OA is shown in Figure 13. Figure 14a demonstrates
the specific interaction process of OA-mAb and OA-BSA immobilized on the sensor chip
surface. First, PBS buffer was injected over the sensor chip to obtain a stable baseline before
the measurement. Then, the OA-mAb solution (5 µg/mL) was injected into the reactor. The
free OA-mAb was captured by OA-BSA on the sensor chip surface and the response signal
was increased. At the end of the detection cycle, the captured antibodies were removed by
injecting NaOH (0.2 M) solution for the regeneration, and the response signal returned to
the original baseline position.
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Figure 14. (a) The specific interaction process between OA-mAb (5 µg/mL) and the OA-BSA followed
by regeneration step. (b) The shift in response signal with increasing concentration of OA-mAb.
(c) The SPR response signal curves of OA solution at different concentrations for the proposed SPR
biosensor. (d) Calibration curve for the detection of OA by indirect competitive inhibition.

For the indirect competition inhibition method, the concentration of antibody is a key
parameter affecting sensitivity. To obtain the appropriate antibody concentration, a series
of concentrations of OA-mAb (1~60 µg/mL) were injected into the sensor chip. Figure 14b
shows the resonant pixel shifts with an increasing concentration of OA-mAb. The resonant
pixel shift increases rapidly before the antibody concentration reaches 15 µg/mL, followed
by a slower rate of increase. Therefore, a 15 µg/mL OA-mAb concentration was used in
subsequent OA experiments.

Firstly, the OA standard solutions were incubated with the 15 µg/mL OA-mAb so-
lution for 30 min. Subsequently, the equilibrated mixtures, containing a series of OA
concentrations (0.5~2048 ng/mL) and 15 µg/mL OA-mAb, were injected into the sensor
chip. The reproducibility of the immune reaction was assessed by analysis of each concen-
tration of OA mixture solutions three times. The obtained SPR response signal curves are
shown in Figure 14c. From Figure 14c, it can be seen that the shift in the resonant pixel
decreases with the increase in the OA concentration in the solution. This is due to the OA in
free solution inhibiting the binding interaction of OA-mAb with the OA-BSA immobilized
on the sensor chip, resulting in a decrease in the response signal. The extent of reduction is
directly proportional to the OA concentration. Figure 14d is the percentage of inhibition
with respect to the OA concentration. It can be inferred from the sigmoidal calibration
curve that the linear detection range of the proposed OA biosensor is from 4 ng/mL to
512 ng/mL. The LOD is estimated to be 1.18 ng/mL based on the LOD formula [43], which
is approximately 22.6 times lower than the conventional Au-based sensor (26.7 ng/mL).

4. Conclusions

In this work, a high-sensitivity SPR biosensor composed of MoS2 and graphene is
proposed, and its performance was investigated through a simulation and experiments.
MoS2 films with a high light absorption efficiency were utilized to promote the transfer of
electrons, which resulted in a significant enhancement of the electric field on the sensor’s
surface. Monolayer graphene was employed as the biological recognition component to
further increase the sensitivity of the sensors. The numerical results show that the maximum
sensitivity ~282◦/RIU is achieved, when the sensor is modified with four-layer MoS2 and
monolayer graphene. In the experiment, the proposed sensor was used to measure the
RI sensitivity and detect the OA concentration. The result of the RI experiments show
that the RI sensitivity of the proposed sensor is approximately 1.85 times higher than the
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conventional Au sensor. In addition, the LOD of OA for the proposed sensor is 1.18 ng/mL,
which is about 22.6 times lower than the conventional Au sensor. These results suggest that
this device has the potential for clinical diagnostics and chemical detection.
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