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Abstract: A flexible method for modulating the Casimir force is proposed by combining graphene and
hyperbolic materials (HMs). The proposed structure employs two candidates other than graphene.
One is hexagonal boron nitride (hBN), a natural HM. The other is porous silicon carbide (SiC),
which can be treated as an artificial HM by the effective medium theory. The Casimir force between
graphene-covered hBN (porous SiC) bulks is presented at zero temperature. The results show that
covering HM with graphene increases the Casimir force monotonically. Furthermore, the force can
be modulated by varying the Fermi level, especially at large separation distances. The reflection
coefficients are thoroughly investigated, and the enhancement is attributed to the interaction of
surface plasmons (SPs) supported by graphene and hyperbolic phonon polaritons (HPhPs) supported
by HMs. Moreover, the Casimir force can be controlled by the filling factor of porous SiC. The Casimir
force can thus be modulated flexibly by designing desired artificial HMs and tuning the Fermi level.
The proposed models have promising applications in practical detection and technological fields.

Keywords: Casimir force; graphene; hyperbolic material

1. Introduction

The Casimir force is an intriguing macroscopic effect caused by the quantum fluctua-
tions of electromagnetic fields. Casimir predicted the existence of attractive forces between
two parallel perfectly conducting plates in 1948 [1]. Lifshitz then generalized a theory of
forces between two semi-infinite dielectric parallel plates with dispersive and absorptive
properties at any temperature [2]. The Casimir effect is still a hot topic with the develop-
ment of microelectromechanical and nanoelectromechanical systems (MEMS and NEMS).
Over the last two decades, special emphasis has been placed on theoretical understand-
ing [3–6] and precise experimental measurements [7–13] of the Casimir effect. In the study
of Casimir force, the primary geometric configuration is two parallel plates of natural mate-
rials separated by a vacuum gap. In general, the force is too weak for practical detection,
so enhancing weak Casimir forces is critical. Furthermore, the force is usually attractive
and dominates in the submicrometer regime, where irreversible adhesion of neighboring
elements in MEMS and NEMS can occur [14–16]. As a result, modulating the Casimir force
is both fundamental and technological [5,17]. The realization of repulsive force is related
to the symmetry of electric and magnetic properties of the boundary materials [18,19].
Consequently, using special materials with controllable electromagnetic properties to mod-
ulate the Casimir force becomes an interesting topic [4]. Metamaterials, for example, as
a type of artificial materials, have unusual electromagnetic properties that natural mate-
rials do not have, and are used in cloaking [20], vacuum induced transparency [21], and
controlling the Casimir effect [22–24]. Furthermore, saturated ferrite materials [25,26] and
topological insulators [27–29] are proposed to modulate the Casimir effect.

Graphene, a two-dimensional sheet of carbon atoms arranged in a hexagonal lat-
tice, has piqued the curiosity of many scientists [30]. The linear dispersion relation near
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the Dirac point causes an extraordinary response to light [31]. In particular, graphene
can support surface plasmons (SPs) in the terahertz to infrared frequency ranges [32].
There has also been extensive research into using graphene to modulate the Casimir ef-
fect [32–40]. The plasmonic response of graphene is well understood to be highly dependent
on the deposited substrate [41]. As a result, Goos-Hänchen shift [42,43], quantum interfer-
ence [44], and Casimir friction [32,33] have been investigated in graphene-based models.
For example, using graphene-covered hyperbolic materials (HMs) can significantly increase
Casimir friction due to the coupling of SPs with hyperbolic phonon polaritons (HPhPs) sup-
ported by HMs [33]. This enhancement is active, because graphene’s optical conductivity is
adjustable and can be controlled by an external field or gate voltage.

Hyperbolic materials have gotten a lot of attention in the last decade because of their
unique electromagnetic properties [45]. Diagonal elements of a uniaxial HM’s permittivity
tensor have opposite signs, resulting in a hyperbolic isofrequency contour for TM polariza-
tion [46]. It is possible to achieve ultrahigh propagating wave vectors and surface wave
excitation by using HMs. Hexagonal boron nitride (hBN) is a natural HM with hyper-
bolic responses in the infrared frequency range [47]. Hyperbolic phonon polaritons can be
supported by hBN, which has been thoroughly investigated [48], and as microfabrication
technology develops, artificial HMs with hyperbolic responses in specific frequency bands
can be constructed. In general, alternative metal-dielectric layered structures [49] or a lattice
of nanowires embedded in a dielectric matrix [46] can be used to realize artificial HMs. In-
gredient materials and their proportions can be used to control the desired electromagnetic
properties. As a result, when compared to natural HMs, artificial HMs provide additional
methods for modulating HPhPs.

It is well known that the electromagnetic properties of the boundary material can
modify the Casimir force [6]. In this paper, we investigate the Casimir force between
graphene-covered HMs. The remainder of this paper is organized as follows. Section 2
introduces the two models under consideration here, as well as the Casimir force between
two graphene-covered HMs. Section 3 demonstrates the modulation of Casimir force
caused by the interaction of SPs and HPhPs. The results show that the Casimir force can
be actively modulated by the Fermi level and artificial HMs. Section 4 is where we draw
our conclusions.

2. Materials and Methods

Figure 1 depicts the scheme that takes into account two different models. The Casimir
force between two identical samples separated by d is investigated in each model.
One model’s samples are graphene-covered hBN bulks, as shown in Figure 1a, while
the other model’s samples are graphene-covered porous silicon carbide (SiC) bulks as
shown in Figure 1b. The models are in free space, with the x − y plane parallel to the
graphene plane. The optical properties of graphene in the low-frequency range and high
doping limit are determined by its in-plane conductivity σ, which can be expressed as [42]

σ(ω) =
ie2EF

πh̄2(ω + iτ−1)
, (1)

under the random phase approximation (RPA). Here, e is the electron charge, EF is the
Fermi level, and τ = µEF/ev2

F is the relaxation time caused by electron doping, elec-
tron defect, and phonon scattering. The mobility of the graphene charge carriers is
µ = 104 − 106cm2 V−1s−1, and the Fermi velocity is vF = 106 m/s.
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Figure 1. The Casimir force between two graphene-covered HMs separated by d is depicted schemat-
ically. Two models under consideration: (a) graphene-covered hBN and (b) graphene-covered
porous SiC.

The hBN is a naturally anisotropic material that exhibits hyperbolic dispersion. The
permittivity of hBN is a tensor, and the elements of the anisotropic permittivity tensor are
as follows [33]

ε l,hBN = ε l,∞

[
1 +

ω2
LO,l −ω2

TO,l

ω2
TO,l −ω2 − iωγl

]
, (2)

where l = xx, zz, LO and TO are two phonon modes, and γ is the damping coeffi-
cient. The parameters are εxx,∞ = 4.87, ωLO,xx = 3.0348 ω0, ωTO,xx = 2.5824 ω0, γxx =
0.0094 ω0, εzz,∞ = 2.95, ωLO,zz = 1.5645 ω0, ωTO,zz = 1.4703 ω0, γzz = 0.0075 ω0, and
ω0 = 1014 rad/s. The real parts of ε l,hBN are plotted as functions of ω in Figure 2a. Two grey
shadow zones satisfying Re(εxx)Re(εzz) < 0 are obtained, in which HPhPs can be excited.
Electromagnetic waves possess a high wave vector in such bands, thus the large electro-
magnetic local density of the state can be obtained [46].

Figure 2. (a) The relationship between the real parts of ε l,hBN and ω. (b) The relationship between
the real parts of ε l,p−SiC and ω with f = 0.3. Here l = xx, zz and grey shadow zones indicate the
hyperbolic bands. The inset shows the real parts of ε l,p−SiC from 1.72 ω0 to 1.84 ω0.

Bulk SiC is an isotropic material, and its permittivity can be described by the Lorentz
model [40]

εs(ω) = ε∞
ω2 −ω2

L + iγω

ω2 −ω2
T + iγω

, (3)

where ε∞ = 6.7, ωL = 1.827 ω0, ωT = 1.495 ω0, and γ = 0.009 ω0. The desired kind
of anisotropy can be generated by the structure of a lattice of nanowires embedded in a
dielectric matrix. Therefore, by embedding a lattice of air cylinders in a SiC, an artificial
HM can be fabricated. By using the Maxwell-Garnett method [50], the effective permittivity
of such porous SiC is described as

εxx,p−SiC = εyy,p−SiC =
[(1 + f ) + (1− f )εs]εs

(1− f ) + (1 + f )εs
, (4)



Nanomaterials 2022, 12, 2168 4 of 13

εzz,p−SiC = f + (1− f )εs, (5)

where the filling factor f is the area percentage occupied by air holes in the xy section
of the medium. The real parts of ε l,p−SiC (l = xx, zz) as functions of ω with f = 0.3 are
presented in Figure 2b. Two hyperbolic bands of porous SiC are obtained, as shown by the
inset in Figure 2b. Artificial materials similar to such porous SiC are also named hyperbolic
metamaterials that can also support HPhPs.

By utilizing the Maxwell electromagnetic stress tensor method with the properties of
macroscopic field operators, the Casimir force at zero temperature is eventually expressed
as [23]

F = − h̄
π

Re
∫ ∞

0
dω

∫∫ d2k‖
2π

√
ω2

c2 − k2
‖ ∑

p=TE,TM

r1p(ω, k)r2p(ω, k)e
2id

√
ω2/c2−k2

‖

1− r1p(ω, k)r2p(ω, k)e
2id

√
ω2/c2−k2

‖
, (6)

where the integral is carried out over all electromagnetic modes. The wave vector com-
ponent k‖ is parallel to the x− y plane. The reflection coefficient from the space between
two samples to the surface of top (bottom) sample for a p polarized wave is denoted by r1p
(r2p). Since the top and bottom samples in each model are identical, r1p equals r2p. We shall
omit the subscripts 1 and 2. All the singularities can be avoided by converting the integral
of positive real ω to that of positive imaginary frequency ξ, i.e., ω = iξ, the Casimir force
can be written as

F =
h̄

2π2

∫ ∞

0
dξ

∫ ∞

0
k‖dk‖

√
ξ2

c2 + k2
‖ ∑

p=TE,TM

rp(iξ, k)rp(iξ, k)e
−2d

√
ξ2/c2+k2

‖

1− rp(iξ, k)rp(iξ, k)e
−2d

√
ξ2/c2+k2

‖
. (7)

To compute the Casimir force, the reflection coefficients are obtained using the ap-
proach described in Reference [51]. Graphene is a monolayer in this study that can be
considered as a conductivity current. Appendix A contains the detailed derivation of rTE
and rTM. The reflection coefficient of the graphene-covered HM for the TE polarized wave
can be written as

rTE =
kiz − kTE

tz − σωµ0

kiz + kTE
tz + σωµ0

, (8)

where kiz =
√

k2
0 − k2

‖ and kTE
tz =

√
εxxk2

0 − k2
‖. The wave vector in free space is

k0 = ω/c. Since only εxx appears in rTE, HPhPs can not be excited by TE polarized
waves. The reflection coefficient for the TM polarized wave is expressed as

rTM =
εxxkiz − kTM

tz +
σkizkTM

tz
ωε0

εxxkiz + kTM
tz +

σkizkTM
tz

ωε0

, (9)

where kTM
tz =

√
εxxk2

0 − k2
‖εxx/εzz. Obviously, TM polarized waves can excite HPhPs since

both εxx and εzz appear in rTM. Furthermore, the reflection coefficients are affected by
graphene conductivity, implying that SPs supported by graphene can couple with electro-
magnetic modes supported by HM, particularly HPhPs. Because the optical properties of
the sample can be conveniently turned by varying EF, the Casimir force, which is usually
dependent on the surrounding environment, can be controlled by EF.

3. Results and Discussion
3.1. Casimir Force of Graphene-Covered hBN

The relative Casimir forces between two identical graphene-covered hBN bulks as
a function of separating distance d for various Fermi levels are presented in Figure 3.
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The Casimir force is scaled by the well-known formula F0 = h̄cπ2/240d4, which is the
Casimir force per unit area between two parallel perfectly conducting plates separated
by d. Because two samples have the same electric and magnetic properties, the force
is obviously attractive at any distance. The relative force between two identical hBN
bulks is also plotted for comparison purposes, as shown by the blue line in Figure 3. The
relative force is clearly increased when hBN bulks are covered by graphene. In addition,
as the Fermi level Ef increases, the relative force increases monotonically for arbitrary
separating distances. The relative force is insensitive to Ef for minimal d, and curve slopes
are large. However, for large d, the relative force is sensitive to Ef, but curve slopes are small.
Since the Fermi level is adjustable, the Casimir force can be controlled flexibly.

2 4 6 8 10
0.12

0.16

0.20

0.24

0.28

F
/F

0

d(µm)

 hBN

 Ef = 0.1eV

 Ef = 0.5eV

 Ef = 0.9eV

Figure 3. The relationship between the relative Casimir force and the separating distance d. The blue
line represents the force between two identical hBN bulks, while the other lines represent the force
between two graphene-covered hBN bulks at different Fermi levels.

The Casimir force is related to all electromagnetic modes supported by two sam-
ples. From Equation (6), we know that electromagnetic modes are represented by the
reflection coefficients of samples. Thus, both real parts of rTM and rTE are plotted as a
function of frequency ω and wave vector component k|| in Figure 4. Comparing Re(rTM)
of hBN and Re(rTM) of graphene-covered hBN, i.e., Figure 4a,b, reflection coefficients
are enhanced clearly when ω < 0.1ω0 for all k||. However, it is difficult to distinguish
between Re(rTE) of hBN and Re(rTE) of graphene-covered hBN by comparing Figure 4c,d.
According to Equation (8), when hBN is covered by graphene, rTE is affected by σ beyond
εxx,hBN. By analyzing Equation (9), when the sample is graphene-covered hBN, rTM is
affected by εxx,hBN, εzz,hBN and σ, whereas it only relates to the permittivity of hBN when
the graphene is absent. Therefore, SPs supported by graphene are mainly coupled with
HPhPs supported by hBN. As a result, the Casimir force is enhanced by covering hBN with
graphene, as shown in Figure 3. Therefore, this study focuses on the coupling of SPs and
HPhPs excited by a TM polarized wave.
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Figure 4. Re(rTM) or Re(rTE) as function of ω and k||. (a) Re(rTM) of hBN. (b) Re(rTM) of graphene-
covered hBN with Fermi level Ef = 0.1 eV. (c) Re(rTE) of hBN. (d) Re(rTE) of graphene-covered hBN
with Fermi level Ef = 0.1 eV.

To extract the contribution of SPs and HPhPs to the enhancement of the Casimir
force, the TM reflection coefficients as a function of imaginary frequency ξ and wave
vector component k|| are presented in Figure 5. When comparing Figure 5a,b, it is
clear that rTM(iξ) is enhanced at low frequencies when the hBN is covered by graphene,
and as shown in Figure 5b–d, the enhancement area grows as the Fermi level increases. In
Equation (7), the term exp(−2d

√
ξ2/c2 + k2

||) acts as a truncated function. The arc of a circle

ξ2/c2 + k2
|| = (1/2d)2 for d = 1µm is plotted in Figure 5. The amplitude of the force can

be represented by reflection coefficients inside the arc [23]. Clearly, the proportion of high re-
flection coefficients inside this arc grows as EF increases.
Correspondingly, the Casimir force is getting larger for d = 1 µm with increasing EF,
as shown in Figure 3. Furthermore, the radius of a circular arc is inversely proportional to
the separating distance d. In Figure 5d, we also plot the curves for d = 0.5 µm and d = 3
µm. Obviously, with increasing d, i.e., decreasing radius, the proportion of high reflection
coefficients is increasing. As a result, the Casimir force tends to F0 with expanding d, as
illustrated in Figure 3.
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Figure 5. rTM(iξ) as function of ξ and k||. (a) is the case of hBN. (b–d) are the cases of graphene-
covered hBN with Fermi levels (b) Ef = 0.1 eV, (c) Ef = 0.5 eV and (d) Ef = 0.9 eV, respectively.
Solid curves in panels (a–d) indicate the arc of a circle ξ2/c2 + k2

|| = (1/2d)2 for d = 1 µm.
Dashed and dotted lines in panel (d) indicate the cases for d = 0.5 µm and d = 3 µm, respectively.

3.2. Casimir Force of Graphene-Covered Porous SiC

The Casimir force between two identical graphene-covered porous SiC bulks is also
investigated in relation to the separating distance d. The filling factor is f = 0.1, and
the forces for varying Fermi levels are presented in Figure 6a. The force between two
porous SiC bulks is plotted for comparison purposes, as shown by the blue line in Fig-
ure 6a. Similar to the case of graphene-covered hBN, the Casimir force increases mono-
tonically with increasing Fermi levels, particularly at large separating distances. These
results are expected according to the above analysis because porous SiC is also an HM.
Furthermore, when the Fermi level and separating distance are fixed, a more signifi-
cant force can be obtained in the graphene-covered porous SiC configuration than in the
graphene-covered hBN bulks, as shown in Figure 3. As shown in Figure 2b, both εxx,p−SiC
and εzz,p−SiC are negative in the range 1.496 ω0 to 1.761 ω0, indicating that porous SiC
also excites electromagnetic modes other than HPhPs. These modes are all coupled and
contribute to the Casimir force.
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Figure 6. Dependence of the Casimir force on the separation d. (a) The case of identical porous SiC is
indicated by the blue line, while other lines represent the case of graphene-covered porous SiC at
different Fermi levels. The filling factor has been set to f = 0.1. (b) The case of graphene-covered
porous SiC for different filling factors with a fixed Fermi level Ef = 0.5 eV.

As an artificial HM, the permittivity of porous SiC can be modulated by the filling
factor f . Therefore, f influences the coupling of SPs supported by graphene and HPhPs
supported by porous SiC, which can be used to control the Casimir force. Figure 6b
depicts the Casimir force as a function of the separating distance d for different filling
factors. When f increases, the relative force for arbitrary separations decreases dramatically.
This outcome is simple to comprehend. As f increases, so does the proportion of air holes.
According to Equations (4) and (5), the electric properties of porous SiC should decrease
as f increases. As a result, the Casimir force decreases as the contribution of these modes
supported by porous SiC decreases. Figure 7 depicts the permittivity of porous SiC as a
function of ξ for different filling factors to demonstrate this explanation. As the filling
factor f increases, for arbitrary ξ, both εxx,p−SiC and εzz,p−SiC decrease, confirming our
prediction. Furthermore, when ξ < ω0, all curves in Figure 7 are almost flat, but sloping
when ω0 < ξ < 10ω0. As previously stated, the force at a small separation distance
is primarily derived from electromagnetic modes in the high-frequency region, whereas
modes in the low-frequency region mainly contribute to the force at a large separation
distance [22]. As shown in Figure 6b, slopes of relative forces at a small separation distance
are large, while slopes at a large separation distance are small.

Figure 7. (a) εxx,p−SiC and (b) εzz,p−SiC as a function of ξ for different filling factors f .

3.3. Discussion

The Casimir force per unit area between two parallel graphene sheets is inversely
proportional to d4 at zero temperature, but with a substantially smaller coefficient when
compared with that of two perfectly conducting plates [38]. According to the data in
Reference [38], the Casimir force per 1cm2 is around 0.006 F0 = 7.8 × 10−6 N when
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d = 0.1 µm. For the same area and d, when Ef = 0.1 eV, F is around 0.145 F0 = 1.9× 10−4 N
in Figure 3, and 0.197 F0 = 2.6× 10−4 N in Figure 6a. Therefore, mounting graphene
on an HM substrate increases the Casimir force by more than one order of magnitude.
Furthermore, the Casimir force per 1 cm2 between two identical artificial HMs is around
0.1 F0 = 8.1 × 10−10 N at d ≈ 2 µm [23]. To compare, when Ef = 0.1 eV, F is about
0.178 F0 = 1.5× 10−9 N in Figure 3, and 0.233 F0 = 1.9× 10−9 N in Figure 6a. Covering an
HM with graphene monolayer therefore enhances the Casimir force.

Since the samples in this study are in free space, the detection system should be set in
a high-vacuum chamber to measure the Casimir force between graphene-covered HMs.
Furthermore, the quality of the graphene layer should be checked to guarantee that it is
a monolayer. The gradient of the Casimir force may be measured using the experimental
setup described in Reference [7]. However, there are some problems. One difficulty
is that maintaining two flat samples parallel over small distances is quite challenging.
Most experiments chose one of the samples to be spherical with a large radius. As a result,
the geometry will influence the magnitude of the Casimir force. Another issue is the effect
of finite temperature since the temperature considered here is zero. The Casimir force at
finite temperature can be obtained by substituting the integration along with the imaginary
frequency ξ axis in Equation (7) with the summation over the Matsubara frequencies [24].
The influences of geometry and finite temperature on the Casimir force of our proposal are
yet to be investigated further.

4. Conclusions

In conclusion, we investigate the Casimir force between two identical graphene-
covered HMs. The first model’s samples are graphene-covered hBN bulks. When graphene
covers hBN, the Casimir force increases for arbitrary separation distances, and as the Fermi
level Ef increases, the force increases monotonically. The reflection coefficients of samples
are thoroughly examined. SPs supported by graphene and HPhPs supported by hBN are
coupled, and these electromagnetic modes are related to the enhancement of the Casimir
force. Furthermore, the hBN is replaced by porous SiC, which is treated as an artificial
HM following the effective medium theory. When Ef increases, the Casimir force is still
increased monotonically. However, as the filling factor f increases, the force decreases
for arbitrary separation distances. The electromagnetic responses of porous SiC are used
to understand this phenomenon. As a result, by designing suitable artificial HMs and
tuning the Fermi level Ef, the desired Casimir force between graphene-covered HMs can be
controlled. By combining graphene and HM, this work provides a flexible way to modulate
the Casimir effect, which can use for the detection of Casimir force.
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Appendix A

Figure A1 depicts a schematic of electromagnetic wave scattering at the interface of
vacuum and a graphene-covered HM. Assuming graphene is located in z = 0. The medium
in z < 0 is vacuum, whereas the HM occupies z > 0 space. An electromagnetic wave
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incident from the vacuum into the graphene-covered HM produces a reflected field in the
vacuum and a transmitted field in the HM. Because graphene is a monolayer, it can be
treated as a conducting sheet overlaying on an HM with infinite thickness in this work. We
consider the TM polarized wave, and the magnetic fields of the incident, reflected, and
transmitted waves can be written as

~Hi = Aei[(k||x+kizz)−ωt]~j (A1)

~Hr = Rei[(k||x−kizz)−ωt]~j (A2)

~Ht = Tei[(k||x+kTM
tz z)−ωt]~j (A3)

where A, R, and T denote the magnetic field magnitudes of the incident, reflected, and
transmitted fields, respectively. The electric fields of the incident, reflected, and transmitted
waves can be expressed using Maxwell’s equations as

~Ei =
A

ωε0
ei[(k||x+kizz)−ωt](kiz~i− k||~k) (A4)

~Er =
R

ωε0
ei[(k||x−kizz)−ωt](−kiz~i− k||~k) (A5)

~Et =
T

ωε0
ei[(k||x+kTM

tz z)−ωt](
kTM

tz
εxx

~i−
k||
εzz

~k) (A6)

where εxx and εzz are diagonal elements of the permittivity tensor of a uniaxial HM.
k2
|| + k2

iz = k2
0 and k2

||/εzz + (kTM
tz )2/εxx = k2

0 are satisfied. Since the graphene layer is
treated as a conducting sheet, the boundary conditions are expressed as

~k× [~Et − (~Ei + ~Er)] = 0 (A7)

~k× [~Ht − (~Hi + ~Hr)] = ~J (A8)

where~J is the conductivity current. The current~J contains just the x component since the
electric field ~E is in the xz plane. By inserting Equations (A1)–(A6) into Equations (A7) and
(A8), we get

T
ωε0

kTM
tz

εxx
=

A
ωε0

kiz
ε1
− R

ωε0

kiz
ε1

(A9)

− [T − (A + R)] = σ
T

ωε0

kTM
tz

εxx
(A10)

The reflection coefficient for the TM polarized wave can be derived and expressed as

rTM =
R
A

=
εxxkiz − kTM

tz +
σkizkTM

tz
ωε0

εxxkiz + kTM
tz +

σkizkTM
tz

ωε0

(A11)

If the incident wave is TE polarized, the incident, reflected, and transmitted electric
fields can be represented as

~Ei = Aei[(k||x+kizz)−ωt]~j (A12)

~Er = Rei[(k||x−kizz)−ωt]~j (A13)

~Et = Tei[(k||x+kTE
tz z)−ωt]~j (A14)
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where A, R, and T represent the electric field magnitudes of the incident, reflected, and
transmitted waves, respectively. k2

|| + (kTE
tz )2 = εxxk2

0 is satisfied. The magnetic fields can
then be expressed as

~Hi =
A

ωµ0
ei[(k||x+kizz)−ωt](−kiz~i + k||~k) (A15)

~Hr =
R

ωµ0
ei[(k||x−kizz)−ωt](kiz~i + k||~k) (A16)

~Ht =
T

ωµ0
ei[(k||x+kTE

tz z)−ωt](−kTE
tz
~i + k||~k) (A17)

Since we are considering a TE polarized wave, the current~J has just the y component.
Substituting Equations (A12)–(A17) into Equations (A7) and (A8), we get

T − (A + R) = 0 (A18)

− T
ωµ0

kTE
tz − (− A

ωµ0
kiz +

R
ωµ0

kiz) = σT (A19)

The reflection coefficient for the TE polarized wave can be derived and expressed as

rTE =
R
A

=
kiz − kTE

tz − σωµ0

kiz + kTE
tz + σωµ0

(A20)

Figure A1. Schematic of electromagnetic wave scattering at the interface of vacuum and a graphene-
covered HM.
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