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Abstract: In this work, a series of novel rubber seed shell-derived N-doped ultramicroporous carbons
(NPCs) were prepared by one-step high-temperature activation (500–1000 ◦C), using melamine as
the nitrogen source and KOH as the activator. The effects of the melamine dosage and the activa-
tion temperatures on the surface chemical properties (doped N contents and N species), textural
properties (surface area, pore structure, and microporosity), CO2 adsorption capacities, and CO2/N2

selectivity were thoroughly investigated and characterized. These as-prepared NPCs demonstrate
controllable BET surface areas (398–2163 m2/g), ultramicroporosity, and doped nitrogen contents
(0.82–7.52 wt%). It was found that the ultramicroporosity and the doped nitrogens significantly
affected the CO2 adsorption and the separation performance at low pressure. Among the NPCs,
highly microporous NPC-600-4 demonstrates the largest CO2 adsorption capacity of 5.81 mmol/g
(273 K, 1.0 bar) and 3.82 mmol/g (298 K, 1.0 bar), as well as a high CO2/N2 selectivity of 36.6, sur-
passing a lot of reported biomass-based porous carbons. In addition, NPC-600-4 also shows excellent
thermal stability and recycle performance, indicating the competitive application potential in practical
CO2 capture. This work also presents a facile one-pot synthesis method to prepare high-performance
biomass-based NPCs.

Keywords: rubber seed shell; melamine; N-doped porous carbon; ultramicroporosity; CO2 adsorption

1. Introduction

With the rapid development of global industrialization and frequent human activity,
excessive CO2 has been emitted into the atmosphere, causing the ever-increasing atmo-
spheric CO2 concentration and triggering worsening global warming, the melting of polar
ice, the rise of the sea level, and serious natural disasters [1–4]. Thus, carbon capture
and sequestration (CCS) have been proposed and regarded as an effective tool to mitigate
global CO2 emissions. Currently, the mainstream CO2 capture technologies mainly include
chemical amine absorption, membrane separation, and adsorption [5,6]. Among these
technologies, adsorption via solid porous adsorbents has become a promising solution and
a research hotspot due to the merits of a reduced regeneration energy penalty, the freedom
from corrosion, the easy operation, and the low cost.

So far, various solid CO2 adsorbents have been designed and exploited, such as
metal organic frameworks MOFs [7], zeolites [8], mesoporous silica [9], covalent organic
framework COFs [10], porous organic polymers POPs [11], and N-doped porous carbons
NPCs [12]. Remarkably, N-doped porous carbons stand out due to their low-cost prepara-
tion, high specific surface area, excellent thermal and chemical properties, designable pore
structure, and easy surface functionalization [13].

Typically, N-doped porous carbons are obtained from a two-step chemical activation
process: the carbonization of precursors and further chemical activation in the presence
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of activators (KOH, K2CO3, KHCO3, NaOH, and ZnCl2) and nitrogen sources (NH3,
melamine, and urea) [13]. During high-temperature pyrolysis, the activators will decom-
pose into corrosive intermediates to etch the carbon framework and generate abundant
micropores and mesopores [14]. In addition, N function groups can be directly converted
to different N species (amine, pyrrole N, pyridine/pyridone N, quaternary nitrogen, and
pyridine-N-oxide) and incorporated into the carbon skeleton [15]. These polar N sites on
the walls of pores can improve Lewis acid–base interaction between CO2 molecules and
carbons, consequently enhancing CO2 adsorption and selectivity [16].

Up to now, a variety of precursors have been adopted, such as coal, petroleum pitch,
polymer, MOFs, and biomass [13]. Of these, biomass resources are green, renewable,
and widely available all over the world. Hence, sustainable biomass resources have
been widely utilized to prepare N-doped CO2 adsorbents in recent decades, including
rice husk [12], hazelnut shell [17], water caltrop [18], lotus stalks [19], vine shoots [20],
tobacco stems [21], etc. These reported biomass-based NPCs have demonstrated high
surface areas and large CO2 adsorption capacities (up to 7.42 mmol/g, 273 K/ 1.0 bar) [22],
whereas the corresponding CO2/N2 selectivities are less than 20 [17,23,24]. Notably, the
CO2 concentration in post-combustion flue gas is relatively low (10–15%, 1 bar) [25]; high
CO2 selectivity is crucial for practical carbon capture application. The CO2 adsorption
selectivity of those reported NPCs needs to be further improved for superior CO2 capture
from dilute gas mixtures.

On the other hand, the common two-step carbonization-activation process is time-
consuming and energy-intensive, resulting in very high costs. Recently, the one-pot syn-
thesis of N-doped porous carbons was proposed and received great attention [24]. The
carbon precursor, activator, and nitrogen source are fully mixed and activated to produce
excellent NPCs at high temperatures. From the point of view of practical large-scale CO2
capture application, facile preparation methods to prepare high-performance NPCs are
essential. Previous studies have also revealed that ultramicropore (<0.7 nm) and polar
heteroatom sites are key to improving CO2 affinity over other gases (N2, CH4) [13]. The
activation temperature, activator, and activation process can significantly affect the mi-
croporosity and N doping of the resultant NPCs and consequently determine the CO2
adsorption performance [26]. However, for one-step direct activation to prepare NPCs,
relevant studies on the relationships between activation conditions and porosity and CO2
adsorption performance are still limited in the literature.

Rubber crops are traditional, economical agriculture plants in China and Asian coun-
tries. In 2016, the estimated rubber seed outputs of China and some Asian countries
(Indonesia, Thailand, Malaysia, Vietnam, India, and the Philippines) reach over 2.45 million
tons/year [27]. Rubber seed consists of 65% kernel and 35% shell; rubber seed shell (RSS) is
a primary byproduct of rubber seed and is regarded as agriculture waste [27]. RSS is a good
carbon precursor, and there is growing interest in converting RSS into functional porous
carbons. In fact, there are some previous reports available in the literature concerning the
preparation of porous carbons from rubber seed shell via physical activation and chemical
activation [28–32]. However, to the best of our knowledge, there are still no reports on the
preparation of N-doped RSS-derived porous carbons for CO2 adsorption. In addition, the
surface areas, porosity, and CO2 adsorption performance of these reported RSS-based PCs
are very limited and need to be significantly improved and studied [29].

Herein, a series of novel N-doped ultramicroporous carbons were prepared via one-
pot activation at high temperatures, using rubber seed shell as a precursor, KOH as the
activator, and melamine as the nitrogen source. The effects of the nitrogen source dosage
and activation temperature (500–1000 ◦C) on the surface chemical properties, textural
properties (surface area, pore structure, pore volume), and CO2 adsorption/separation
performances were systematically investigated using various characterizations. This study
expects to obtain high-performance RSS-based NPCs and to elucidate the relationships
between CO2 adsorption capacity/selectivity, pore structures, and pore surface chemistry.
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2. Experimental
2.1. Materials and Pretreatment

Rubber seed shell was obtained from Huakun Biotechnology Co., Ltd. (Xishuang-
banna, China). The fresh rubber seed shell was washed and then dried in an oven at 80 ◦C
until the water content was less than 3 wt%. The dried rubber seed shell was pulverized
with a pulverizer and passed through a 60-mesh sieve to obtain a raw material of rubber
seed shell powder, which was used for later use. Melamine (99%), potassium hydroxide
(KOH, AR), and hydrogen chloride (HCl, AR) were purchased from Beijing Chemical
Works (Beijing, China). Other solvents and reagents were used as received.

2.2. Preparation of RSS-Derived NPCs

The pretreated powdered RSS was chemically activated using a mixture of KOH and
melamine at high temperatures. The influence of nitrogen source addition was investigated
first. The RSS (3.0 g) was thoroughly mixed with KOH (6.0 g) and a varied dosage of
melamine powder (melamine/RSS weight ratio = 0.2, 0.4, 0.6, 0.8, 1) in a mortar. Then, the
mixture was placed in a porcelain crucible and subjected to a high temperature at 700 ◦C
(5 ◦C/min) in a tube furnace under nitrogen flow (50 mL/min) and held at the desired
temperature for 60 min. Additionally, the obtained products were denoted as NPC-700-x
(x = 1~5). After the carbonization was completed, the tube furnace was cooled to room
temperature naturally. The obtained carbonized samples were soaked in hydrochloric acid
aqueous solution (1 mol/L) for 6 h to remove excessive inorganic salt residue, filtered, and
washed repeatedly with deionized water until the pH was neutral. The products were
further dried in an oven at 80 ◦C for 12 h under high vacuum. In addition, the effect of the
activation temperatures (500 ◦C, 600 ◦C, 800 ◦C, 900 ◦C, 1000 ◦C) was also investigated at
the optimized melamine addition (NPC-700-4), and the obtained products were denoted as
NPC-y-4 (y = 500~1000).

2.3. Instrumentation

Fourier transform infrared spectra (FT-IR, Transmission mode, 400–4000 cm−1) of the
NPCs were measured on a Thermo Nicolet 8700 (Thermo Fisher, Waltham, MA, USA) by
compressing the mixture of samples and KBr into a disk. Additionally, the mass ratio of a
sample to KBr was controlled to be 1: 100. Powder X-ray diffraction patterns (PXRD) of
NPCs were recorded on a UItima IV diffractometer (Rigaku Corporation, Matsubara-cho.
Akishima-shi, Tokyo, Japan) with Cu Kα at 40 kV and 30 mA. Field emission scanning
electron microscope (FE-SEM) of the samples was observed on a ZEISS Gemini 300 (Carl
Zeiss Microscopy GmbH, Oberkochen, Germany) operated at 10 kV. CHNS elemental
analysis was determined by Vario EL cube (Elementar Analysensysteme GmbH, Langensel-
bold, Germany). X-ray photoelectron spectroscopy (XPS) of the samples was measured
on an ESCALAB 250Xi spectrometer (Thermo Fisher, Waltham, MA, USA). The 77 K N2
adsorption and adsorption isotherms were measured using an Autosorb-iq gas sorption
analyzer (Quantachrom, Boynton Beach Station, FL, USA). All the samples were degassed
at 120 ◦C for 12 h under high vacuum prior to the gas adsorption measurement. The specific
surface area, pore size and micropore volume, and pore volume of NPCs were calculated
from the obtained 77 K N2 adsorption isotherms via different models and conditions.

2.4. Gas Adsorption Tests

The static adsorption and desorption isotherms of N2 and CO2 were measured by using
an Autosorb-iq gas sorption analyzer. The CO2 (99.999%) and N2 (99.999%) gases were
utilized for the adsorption and desorption measurements. The adsorption and desorption
isotherms at 273 K were measured in an ice-water bath, and isotherms at 298 K were
measured in a circulating water bath.
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3. Results and Discussion
3.1. Chemical Structures and Morphology

The rubber seed shell was converted to black carbon via one-step activation at a high
temperature (500–1000 ◦C) for 1 h (displayed in Scheme 1). The chemical compositions
and surface chemical properties of the NPCs were investigated by FTIR, elemental analysis
and XPS. Figure 1 displays the FTIR spectra of NPC-700-x and NPC-y-4. For all the NPC-
700-x and NPC-y-4 (y ≥ 700 ◦C) samples, their FTIR spectra are similar. The absorption
band at 1180 cm−1 can be attributed to the stretching vibration of C-N [33]. The bands at
3430 cm−1 and 1634 cm−1 can be associated with both the stretching vibration and the
bending vibration of -OH (hydroxyl, carboxyl) and -NHx (amino group, amide) [33–35]. It
should be noted that NPC-500-4 and NPC-600-4 demonstrate obviously different absorp-
tion peaks at 1395 cm−1 and 809 cm−1. The band at 809 cm−1 is a characteristic out-of-plane
ring bending of the triazine ring [36]. Additionally, the sharp absorption peak at 1395 cm−1

should be related to the stretching vibration of the melem unit [37,38]. It can be reason-
ably inferred that melamine gradually decomposes into NH3, melem, and graphite-like
carbon nitrides. These NH2-containing intermediates will further react with KOH-related
intermediates, carboxyl, hydroxyl, or carbonyl of the RSS precursor. At a lower activation
temperature (500, 600 ◦C), these NH2-containing groups may be well incorporated in the
carbon skeleton. However, these NH2-containing groups will convert to other N-containing
groups such as pyridine, pyrrole, and graphitic N under very high activation temperature
(>700 ◦C) [39]. In addition, this is also supported by the gradually weakened absorption
band at 1395 cm−1 with the activation temperature increase.
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The obtained XPS spectra of NPC-700-x and NPC-y-4 are shown in Figure S1 and
Figure 2a. It is easily observed that the N1s XPS signal increases with the increasing
melamine addition and drops with the increasing activation temperature. Combing the
above FTIR spectra analysis of the NPCs, it can be concluded that the doped N content
and the N species in the NPCs should be different. Additionally, it is also confirmed by
the elemental analysis data and the XPS-derived elemental analysis data (Table 1). From
the data shown in Table 1, the C and N contents obtained from the two methods are
basically consistent. After high-temperature N-doped activation, the C and N contents of
the NPCs were significantly increased, and the O content was greatly reduced. As expected,
the doped N contents in the NPC-700-x samples increased with the enhancing melamine
addition and the maximum value reached 7.52 wt%. However, the doped N content data of
the NPC-y-4 samples show that the activation temperature gradually improved the doped
N contents in the range of 500~700 ◦C (Figure 2a). As the activation temperatures increased
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to 1000 ◦C, the doped N contents sharply decreased to 0.82 wt%, suggesting that high
activation temperatures will cause the loss of nitrogens during the pyrolysis [15].
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Table 1. Elemental analysis data for RSS and NPCs.

Samples
EA (wt%) XPS b (wt%)

C N H O a C N O

RSS 51.36 0.26 6.29 57.91 – – –
NPC-700-1 77.43 5.21 2.82 14.54 78.59 6.32 9.02
NPC-700-2 76.97 6.65 2.76 13.62 78.37 6.56 8.95
NPC-700-3 76.08 7.06 2.84 14.02 76.44 6.73 10.33
NPC-700-4 75.71 7.36 1.87 15.06 75.07 8.54 9.59
NPC-700-5 74.04 7.52 2.67 15.77 70.03 11.93 10.33
NPC-500-4 68.72 5.33 3.60 22.35 66.76 5.42 19.99
NPC-600-4 72.84 6.60 4.39 16.17 70.23 7.28 14.97
NPC-800-4 84.27 1.58 1.10 13.05 84.22 1.59 9.49
NPC-900-4 85.99 1.17 1.06 11.78 86.27 1.33 8.21
NPC-1000-4 87.32 0.82 1.64 10.22 92.29 0.92 4.26

a The element O content was obtained by taking the difference between the total element content and the CHN
element content. b The element C, N, and O contents (wt%) were calculated from the obtained XPS elemental
atomic data for better comparison with the EA results.

To figure out the N species of the as-prepared N-doped carbons, the N1s XPS spectra
are analyzed and shown in Figure 2b–e, Figures S1 and S2b–f. The N1s spectra of four peaks
at 398.4, 400.2, 400.6, and 402.8 eV were attributed to pyridine/triazine nitrogen (N-6),
pyrrole nitrogen (N-5), amine (-NHx), and graphitic nitrogen (N-Q), respectively [13,15,39].
All the NPC-700-x samples show similar N1s spectra and N species. As can be observed
from Figure 2f, the N species vary significantly among the NPC-y-4. With the increasing
activation temperature (500–700 ◦C), amine decreased and pyrrolic-N and graphitic-N in-
creased. As the activation temperature reached over 800 ◦C, the amine species disappeared,
and the pyrrolic-N and pyridine/triazine nitrogen obviously decreased. The different
doped N contents and N species should play an important role in determining the CO2
adsorption and selectivity. The C1s XPS spectra of NPC-700-x and NPC-y-4 are displayed
in Figure S3 and Figure 3. All the samples show similar C species, the C1s spectra of
three peaks at 284.8, 286.1, and 289.9 eV can be relative to C-C/C=C, C=N/C-N/C-O and
O=C-O, respectively [40,41]. This means that some -COOH and -OH can be preserved in
the resultant NPCs.
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Figure 4 shows the SEM morphology and structures of NPC-700-x and NPC-y-4. All
the NPCs samples demonstrate an irregular shape with some obvious pores/cavities on the
surface, confirming the pore-forming ability of KOH chemical activation [14]. The X-ray
diffraction patterns of NPC-700-x and NPC-y-4 are displayed in Figure 5. All the NPC-700-x
and NPC-y-4 samples demonstrate two weak broad diffraction peaks near 23◦ and 43◦,
corresponding to the (002) and (100) plane, respectively [34]. These weak peaks indicate
the amorphous structures of the NPCs. Additionally, the increased intensities of peak (100)
at 43◦ imply the presence of graphitized carbon and a higher degree of graphitization with
the increasing activation temperature [42].
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Figure 6 and Figure S4 display the Raman spectra of NPC-700-x and NPC-y-4. Two
characteristic peaks at around 1596 cm−1 (G band) and 1320 cm−1 (D band) are associated
with the E2g model of the graphite layer and the vibrations of carbons with dangling bonds,
respectively [42]. The intensity ratio of the D band and G band (ID/IG) is indicative of
the defects and disorder degree of the carbon materials. The ID/IG values of NPC-700-x
and NPC-y-4 exceed or reach 1.0 (Table S1), suggesting the amorphous carbon structure
with a high content of lattice edges or defects [43]. Additionally, the ID/IG ratios of NPC-
y-4 decrease with the activation temperature (from 1.23 to 0.97), showing that a higher
activation temperature can promote the degree of graphitization of the NPCs.
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3.2. Textural Properties

The textural properties of the NPCs and RSS were investigated by 77 K N2 analysis
(Figure 7 and Figure S5), and the derived specific surface areas, pore volumes, and porosity
data were summarized in Table 2. The RSS shows the characteristic type-IV adsorption
isotherms [44,45], indicating its mesoporous structure. The BET specific surface area (SBET)
and total pore volume (Vtotal) of RSS are only 40 m2/g and 0.049 cm3/g. As shown in
Figure 7a,c, all the NPC-700-x and NPC-y-4 samples demonstrate a steep N2 uptake increase
at a very low relative pressure region (P/P0 < 0.01), which is indicative of the abundant
micropores in these resultant N-doped carbons [44,45]. In addition, the gradual N2 uptake
increase at the higher relative pressure region suggests the presence of some mesopores.
Furthermore, the pore size distribution curves (Figure 7b,d) show that the as-obtained NPCs
possess a large number of ultramicropores (<0.7 nm), implying that NPCs are promising
for the adsorption of CO2 with a molecular kinetic diameter of 0.33 nm [11,25,46].
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Figure 7. 77 K N2 adsorption (filled) and desorption (empty) isotherms (a,c) and pore size distribu-
tions (b,d) of NPC-700-x and NPC-y-4.

Table 2. Textural parameters deduced from the 77 K N2 isotherms for RSS and NPCs.

Samples SBET
a (m2/g) Smicro

b (m2/g) Vmicro
b (cm3/g) Vultramicro

c (cm3/g) Vtotal
d (cm3/g) Vmicro/Vtotal

RSS 40 0 0 0 0.049 0
NPC-700–1 398 114 0.053 0.043 0.369 0.144
NPC-700-2 823 436 0.187 0.135 0.575 0.325
NPC-700-3 1017 792 0.323 0.158 0.555 0.582
NPC-700-4 1190 1010 0.411 0.210 0.603 0.682
NPC-700-5 1139 828 0.348 0.148 0.674 0.516
NPC-500-4 734 551 0.226 0.285 0.411 0.550
NPC-600-4 1246 1144 0.452 0.179 0.565 0.800
NPC-800-4 2163 1209 0.544 0.061 1.323 0.411
NPC-900-4 2152 844 0.386 0.052 1.482 0.260

NPC-1000-4 1494 680 0.301 0.071 1.037 0.290
a Specific surface area was calculated using the BET method. b Micropore specific surface area and micropore
volume calculated using t-plot method. c Pore volume of ultramicropore (d < 0.7 nm) calculated using QSDFT
method. d Total pore volume at p/p0 = 0.995.
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As can be seen from Figure 7a and Table 2, the increase in the melamine dosage
can greatly improve the porosity of NPC-700-x. Among the NPC-700-x samples, NPC-
700-4 possesses the largest SBET (1190 m2/g), Smicro (1010 m2/g), Vmicro (0.411 cm3/g),
Vultramicro (0.21 cm3/g), and micropore volume ratio Vmicro/Vtotal (0.682). These apparent
sharp increases in porosity are attributed to the introduction of melamine during pyrolysis
(Figure 4a–e) [47,48]. In addition, the trend of increasing porosity is basically consistent
with the order of the doped nitrogen content. However, the porosity of NPC-700-5 decreases
at a higher melamine addition. Thus, the optimum mass ratio of RSS, KOH, and melamine
is 1:2:0.8.

On the other hand, activation temperature also plays an important role in tuning the
porosity and chemical properties of NPC-y-4. As the activation temperatures increase,
the Smicro, Vmicro, micropore volume ratio Vmicro/Vtotal, and doped N content increase con-
tinuously. This is because the increased high temperatures favor KOH in etching the
carbon skeletons to generate a porous network [14]. NPC-800-4 has the highest SBET
(2163 m2/g), Smicro (1209 m2/g), Vmicro (0.544 cm3/g), and Vtotal (1.323 cm3/g), far sur-
passing all previously reported RSS-based PCs [28–32,49]. However, as the activation
temperatures surpass 800 ◦C, the adsorption isotherms show an obvious hysteresis loop,
suggesting the formation of mesoporous pore structures. Notably, the doped nitrogen
content and the ultramicropore volumes drastically decrease due to the higher activation
temperature.

3.3. CO2 Adsorption and Selectivity

Motivated by both the high microporosity and the doped nitrogen content, the CO2
adsorption performance of the RSS-derived NPCs were investigated at 273 K and 298 K,
respectively. Additionally, the corresponding CO2 adsorption–desorption isotherms at both
temperatures are displayed in Figure 8. All the NPCs samples demonstrate a continuous
increase in CO2 uptakes with the increasing pressure and have not yet reached saturation,
suggesting that larger CO2 uptakes can be achieved at higher pressures [17,50]. Addition-
ally, these completely reversible adsorption and desorption isotherms also confirm that the
CO2 adsorption of the NPCs is physisorption in nature. Additionally, this is also evidenced
by the obviously decreased CO2 uptakes at a higher temperature of 298 K (Figure 8b,d).
Among the NPC-700-x, NPC-700-4 has the highest CO2 uptake of 4.45 mmol/g (273 K,
1.0 bar, Table 3), which is due to its large microporosity and high doped N content. The
abundant polar N sites (amine, pyrrole N, and pyridine N) on the wall of micropores can
strongly enhance the interaction between CO2 and the NPCs through quadrupole–dipole
interaction. Interestingly, the CO2 adsorption performance of NPC-700-3 surpasses NPC-
700-5. The doped N content, SBET, Smicro, and Vmicro values of NPC-700-5 are even slightly
higher than those of NPC-700-3, which should be attributed to its higher ultramicropore
volume (Table 2). Additionally, the ultramicropores (<0.7 nm) are conducive to a greatly
improved CO2 adsorption capacity and selectivity at low partial pressure [11,25].
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Figure 8. CO2 adsorption–desorption isotherms at 273 K and 298 K for NPC-700-x (a,b) and NPC-y-4 (c,d).

Table 3. CO2 adsorption capacities, limiting adsorption enthalpies at zero coverage, and CO2/N2

selectivities of NPC-700-x and NPC-y-4.

Sample
CO2 Uptake (mmol/g)

Q0
a (kJ/mol)

IAST Selectivity b

273 K 298 K CO2/N2

NPC-700-1 2.44 1.22 33.9 24.6
NPC-700-2 3.25 1.60 34.1 26.4
NPC-700-3 3.85 1.90 34.3 26.9
NPC-700-4 4.45 2.33 36.4 31.1
NPC-700-5 3.69 2.66 34.2 28.9
NPC-500-4 3.49 1.67 36.6 44.6
NPC-600-4 5.81 3.82 37.4 36.6
NPC-800-4 3.85 1.90 26.1 10.8
NPC-900-4 3.21 1.63 25.0 8.9

NPC-1000-4 2.80 1.66 21.8 8.0
a The limiting enthalpy of adsorption at zero coverage (Q0) in kJ/mol. b Selectivity was calculated using the IAST
method at a mole ration of 15:85 for CO2/N2.
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NPC-600-4 shows much higher CO2 uptakes than other NPC-y-4 and NPC-700-x; the
maximum CO2 uptakes can reach 5.81 mmol/g and 3.82 mmol/g at 1.0 bar, 273 K and
298 K (Table 3), respectively. This is mainly due to its simultaneous high doped nitrogen
content (6.60 wt%), second largest Smicro (1144 m2/g), the largest Vmicro (0.452 cm3/g),
and the micropore volume ratio. In particular, the CO2 uptakes of NPC-600-4 can reach
2.29 mmol/g and 1.23 mmol/g at 0.15 bar, which is a typical CO2 partial pressure of flue gas.
These values surpass some typical solid sorbents under identical measurement conditions,
such as MOFs [7], covalent organic framework [10], zeolites [8] and N-rich porous organic
polymer [51]. Interestingly, NPC-500-4 has the second largest CO2 uptake at low pressure
(P < 0.4 bar, 273 K and P < 1 bar, 298 K), which is due to its higher amine content and large
ultramicropore volume. The amine group and ultramicropores can significantly improve
the CO2 adsorption capacity via molecular sieving and quadrupole–dipole interaction.

To further understand the interaction between the CO2 molecules and the NPCs, the
isosteric heat of adsorption (Qst) was calculated from the obtained adsorption isotherms
(273 K, 298 K) in terms of the Clausius–Clapeyron equation [52]:

ln P =
Qst
RT

+ C

where P is the pressure, Qst (kJ/mol) is the isosteric heat of adsorption, R is the gas constant,
T (K) is the temperature, and C is the equation constant. The dependencies of the Qst
and CO2 adsorption capacity are shown in Figure 9. For each sample, the Qst values
greatly decrease with the CO2 uptake, suggesting that the interaction between the CO2
molecules and the porous N-doped carbon surface is much stronger than that between the
CO2 molecules [50,51]. Moreover, the ranking order of the Qst values is basically consistent
with the order of the CO2 uptakes. It can be observed that the Qst values of NPC-700-x,
NPC-500-4, and NPC-600-4 surpass 40 kJ/mol, implying that the interaction intensity is
much stronger. This is mainly attributed to the higher basicity resulting from these basic N
species, which can provide lone-pair electrons of N atoms. These polar N sites can promote
CO2 affinity through dipole–quadrupole interaction. Among all the NPCs, NPC-600-4 has
the highest Qst values.
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The limiting adsorption enthalpies of the NPCs at zero surface coverage (Q0) were
also calculated from the CO2 adsorption isotherms at different temperatures, using the
Virial equation and the Vant Hoff equation [53]. The plotted Viral curves and the k0,
A0 data for NPC-700-x and NPC-y-4 are shown in Figure S6 and Table S2. The calcu-
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lated Q0 values of NPC-700-x and NPC-y-4 are in the range of 33.9–36.4 kJ/mol and
21.8–37.4 kJ/mol (Table 3), respectively. The apparent Q0 decrease with the activation
temperature increase should be ascribed to the loss of nitrogens at a higher activation
temperature. These further evidence the importance of N doping on enhancing the CO2
adsorption of NPCs. Thus, for efficient low-pressure CO2 capture, a moderate activation
temperature (<700 ◦C) should be adopted.

In order to evaluate the practical separation property of the NPCs, the adsorption
isotherms of N2 at 298 K were measured and compared with those of CO2 in Figure S7 and
Figure 10. It can be seen that the CO2 uptakes of all the NPCs samples are considerably
larger than the N2 in the whole measured pressure range, indicating the high CO2/N2
adsorption selectivity. The ideal solution adsorption solution (IAST) was adopted to
calculate the CO2/N2 adsorption selectivity from the simulated flue (15% CO2/85% N2)
at 298 K. Figure 11 displays that the IAST CO2/N2 selectivities of the NPCs drop with
the pressure increase. At 298 K and 1.0 bar, NPC-500-4 also exhibits a highest CO2/N2
selectivity of 44.6 (Table 3), resulting from its large ultramicropore volume and abundant
doped nitrogens (amine, pyrrolic-N, pyridine-N, and graphitic-N). Compared with the
N2 molecules, the CO2 molecules have a smaller molecular kinetic diameter and a larger
quadrupole moment. These ultramicropores and polar N-containing sites can strongly
improve the interaction between the CO2 molecules and the pore surface via the molecular
sieving effect and the quadrupole–dipole interaction. NPC-800-4 possesses the largest
micropore volume and BET surface area, while the CO2/N2 selectivity is only 10.8. This
is mainly due to the low doped N content, confirming that higher polar nitrogen doping
is the key factor for improving CO2/N2 selectivity. The CO2/N2 selectivity of NPC-600-4
is high up to 36.6, surpassing a large number of N-doped porous carbons under identical
measurement conditions (Table 4) [17,18,54–62]. The high CO2/N2 adsorption selectivity
and large CO2 uptakes under ambient conditions can be attributed to the ultramicroporosity
and abundant doped N species.
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Table 4. Comparison of CO2 adsorption values and CO2/N2 selectivity from reported N-doped
porous carbons.

Samples
SBET

(m2 g−1)
CO2 Uptakes (mmol g−1) IAST CO2/N2

Selectivity at 298 K Ref.
273 K/1.0 bar 298 K/1.0 bar

NPC-600-4 1246 5.81 3.82 36.6 This work
LS-600-0.3 1188 5.11 3.68 16 [23]
HS-500-3 1600 6.43 4.30 17 [17]
CN-600-3 1082 5.12 3.71 13 [62]
UC-650-2 1394 6.27 4.40 17 [57]

NDPC-10%-3 1153 5.55 3.34 20.8 (273 K) [59]
NPC-2 1384 5.86 - 18 (273 K) [61]
ACBK3 1377 7.0 5.20 32.3 [60]

WSM-550-2 1535 5.86 4.32 19 [18]
UC-15-2-600 1113 - 4.80 22 [58]

COL-900 1382 4.41 2.88 47 [34]
CN6-750-KOH 1928 5.57 3.91 15 [56]
PC-SK-2-3-800 1418 5.61 3.82 13 [54]

LCM-550-2 1487 5.44 3.87 20 [55]

In addition to the high CO2 adsorption capacity and the CO2/N2 selectivity, the recycle
performance of the adsorbents also matters in practical applications. Figure 12 presents
the five consecutive CO2 adsorption–desorption cycles of NPC-600-4 at 273 K. After each
adsorption process, the adsorbent is regenerated by high-vacuum desorption, and it is
directly used for another adsorption cycle. After five cycles, the CO2 adsorption capacity of
NPC-600-4 merely drops, suggesting the excellent recycle performance. Given the superior
CO2 adsorption capacity, CO2/N2 selectivity, and good recycle performance, NPC-600-4 is
promising in CO2 capture applications.
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4. Conclusions

In summary, a series of rubber seed shell-based N-doped porous carbons were pre-
pared by one-pot high-temperature activation. The obtained NPCs demonstrated tunable
microporosity and doped nitrogen content by adjusting the nitrogen source dosage and
the activation temperature. The BET surface areas and doped nitrogen contents of the
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performances at low pressure. Among the RSS-based NPCs, highly microporous NPC-600-
4 possesses the largest CO2 uptakes of 5.81 mmmol/g (273 K,1.0 bar) and 3.82 mmol/g
(298 K, 1.0 bar), as well as the high CO2/N2 selectivity of 36.6, far exceeding a variety
of reported biomass-based porous carbons. In addition, NPC-600-4 also shows excellent
thermal stability and recycle performance, confirming the competitive application potential
in practical CO2 capture.
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