Naringenin Ultrafine Powder Was Prepared by a New Anti-Solvent Recrystallization Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Process
2.3. Preparation of Naringenin Microparticles
2.4. Experimental Optimization
2.5. Determination of Powder Properties
2.5.1. Scanning Electron Microscopy
2.5.2. Fourier Transform Infrared Spectroscopy
2.5.3. X-ray
2.5.4. DSC
2.6. Dissolution Rate Analysis
2.7. Solvent Residue Analysis
3. Results and Discussion
3.1. Discussion of the Results of Each Factor
3.2. Optimization of Particle Size by Response Surface Methodology (RSM)
3.3. Powder Properties
3.3.1. Microscopic Morphology of NUP
3.3.2. XRD Analysis
3.3.3. FTIR Analysis
3.3.4. Thermodynamic (TG)
3.4. Dissolution Rate Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Qiao, H.; Lin, B.; Xu, G.; Tang, G.; Cai, K. Study of Modeling Optimization for Hyperspectral Imaging Quantitative Determination of Naringin Content in Pomelo Peel. Comput. Electron. Agric. 2019, 157, 410–416. [Google Scholar] [CrossRef]
- Liu, Z.; Qiao, L.; Gu, H.; Yang, F.; Yang, L. Development of Brönsted Acidic Ionic Liquid Based Microwave Assisted Method for Simultaneous Extraction of Pectin and Naringin from Pomelo Peels. Sep. Purif. Technol. 2017, 172, 326–337. [Google Scholar] [CrossRef]
- Yang, Y.; Trevethan, M.; Wang, S.; Zhao, L. Beneficial Effects of Citrus Flavanones Naringin and Naringenin and Their Food Sources on Lipid Metabolism: An Update on Bioavailability, Pharmacokinetics, and Mechanisms. J. Nutr. Biochem. 2022, 104, 108967. [Google Scholar] [CrossRef]
- Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals 2019, 12, 11. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, Y.-H.; Li, W.-H.; Du, G.-H. Naringin. In Natural Small Molecule Drugs from Plants; Springer: Singapore, 2018; pp. 595–600. ISBN 978-981-10-8022-7. [Google Scholar]
- Lauro, M.R.; De Simone, F.; Sansone, F.; Iannelli, P.; Aquino, R.P. Preparations and Release Characteristics of Naringin and Naringenin Gastro-Resistant Microparticles by Spray-Drying. J. Drug Deliv. Sci. Technol. 2007, 17, 119–124. [Google Scholar] [CrossRef]
- Bacanli, M.; Başaran, A.A.; Başaran, N. The Antioxidant and Antigenotoxic Properties of Citrus Phenolics Limonene and Naringin. Food Chem. Toxicol. 2015, 81, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xia, L.; Zhang, Y. Naringenin Inhibits Thyroid Cancer Cell Proliferation and Induces Cell Apoptosis through Repressing PI3K/AKT Pathway. Pathol. Res. Pract. 2019, 215, 152707. [Google Scholar] [CrossRef]
- Muthumanickam, S.; Indhumathi, T.; Boomi, P.; Balajee, R.; Jeyakanthan, J.; Anand, K.; Ravikumar, S.; Kumar, P.; Sudha, A.; Jiang, Z. In Silico Approach of Naringenin as Potent Phosphatase and Tensin Homolog (PTEN) Protein Agonist against Prostate Cancer. J. Biomol. Struct. Dyn. 2022, 40, 1629–1638. [Google Scholar] [CrossRef]
- Lin, R.; Hu, X.; Chen, S.; Shi, Q.; Chen, H. Naringenin Induces Endoplasmic Reticulum Stress-Mediated Apoptosis, Inhibits β-Catenin Pathway and Arrests Cell Cycle in Cervical Cancer Cells. Acta Biochim. Pol. 2020, 67, 181–188. [Google Scholar]
- Husain, F.M.; Perveen, K.; Qais, F.A.; Ahmad, I.; Alfarhan, A.H.; El-Sheikh, M.A. Naringin Inhibits the Biofilms of Metallo-β-Lactamases (MβLs) Producing Pseudomonas Species Isolated from Camel Meat. Saudi J. Biol. Sci. 2021, 28, 333–341. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, H.; Wu, C.; Feng, X.; Han, C.; Chen, H.; Liu, Y.; Li, Y. Ultrasound-Assisted Aqueous Two-Phase Extraction of Synephrine, Naringenin, and Neohesperidin from Citrus Aurantium L. Fruitlets. Prep. Biochem. Biotechnol. 2021, 51, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Yu, J.; Lei, B.; Ji, W.; Liu, H.; Yin, B.; Qian, J. T Enzymatic Esterification of Naringenin and the Properties of Naringin Esterified Derivatization. Ind. Crops Prod. 2022, 176, 114372. [Google Scholar] [CrossRef]
- Miao, H.; Chen, Z.; Xu, W.; Wang, W.; Song, Y.; Wang, Z. Preparation and Characterization of Naringenin Microparticles via a Supercritical Anti-Solvent Process. J. Supercrit. Fluids 2018, 131, 19–25. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, R.; Wang, M.; Meng, Z.; Wang, X.; Han, M.; Guo, Y.; Wang, X. Preparation of Naringenin Nanosuspension and Its Antitussive and Expectorant Effects. Molecules 2022, 27, 741. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Xia, X.; Pu, N.; Yu, Z.; Nabih, M.; Zhu, Y.; Zhang, S.; Jiang, L. Preparation and Physicochemical Characterization of Soy Isoflavone (SIF) Nanoparticles by a Liquid Antisolvent Precipitation Method. Adv. Powder Technol. 2019, 30, 1522–1530. [Google Scholar] [CrossRef]
- Burra, M.; Jukanti, R.; Janga, K.Y.; Sunkavalli, S.; Velpula, A.; Ampati, S.; Jayaveera, K.N. Enhanced Intestinal Absorption and Bioavailability of Raloxifene Hydrochloride via Lyophilized Solid Lipid Nanoparticles. Adv. Powder Technol. 2013, 24, 393–402. [Google Scholar] [CrossRef]
- Liu, T.; Yu, X.; Yin, H. Impact of Nanoparticle Size and Solid State on Dissolution Rate by Investigating Modified Drug Powders. Powder Technol. 2020, 376, 167–175. [Google Scholar] [CrossRef]
- Nurfadhlin, S.; Syed Azhar, S.; Ashari, E. Strategies for the Development of Mitragyna Speciosa (Kratom) Leaves Extract Loaded with Solid Lipid Nanoparticles. J. Multidiscip. Eng. Sci. Technol. 2019, 6, 100–104. [Google Scholar]
- Lv, K.; Yang, K.; Zhou, B.; Zhang, F.; Guo, J.; Han, C.; Tian, Y. The Densification and Mechanical Behaviors of Large-Diameter Polymer-Bonded Explosives Processed by Ultrasonic-Assisted Powder Compaction. Mater. Des. 2021, 207, 109872. [Google Scholar] [CrossRef]
- Schmidt, J.; Plata, M.; Tröger, S.; Peukert, W. Production of Polymer Particles below 5μm by Wet Grinding. Powder Technol. 2012, 228, 84–90. [Google Scholar] [CrossRef]
- Yu, G.; Zhu, H.; Huang, Y.; Zhang, X.; Sun, L.; Wang, Y.; Xia, X. Preparation of Daidzein Microparticles through Liquid Anti solvent Precipitation under Ultrasonication. Ultrason. Sonochem. 2021, 79, 1350–4177. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Liu, P.; Yan, Y.; Huang, Y.; Bai, B.; Hou, X.; Zhang, L. Supercritical CO2 Fluid Extraction of Flavonoid Compounds from Xinjiang Jujube (Ziziphus Jujuba Mill.) Leaves and Associated Biological Activities and Flavonoid Compositions. Ind. Crops Prod. 2019, 139, 111508. [Google Scholar] [CrossRef]
- Li, W.; Zhao, X.; Sun, X.; Zu, Y.; Liu, Y.; Ge, Y. Evaluation of Antioxidant Ability In Vitro and Bioavailability of Trans-Cinnamic Acid Nanoparticle by Liquid Antisolvent Precipitate. J. Nanomater. 2016, 9518362. [Google Scholar] [CrossRef][Green Version]
- Grigor’ev, V.N.; Maidanov, V.A.; Penzev, A.A.; Polev, A.V.; Rubets, S.P.; Rudavskii, E.Y.; Rybalko, A.S.; Syrnikov, Y.V. Giant Asymmetry of the Processes of Separation and Homogenization of 3He–4He Solid Mixtures. Low Temp. Phys. 2005, 31, 32–36. [Google Scholar] [CrossRef]
- De Paiva Lacerda, S.; Espitalier, F.; Hoffart, V.; Ré, M.I. Liquid Anti-Solvent Recrystallization to Enhance Dissolution of CRS 74, a New Antiretroviral Drug. Drug Dev. Ind. Pharm. 2015, 41, 1910–1920. [Google Scholar] [CrossRef]
- Akhter, M.H.; Kumar, S.; Nomani, S. Sonication Tailored Enhance Cytotoxicity of Naringenin Nanoparticle in Pancreatic Cancer: Design, Optimization, and In Vitro Studies. Drug Dev. Ind. Pharm. 2020, 46, 659–672. [Google Scholar] [CrossRef]
- Gera, S.; Talluri, S.; Rangaraj, N.; Sampathi, S. Formulation and Evaluation of Naringenin Nanosuspensions for Bioavailability Enhancement. AAPS PharmSciTech 2017, 18, 3151–3162. [Google Scholar] [CrossRef]
- Katiyar, N.; Singh, M.N.; Yadav, P.; Singh, H.N.; Saha, S.; Saraf, S.A. Development of Naringenin Nanocrystals for Enhanced Solubility and Bioavailability. Am. J. PharmTech Res. 2018, 8, 2. [Google Scholar] [CrossRef]
- Göke, K.; Bunjes, H. Carrier Characteristics Influence the Kinetics of Passive Drug Loading into Lipid Nanoemulsions. Eur. J. Pharm. Biopharm. 2018, 126, 132–139. [Google Scholar] [CrossRef]
Factors | Unit | L1 | L2 | L3 | L4 | L5 | |
---|---|---|---|---|---|---|---|
X1 | Percentage of surfactants | % | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
X2 | Solution concentration | mg/mL | 5 | 10 | 15 | 20 | 25 |
X3 | Nozzle size | μm | 200 | 300 | 400 | 500 | 600 |
X4 | Homogenization speed | r/min | 1000 | 1500 | 2000 | 2500 | 3000 |
X5 | Liquid-liquid ratio | mL/mL | 3 | 6 | 9 | 12 | 15 |
X6 | Feed speed | mL/min | 9 | 18 | 27 | 36 | 45 |
No | BBD Experiments | ANOVA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | Y | Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | |||
1 | 0.3 | 15 | 40 | 307.03 | Model | 17,849.04 | 9 | 1983.23 | 2850.28 | <0.0001 ** | ||
2 | 0.7 | 15 | 40 | 388.68 | X1 | 2071.75 | 1 | 2071.75 | 2977.51 | <0.0001 ** | ||
3 | 0.3 | 25 | 40 | 329.38 | X2 | 2315.40 | 1 | 2315.40 | 3327.68 | <0.0001 ** | ||
4 | 0.7 | 25 | 40 | 395.99 | X3 | 272.61 | 1 | 272.61 | 391.80 | <0.0001 ** | ||
5 | 0.3 | 20 | 35 | 370.65 | X1 × 2 | 19.98 | 1 | 19.05 | 27.38 | 0.0012 | ||
6 | 0.7 | 20 | 35 | 307.11 | X1 × 3 | 7.32 | 1 | 7.32 | 10.52 | 0.0142 | ||
7 | 0.3 | 20 | 45 | 305.69 | X2X3 | 6.68 | 1 | 6.68 | 9.60 | 0.0173 | ||
8 | 0.7 | 20 | 45 | 368.21 | X12 | 1073 | 1 | 1079.75 | 1551.81 | <0.0001 ** | ||
9 | 0.5 | 15 | 35 | 362.89 | X22 | 7551 | 1 | 7567.28 | 10,875.66 | <0.0001 ** | ||
10 | 0.5 | 25 | 35 | 305.97 | X32 | 3333 | 1 | 3344.52 | 4806.73 | <0.0001 ** | ||
11 | 0.5 | 15 | 45 | 365.89 | Residual | 4.81 | 7 | 0.70 | ||||
12 | 0.5 | 25 | 45 | 367.98 | Lack of fit | 3.32 | 3 | 1.11 | 2.85 | 0.1688 | ||
13 | 0.5 | 20 | 40 | 306.53 | Pure error | 1.55 | 4 | 0.39 | ||||
14 | 0.5 | 20 | 40 | 398.98 | Corrected total | 17,853.91 | 16 | |||||
15 | 0.5 | 20 | 40 | 352.51 | Credibility analysis of the regression equations | |||||||
16 | 0.5 | 20 | 40 | 327.96 | S.D. | Mean | CV (%) | R2 | Adj. R2 | Pre. R2 | Ade. Pre. | |
17 | 0.5 | 20 | 40 | 341.13 | 0.83 | 347.21 | 0.24 | 0.9997 | 0.9994 | 0.9969 | 144.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Huang, Y.; Shi, Y.; Chen, M.; Zhang, L.; An, Y.; Liu, Z. Naringenin Ultrafine Powder Was Prepared by a New Anti-Solvent Recrystallization Method. Nanomaterials 2022, 12, 2108. https://doi.org/10.3390/nano12122108
Zhang X, Huang Y, Shi Y, Chen M, Zhang L, An Y, Liu Z. Naringenin Ultrafine Powder Was Prepared by a New Anti-Solvent Recrystallization Method. Nanomaterials. 2022; 12(12):2108. https://doi.org/10.3390/nano12122108
Chicago/Turabian StyleZhang, Xiaonan, Yan Huang, Yufei Shi, Mengyu Chen, Lubin Zhang, Yimin An, and Zhiwei Liu. 2022. "Naringenin Ultrafine Powder Was Prepared by a New Anti-Solvent Recrystallization Method" Nanomaterials 12, no. 12: 2108. https://doi.org/10.3390/nano12122108