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Abstract: Graphite/graphene intercalation compounds with good and improving electrical transport
properties, optical properties, magnetic properties and even superconductivity are widely used in
battery, capacitors and so on. Computational simulation helps with predicting important proper-
ties and exploring unknown functions, while it is restricted by limited computing resources and
insufficient precision. Here, we present a cost-effective study on graphite/graphene intercalation
compounds properties with sufficient precision. The calculation of electronic collective excitations in
AA-stacking graphite based on the tight-binding model within the random phase approximation
framework agrees quite well with previous experimental and calculation work, such as effects of
doping level, interlayer distance, and interlayer hopping on 2D π plasmon and 3D intraband plasmon
modes. This cost-effective simulation method can be extended to other intercalation compounds with
unlimited intercalation species.

Keywords: intercalation; plasmon; tight-binding model; local-field effects

1. Introduction

The physical properties can be modified by intercalation significantly in graphite or
graphene intercalated compounds (GICs) [1,2], such as electrical transport properties [3],
optical properties [4], magnetic properties [5] and even superconductivity [6–10]. Supercon-
ductivity in the alkali GICs was first reported in 1965 [6], with critical temperature below
1 K. After the critical temperature rising to 11.5 K of CaC6 was reported [7], great interest
has arisen for electronic properties of GICs [11–16].

The electronic collective excitations play a significant role in optical and dielectric prop-
erties, which have been studied both in experiments [17–20] and in
calculations [21–27] in GICs. The low-energy π plasmon mode, which exists in pure
graphite at 7 eV in optical limit, was found to shift to lower energy in GICs [17–20,22–24].
In addition, an intraband plasmon (IP) mode appeared with energy ∼1 eV in GICs due to
the doping effects [18–21,23,24]. Furthermore, acoustic plasmon (AP) may exist and could
play a role in superconductivity [20,23,24].

Theoretically, the plasmon properties are studied in a tight-binding (TB) model and
time-dependent density functional theory (TDDFT). Shung [21] reported that the in-plane
IP mode can be well described in a layered 2D two-band TB model near the Dirac cone,
where the interlayer tunneling effects are neglected and only Coulomb interaction in
different layers is retained. Lin et al. [22] revealed the in-plane π plasmon properties can
also be depicted in this model, where the bandstructure in the whole first Brillouin zone
(1BZ) has to be taken into account. Echeverry et al. [23,24] studied the dielectric properties
of GICs at energies below 12 eV by the state-of-the-art first-principle calculations. Bulk
plasmon (BP), π plasmon, IP and AP modes are discussed in LiC6, CaC6, SrC6, and BaC6,
which is in good agreement with the experimental results. However, the first-principle
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calculation is too time-consuming, and when the species of intercalation changes, the band
structure, interlayer distance, and doping level are changed simultaneously, and it is hard
to distingulish their effects on plasmons.

Computational simulation is a green tool for new materials developing and property
prediction which could be used in many research studies. However, limited computing
resources and insufficient precision restricted the promotion of wide usage. In the present
work, in order to understand how the in-plane and out-plane electronic collective excita-
tions are affected by different parameters in GICs, we extend the two-band TB model of
AA-stacking graphite, where the interlayer tunneling effects are also taken into consid-
eration. In this model, we study the low-energy electronic collective excitations within
the random phase approximation (RPA) framework. The local field effects (LFE) are also
involved. Our calculations show that doping level and interlayer hopping affect plasmons
mainly by band structure effects, such as density of states (DOS) and group velocity near the
Fermi level, and the forbidden effect of interband transition, while interlayer distance mod-
ifies plasmons via the long-range interlayer Coulomb correlations. In addition, stacking
order can modify interlayer coupling and have a great influence on plasmon properties.

2. Method

For periodic systems, the dielectric function can be written in terms of tight-binding
basis in the form

εG,G′(q, ω) = δG,G′ − v(q + G)χ0
G,G′(q, ω), (1)

where G,G’ are reciprocal-lattice vectors, q is a wave vector restricted to the first Brillouin
zone (1BZ), and v(q) = 4πe2/(Ωq2) is the Fourier transform Coulomb potential, Ω being
the volume of the unit cell. The polarizability function χ0 is expressed as [28]

χ0
GG′(q, ω) = ∑

ss′
As(q, G)Nss′(q, ω)A∗s′(q, G′), (2)

where

Nss′(q, ω) =
2
N ∑

nn′k

fnk − fn′k+q

h̄ω + Enk − En′k+q + ih̄η
h(k)

×C∗ν (nk)Cµ(n′k + q)C∗µ′(n
′k + q)Cν′(nk),

(3)

Enk and fnk are the eigen-energy and Fermi–Dirac occupuation for band index n and
wave vector k, Cµ(nk) is the contribution of the µth tight-binding basis function to the
Hamiltonian eigenstate (for more details, please see Appendix A), N is the number of unit
cells, η is a broadening parameter, and h(k) = exp[ik · (RL −RL′ + τµ − τν + τµ′ − τν′)] is
a phase factor. Factor 2 accounts for spin (we assume a spin-degenerate system).

As(q, G) = 〈ν, 0|e−i(q+G)·reiq·τµ |µ, L〉 (4)

is defined as the charge-density wave. The index s stands for the lattice vector index L and
for the indices ν and µ of the orbital. Using these relations, the dielectric matrix can be
written in the form

εGG′(q, ω) =δGG′ − v(q + G)

×∑
ss′

As(q, G)Nss′(q, ω)A∗s′(q, G′). (5)

The separable form of the susceptibility matrix in Equation (5) enables us to calculate
the inverse dielectric matrix [29]

ε−1
GG′(q, ω) =δGG′ + v(q + G)

×∑
ss′

As(q, G)Sss′(q, ω)A∗s′(q, G′), (6)
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where

Sss′(q, ω) = ∑
s1

Nss1(q, ω)T−1
s1s′ , (7)

and

Tαα′(q, ω) = δαα′ −∑
α1

Vαα1(q)Nα1α′(q, ω), (8)

where the Coulomb interaction between the charge-density waves is [29]

Vαα1(q) = ∑
G′′

A∗α(q, G′′)v(q, G′′)Aα1(q, G′′)

= ∑
m

e−iq·(Rm+τµ−τµ′ )
∫

dr
∫

dr′φ∗µ(r−RL −Rm) (9)

× φν(r−Rm)v(r− r′)φ∗ν′(r
′)φµ′(r

′ −RL′).

The off-diagonal elements of the χ0
GG′ matrix describes the response of the electrons

at wave vectors different from the external perturbing field and thus contain information
about the inhomogeneity of the microscopic response of electrons known as the local field
effect (LFE) [30]. The macroscopic dielectric function is defined as

εM(q, ω) =
1

ε−1
00 (q, ω)

, (10)

If we neglect the LFE, it becomes εM(q, ω) = ε00(q, ω). This macroscopic dielectric
function is directly related to many experimental properties. For example, the optical-
absorption spectrum (ABS) is given by ImεM(q→ 0, ω). The electron energy-loss spetrum
(EELS) is proportional to −Im(1/εM). EELS is especially useful in probing the collective
electronic collective excitations, known as plasmons, of bulk and low-dimensional systems.

Without loss of accuracy, we make some approximations to avoid calculating the
integral of tight-binding basis function, as shown in Appendix B, to accelerate calculation
greatly.

3. Results and Discussion
3.1. TB Model of AA-Stacking Graphite

In AA-stacking graphite, layers of carbon atoms locate directly on top of each other, as
shown in Figure 1a. In order to obtain a reliable TB model, the geometrical optimization and
electronic properties are performed by first-principle calculations (for more details, please
see Appendix C). The calculated band structure in the vicinity of the Fermi level along the
high-symmetry directions of 1BZ is shown in Figure 1b, which is in good agreement with
the previous results [31]. The bonding π and antibonding π∗ bands dominate the band
structure. A hole pocket appears at K and an electron pocket appears at H.
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(a) (b) (c)

Figure 1. Lattice and electronic structure of AA-graphite. (a) Top view of atomic structure of AA-
stacking graphite. The primitive cell, lattice vectors a1, a2 and in-plane hopping t are indicated.
(b) Band structure of AA-stacking graphite, with the corresponding pz orbitals in cyan. The size
of the symbol represents the orbital weight. (c) Comparison of the band structure for AA-stacking
graphite obtained from DFT (red line) and TB (blue dashed line) calculations, respectively.

After fitting the TB parameters, we constructed TB Hamiltonian as

H(k) =
(

H11(k) H12(k)
H21(k) H22(k)

)
(11)

where
H21(k) =H∗12(k),

H22(k) =H11(k),

H11(k) =εp + t2g2(k) + t4g4(k) + t⊥g⊥(k),

H12(k) =t1g1(k) + t3g3(k),

(12)

εp is the on-site energy of pz orbital of C atoms (0.51 eV in this work), and

g1(k) =eik·( 2
3 a1+

1
3 a2) + eik·(− 1

3 a1+
1
3 a2) + eik·(− 1

3 a1− 2
3 a2),

g2(k) =2 cos(k · a1) + 2 cos(k · a2) + 2 cos(k · (a1 + a2)),

g3(k) =eik·( 2
3 a1+

4
3 a2) + eik·( 2

3 a1− 2
3 a2) + eik·(− 4

3 a1− 2
3 a2),

g4(k) =2 cos(k · (2a1 + a2)) + 2 cos(k · (a1 + 2a2))

+ 2 cos(k · (−a1 + a2)),

g⊥(k) =2 cos(k · a⊥).

(13)

The detail values of hopping parameters, schematically shown in Figure 1a, are listed
in Table 1. From this TB Hamiltonian, energy eigenvalues at high-symmetry points can be
calculated analytically (listed in Table 2). The band structures derived from our TB model
match well with DFT calculation (Figure 1c), implying a reliable TB model.

Table 1. Hopping parameters ti (in eV) assigned to the simple TB Hamiltonian of AA-stacking
graphite. d is the distance between the atomic sites on which the interacting orbitals are centered.

i ti (eV) d (Å)

1 −3.24 1.41
2 0.36 2.44
3 −0.41 2.82
4 0.095 4.23
⊥ 0.21 3.7
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Table 2. The analytical energy eigenvalues at high-symmetry points.

Points Energy Eigenvalues

Γ εp + 2t⊥ + 6t2 + 6t4 ± 3(t1 + t3)

K εp + 2t⊥

M εp + 2t⊥ − 4t2 − 2t4 ±
√

3
2 (t1 − 3t3)

A εp − 2t⊥ + 6t2 + 6t4 ± 3(t1 + t3)

H εp − 2t⊥

L εp − 2t⊥ − 4t2 − 2t4 ±
√

3
2 (t1 − 3t3)

3.2. Plasmon Excitations

By the method introduced in Section 2, we calculated the excitation spectra of AA-
stacking graphite with and without inclusion of the LFE. T = 0 K, η = 0.1 eV, ε0 = 2.4 [32]
(more details in Appendix B) and a dense 240× 240× 180 k-mesh were used in all calcula-
tions. In Figure 2, the loss function is shown as a function of energy at variable momentum
transfer q along ΓM (a) and ΓA (b) directions.

In the ΓM (in-plane) direction, the main feature of the loss spectra is a strong high-
energy peak around 7 eV at small q. As q increases, it shows a parabolic-like positive
dispersion and splits into two peaks at large momentum (q > 0.3 Å−1). This peak is
attributed to the collective interband transitions from π to π∗ band around M point and
it is assigned as π plasmon [33]. The split features of π plasmon have also been reported
in monolayer graphene [34]. With the help of real and imaginary parts of the dielectric
function at q = 0.059 Å−1(Figure 2c) and q = 0.59 Å−1 (Figure 2d), it is clear that the peaks
splitting at large q originates from the splitted collective interband transitions. In addition,
there exists a low-energy intraband plasmon (IP) mode with quite low intensity near Dirac
points corresponding to low doping level of AA-stacking graphite.

(a)   ГM (b)   ГA

q = 0.059 Å-1

q = 0.59 Å-1

(c)

(d)

Figure 2. Calculated loss functions along (a) the ΓM and (b) ΓA directions as a function of q. The peak
positions are marked by red stars. Real and imaginary part of dielectric function at (c) q = 0.059 Å
and (d) q = 0.59 Å along the ΓM direction.

In the ΓA (out-plane) direction, the main peak starts at 0.26 eV, which originates from
the collective intraband transitions. As q increases, the position of this peak increases and
reaches its maximum 0.84 eV at the boundary of 1BZ with q ∼ 0.85 Å−1, and then, it
decreases. The intensity of the peak also increases firstly and then decreases as q increases,
but it reaches its maximum at q ∼ 0.1 Å−1.
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3.3. Effect of Doping Level

Intercalating different atoms in graphite will induce different doping levels, which
is important to understand the behavior of electronic collective excitations. The induced
electrons will occupy the π∗ band of carbon atoms, so the doping level can be regarded
as an in-plane quantity to some extent. In order to study how this in-plane parameter
influences the in-plane and out-plane collective excitation of electrons, we calculate the
EELS of AA-stacked graphite at different doping levels. In this calculation, the doping effect
is represented by ragid band approximation (RBA), which means only a rigid shift of the
Fermi level, as shown in Figure 3. We calculated loss functions at different doping levels of
0.08, 0.25, 0.333, 0.42 and 0.667 e-doped per unit cell, correspoing to 3.75× 1021, 1.17× 1022,
1.56× 1022, 1.97× 1022, and 3.13× 1022 cm−3 charge carrier density addition, respectively.
The quite small difference between Figure 4a,b, especially at small q, illustrates that LFE
is negligible in this direction. As the doping level increases at small q, both energies and
intensities of IP mode increase, while π plasmon performs the inverse. When the doping
level is larger than 0.42 e-doped per unit cell, the Fermi level will be lifted to the Van Hove
singularity shown in Figure 3, and the π plasmon disappears. Because in this case, the π∗

band at M point is occupied and the corresponding interband transition is forbidden.

Figure 3. Band structure and Density of States (DOS) at different doping levels in rigid band
approximation (RBA). The Fermi level at 0.08, 0.25, 0.333, 0.42, and 0.667 e-dope per unit cell are
marked by light blue, orange, green, brown and violet dashed lines, corresponding to EF at 0.98,
1.555, 1.777, 1.992, and 2.793 eV, respectively.

The dispersions of the in-plane modes with different electron doping levels are sum-
marized in Figure 4c,d, corresponding to with and without inclusion of LFE, respectively.
The π plasmon shows a parabolic-like positive dispersion with the increase of momentum
transfer. As the doping level increases, at small q, more interband transitions are forbidden
and the π plasmon energy shows a redshift; however, at large q, the forbidden effect is
negligible and the π plasmon energy shows a blueshift. As a result, a higher doping level
leads to a stronger parabolic-like positive dispersion of πP. The IP mode also shows a
parabolic-like positive dispersion with the momentum transfer increase at low doping level.
A higher doping level lifts the IP energy but reduces the dispersion, and even negetive
dispersion appears at small q in 0.42 e-doped case. The negative dispersion of the in-plane
IP mode has also been reported in CaC6 [23] and SrC6 [24], which is explained by band
structure effects.
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(a)  ΓM  LFE (b)  ΓM  NLFE

(e)  ΓA  LFE (f)  ΓA  NLFE

(c)

(d)

(g)

(h)

Figure 4. Calculated loss functions along the ΓM direction (a) with LFE, (b) without LFE and along
the ΓA direction (e) with LFE, (f) without LFE at different doping levels (light blue line for 0.08
e-doped, orange line for 0.25 e-doped, green line for 0.333 e-doped, brown line for 0.42 e-doped and
violet line for 0.667 e-doped per unit cell). (c,d,g,h) show positions of peaks of (a,b,e,f), respectively.
The shaded background gives the loss functions of the no-doping case for comparison.

In layered materials, plasmon properties are anisotropic and quite different between
in-plane and out-plane direction. From Figure 4, it is obvious that LFE is crucial in ΓA
direction, especially for the dispersion as shown in Figure 4g,h. When LFE is neglected,
the energies of the out-plane IP mode decline to nearly 0 eV at the boundary of the second
Brillouin zone (2BZ), while when LFE is taken into account, this IP mode shows a nearly
flat band. The variation in energy is 0.14, 0.08, 0.09, 0.05 and 0.06 eV in 0.08, 0.25, 0.333, 0.42,
and 0.667 e-doped per unit cell, respectively. This result agrees quite well with previous
work in calculation for C6Li [24]. As the doping level lifts, the plasmon energy increases
at first, reaches maximum around 0.333 e-doped per unit cell, and then drops down. The
variation of intensities as a function of doping level shares the trend with the plasmon
energies. Both density of states near the Fermi surface and the group velocities determine
the IP energy. As shown in Figure 3, at low doping level, the density of state increases
drastically with doping level increasing, and it reaches the top at 0.42 e-doped per unit cell.
So, the IP energy firstly increases with doping level increase; then, it decreases due to the
drop of density of state above Van Hove singlarity. However, the average group velocity
along the ΓA direction of 0.42 e-dope is less than that of 0.333 e-dope. As a result, the IP
energy of 0.42 e-dope is less than that of 0.333 e-dope.

3.4. Effect of Interlayer Distance and Hopping

Intercalating different atoms in layered materials will induce different interlayer
distance and hopping, which are two important out-plane parameters to understand the
behavior of electrons. In reality, they are always changed simultaneously, and it is hard to
study their effect independently in experiments and first-principle calculations. In order to
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establish a simple picture how these two out-plane parameters influence the in-plane and
out-plane electronic collective excitations, we tune them independently in our TB model
and calculate the corresponding EELS.

If we fix the interlayer hopping and tune the interlayer distance d, the band structrue
has no change except for rescaling of reciprocal lattice vector along c∗-axis. So, the in-plane
plasmon will be only tuned by the interlayer Coulomb correlation, while the out-plane
plasmon can also be modified by rescaling effect along the c∗-axis. For example, as shown
in Figure 5, the Fermi level EF is fixed at 1.555 eV, and the interlayer hopping t⊥ is fixed
at 0.21 eV. When d increases, the interlayer Coulomb interaction becomes weaker, so the
in-plane IP and π plasmon energy decrease (Figure 5a–c). The intensity of IP increases
as d increases, while that of π plasmon decreases. Figure 5b,c show the peak positions
of the loss spectra along the ΓM direction with and without LFE, respectively. With the
increase of d, both energies of IP and π plasmon decrease, but with different rates obviously.
When d increases from 2.44 to 4.88 Å, the π plasmon energy decreases from 8.1 to 6.2 eV
at small q, while the IP energy decreases only from 2.6 to 2.4 eV. As q increases, both IP
and π plasmon show parabolic-like positive dispersion at different interlayer distances.
With the interlayer distance decreasing, dispersions of IP mode remain unchanged with
and without the inclusion of LFE, and we find a weaker dispersive feature of π plasmon
mode with the inclusion of LFE. In addition, we plot the peak positions of the loss spectra
along the ΓA direction in Figure 5d,e, where the out-plane IP energies indeed increase as d
increases due to the c∗-axis rescaling effect.

(a) (b)

(d)

(c)

(e)

Figure 5. (a) Calculated loss functions along the ΓM direction with LFE at different interlayer distance
(light blue line for d = 2.44 Å, orange line for d = 2.93 Å, green line for d = 3.42 Å, brown line for
d = 3.90 Å, violet line for d = 4.39 Å and brown line for d = 4.88 Å). The shaded background gives
the loss functions of d = 3.70 Å case for comparison. (b,c) show the loss function peaks along the
ΓM direction with and without LFE, respectively. (d,e) show the loss function peaks along the ΓA
direction with and without LFE, respectively. The Fermi level is fixed at EF = 1.555 eV.

As shown in Figure 6, larger interlayer hopping results in lower Fermi level and a
larger energy difference between the different points along the c∗-axis, creating a larger
group velocity along the out-plane direction. As a result, both the energy and weight of
the out-plane IP mode increase dramatically with the increase of interlayer hopping t⊥, as
shown in Figure 7e–h. The effect of changing interlayer hopping on the band structure is
similar to tuning the doping level at different k⊥ plane seperately. For example, the energy
difference between the ΓMK plane and AHL plane is 4t⊥, as shown in Table 2. Therefore,
its effect on plasmons can be attributed to a combination of different doping level in all k⊥
planes in 1BZ. Figure 7a–d shows the loss function along the ΓM direction (in-plane). The
increase of t⊥ has little effect on the in-plane π plasmon mode. The energy of the in-plane
IP mode increases as t⊥ increases, while the weight decreases significantly.
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Figure 6. Band structure and density of states (DOS) at different interlayer hopping (red line for
t⊥ = 0.21 eV with EF = 1.555 eV and blue dashed line for t⊥ = 0.50 eV with EF = 1.428 eV). The
interlayer distance is fixed at 3.70 Å and the carrier density is fixed at 1.17× 1022 cm−3.

(a)  ΓM  LFE (b)  ΓM  NLFE

(e)  ΓA  LFE (f)  ΓA  NLFE 

(c)

(d)

(g)

(h)

Figure 7. Calculated loss functions along the ΓM direction (a) with LFE, (b) without LFE and
along the ΓA direction (e) with LFE, (f) without LFE at different interlayer hopping (light blue
line for t⊥ = 0.10 eV, orange line for t⊥ = 0.30 eV, green line for t⊥ = 0.50 eV and brown line for
t⊥ = 0.70 eV). (c,d,g,h) show positions of peaks of (a,b,e,f), respectively. The shaded background
gives the loss functions of the no doping case for comparison.
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3.5. Effect of Stacking Order

In all known GICs, the stacking order of graphene layer is AAA [1], which is different
from the AB or ABC stacking order in natural graphite. The stacking order can modify the
interlayer coupling and electronic structure consequently. For example, in small-rotation-
angle twisted bilayer graphene, the moiré superlattice alters the electronic properties
significantly and has led to observations of exotic emergent electronic properties such as
superconductivity and strong correlated states [35,36].

The plasmon properties of AB and ABC stacking graphite are studied based on our TB
model (for more details, please see Appendix D). The loss function of AB graphite along
the ΓM direction is almost the same as that of AA graphite. The main feature of the loss
spectra is a strong π plasmon peak around 7 eV at small q, and the π plasmon shows
positive-parabolic dispersion with an increase of q, which agrees very well with previous
work [33], as shown in Figure 8a. The real and imaginary parts of dielectric functions at
q = 0.059 Å−1 in Figure 8b and at q = 0.59 Å−1 in Figure 8c are similar with that of AA
graphite, except that no zero point of Re[ε] appears at E < 4 eV due to the lack of charge
carriers. However, no plasmon peaks are observed in ABC graphite in the low-energy
region (0–12 eV), as shown in Figure 8d. The collective character in the loss function is
cofirmed by the real and imaginary parts of the dielectric function at q = 0.059 Å−1 in
Figure 8e and q = 0.59 Å−1 in Figure 8f. We can see that at energy around 7 eV, Re[ε]
crosses the zero line with a positive derivative at q = 0.059 Å−1; however, Im[ε] is still
too large, implying a strong Landau damping effect. As a result, π plasmon will have a
very large linewidth, and no peak appears in the loss function. Along the out-plane ΓA
direction, no prominent plasmon peaks appear in the low-energy region (0–12 eV) for both
AB and ABC stacking graphite due to the low level of charge carrier concentration.

(a) (b)

(c)

(d)

(f)

(e)

q = 0.059 Å-1 

q = 0.59 Å-1 

q = 0.059 Å-1 

q = 0.59 Å-1 

Figure 8. Calculated loss functions along the ΓM direction of AB (a) and ABC (d) graphite with LFE.
The peak positions are marked by red stars. Real and imaginary part of dielectric function at (b)
q = 0.059 Å−1 and (c) q = 0.59 Å−1 for AB graphite and (e) q = 0.059 Å−1 and (f) q = 0.59 Å−1 for
ABC graphite.

As the doping level increases, the density of state and the group velocity near the Fermi
surface change rapidly according to the band structure, and more interband transitions
from π band to π∗ band are forbidden at small q. As a result, with the increase of doping
level, the energy blueshifts for in-plane IP mode, blueshifts at first and then redshifts for
out-plane IP mode, and blueshifts at small q but redshifts at large q for in-plane π plasmon
mode. The variation in the intensity of plasmon peaks is the same as plasmon energies.
When the doping level is so large that the π∗ band at the M point is occupied, the in-plane
π plasmon disappears as a result of a forbidden interband transition from the π band to π∗

band.
With the interlayer distance increasing, the band structrue has no change except for

rescaling of the reciprocal lattice vector along the c∗-axis when the interlayer hopping
remains unchanged, and the interlayer Coulomb correlation becomes weaker. As a con-
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sequence, the energy redshifts slightly for the in-plane IP mode, redshifts remarkably for
the in-plane π plasmon mode, and blueshifts for the out-plane IP mode. The variation
in the strength of plasmon peaks is the same as plasmon energies for the in-plane π plas-
mon and out-plane IP modes, but it is opposite for the in-plane IP mode. The effect of
changing interlayer hopping on the band structure is similar to tuning the doping level at
different k⊥ planes separately and group velocity along the out-plane direction. We find
that the interlayer hopping has nearly no effect on in-plane π plasmon mode, but it affects
the IP mode dramatically. As the interlayer hopping increases, the energies of both the
in-plane and out-plane IP mode blueshift, and the strength of plasmon peak increases for
the out-plane mode but decreases for the in-plane mode. AB-stacking graphite shows few
differences with AA-graphite, while no plasmon peaks appear in ABC-stacking graphite
because of the strong Landau damping effect.

A comparison of the excitation spectra obtained with and without inclusion of the local-
field effects demonstrates that in layered AA stacked graphite, the LFE have a significant
impact on the dielectric properties, especially along the out-plane direction, where they
flatten the out-plane IP dispersion at least in the second Brillouin zone (2BZ).

4. Conclusions

Based on the computing resource and precision limitation of current simulation on
layered materials, we have constructed a TB model of AA-stacking graphite to mimic GICs
and investigated the plasmons properties within the RPA framework, with high efficiency
and sufficient precision. The local-field effects are involved in our model; the effects of
doping level, interlayer distance, interlayer hopping, and stacking order on 2D π plasmon
and 3D intraband plasmon modes are studied independently; and the corresponding
evolutions of plasmons are presented clearly. Our results are in very good agreement with
the previous experimental and calculation work. This tight-binding calculation does not
need a self-consistent process and the basis set contains only several orbitals, so it is very
computationally efficient. At the same time, the precision is higher than many methods
and satisfies most of the prediction requirements. Our method is easy to extend to other
intercalation materials with unlimited intercalation species and has great significance for
understanding how plasmons are tuned in layered materials.
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Appendix A. Tight-Binding Model

We constuct the Bloch-like basis functions in Convention I [37] as

|α, k〉 = 1√
N

∑
L

eik·(RL+τα)|α, L〉, (A1)

where N is the number of unit cells, RL is the lattice vector, τα is the position vector of α
orbital within the unit cell, and |α, L〉 is the tight-binding orbital. The Hamiltonian matrix
expressed in the basis is
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Hαα′(k) = 〈α′, k|H|α, k〉 = ∑
R

eik·(R+τα−τα′ )Hαα′(R), (A2)

where

Hαα′(R) = 〈α, 0|Ĥ|α′, R〉. (A3)

The energy eigenvalues and Bloch eigenstates can be obtained by diagonalization of
the Hamiltonian matrix and the Bloch eigenstates are then expanded as

|nk〉 = ∑
α

Cα(nk)|α, k〉. (A4)

Appendix B. Approximations in Practical

Assuming that the localized basis sets are orthonormal and localized enough, the
charge-density wave becomes

As(q, G) = 〈ν, 0|e−i(q+G)·reiq·τµ |µ, L〉δνµδL0, (A5)

furthermore, we have

As(q, G = 0) ≈ 1. (A6)

The Nss′(q, ω) becomes

Nss′(q, ω) ≈ 2
N ∑

nn′k

fnk − fn′k+q

h̄ω + Enk − En′k+q + ih̄η

× C∗µ(nk)Cµ(n′k + q)C∗µ′(n
′k + q)Cµ′(nk),

(A7)

the Coulomb interaction (9) between the charge-density waves becomes

Vαα′(q) ≈∑
m

′ e
−iq·(Rm+τµ−τµ′ )

|Rm + τµ − τµ′ |
(A8)

where the prime indicates that the sum excludes the intra-atomic term. In practical terms,
we obtain the intra-atomic Coulomb repulsion from Harrison’s fitting [38].

We usually constract the TB model only using orbitals which are close to the Fermi
level, so an effective dielectric constant ε0, which includes a high-energy screening process,
has to be induced. The dielectric function matrix becomes

εGG′(q, ω) =ε0δGG′ − v(q + G)

×∑
ss′

As(q, G)Nss′(q, ω)A∗s′(q, G′), (A9)

and the inverse dielectric matrix

ε−1
GG′(q, ω) =

δGG′

ε0
+

v(q + G)

ε0

×∑
ss′

As(q, G)Sss′(q, ω)A∗s′(q, G′),
(A10)

where
Sss′(q, ω) =∑

s1

Nss1(q, ω)T−1
s1s′ ,

Tαα′(q, ω) =ε0δαα′ −∑
α1

Vαα1 Nα1α′(q, ω)
(A11)
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Appendix C. First-Principle Calculation Details

In order to obtain a reliable TB model, the geometrical optimization and electronic
properties are performed by first-principle calculations. We fixed the interlayer distance
at 3.7 Å for all stacking order, corresponding to Li-intercalated graphite [11], and relaxed
the atomic structures according to the force and stress performed by density functional
theory (DFT) using the Quantum Espresso (QE) [39,40]. The norm-conserving pseudopo-
tentials [41,42] and local density approximation (LDA) [43,44] exchange-correlation func-
tional were adopted. The cutoff energy was set to 100 Ry after convergence tests. We used
gamma-centered 16× 16× 10, 16× 16× 5 and 16× 16× 4 k-mesh for AA, AB and ABC
stacking order respectively, and a Methfessel–Paxton [45] smearing width of 0.01 Ry in the
self-consistent calculations. The lattice parameters and atomic positions were fully relaxed
until the remanent forces are less than 1× 10−4 Ry/Bohr.

Appendix D. Tight-Binding Model of AB and ABC Stacking Graphite

AB graphite has four atoms in the unit cell and four π band near the Fermi level, as
shown in Figure A1a,b. The conduction band and valence band match at the Fermi level at
K and H points, which shows semi-metal property. As a result, the carrier concentration
in AB graphite is much lower than that in AA graphite. In order to establish a reliable TB
model, we employ five intralayer parameters and four interlayer parameters, as shown
in Figure A1a and Table A1. The on-site energies of C atoms E0 in the same layer have a
difference ∆ due to the crystal field effect. In order to make a comparison between different
stacking orders, we utilize a hexgonal unit cell of rhombohedral or ABC graphite, which
contains six atoms and six π bands near the Fermi level, as shown in Figure A1d,e. At K
and H points, a small gap is opened, and the conduction band and valence band intersect
at the Fermi level near the K and H points. We employ five intralayer parameters and
five interlayer parameters, as shown in Figure A1d and Table A1. The electronic band
structures derived from our TB model matches very well with the DFT calculation, as
shown in Figure A1c for AB graphite and (f) for ABC graphite, implying the reliability of
our TB model.

(a)

(d)

(b)

(e) (f)

(c)

Figure A1. Lattice and electronic structure of AB and ABC graphite. (a,d) are the lattice structure
of AB and ABC graphite, respectively. Carbon atoms in different layers are labeled in different
colors (gray and blue in AB case, and gray, blue and brown in ABC case). The red arrows denote
the interatomic tight-binding hopping parameters. (b,e) are the electronic band structure of AB and
ABC graphite, respectively, with the pz orbitals of C atoms in cyan. (c,f) are the comparison of band
structure (DFT in red line and TB in blue dashed line) for AB graphite and ABC graphite, respectively.
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Table A1. TB parameters for AB stacking and ABC stacking graphite. All values are in eV. The TB
Hamiltonian is valid in the whole three-dimensional Brillouin zone of graphite.

Stacking Order AB ABC

t1 −3.04 −3.042

t2 0.254 0.267

t3 −0.312 −0.313

t4 0.06 0.066

t5 −0.022 −0.018

γ0 0.177 0.177

γ1 0.098 0.048

γ2 0.045 −0.042

γ3 −0.035 0.084

γ4 −0.024

E0 0.317 0.333

∆ 0.004 0
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