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Abstract: Environmental pollution, especially water pollution caused by dyes, heavy metal ions
and biological pathogens, is a root cause of various lethal diseases in human-beings and animals.
Water purification materials and treatment methods are overpriced. Consequently, there is an
imperative outlook observance for cheap materials for the purification of wastewaters. In order to
fill up the projected demand for clean water, the present study aimed to make use of cost-effective
and environmentally friendly methods to convert bone-waste from animals such as cows into
novel composites for the decontamination of water. The bone-waste of slaughtered cows from
the Najran region of Saudi Arabia was collected and used for the synthesis of hydroxyapatite
based on the thermal method. The synthesized hydroxyapatite (Ca10(PO4)6(OH)2) was utilized to
prepare a manganese ferrite/hydroxyapatite composite. The nanocomposite was categorized by
diverse sophisticated procedures, for instance XRD, FE-SEM, EDX, TEM, UV, PL and FT-IR. This
composite possesses outstanding photocatalytic activity against methylene blue dye, which is a
common pollutant from industrial wastes. Moreover, the synthesised composite revealed exceptional
bacteriostatic commotion towards E. coli and S. aureus bacteria, which are accountable for acute
waterborne infections. The outcome of this study demonstrated that the integration of manganese
ferrite into hydroxyapatite significantly intensified both antimicrobial and photocatalytic actions
when compared to the virgin hydroxyapatite.

Keywords: water pollution; manganese ferrite/hydroxyapatite composite; bacteriostatic; pathogens;
photocatalysis

1. Introduction

Currently, hygienic water is a protuberant global problem. Safe water is a prerequisite
for maintaining livelihood as well as an ecological niche. Nevertheless, negligence and
misgovernance of water reservoirs have drastically threatened the accessibility of fresh
water. Millions of people die annually due to contaminated water as well as water-borne
infections [1]. Undeniably, microorganisms account for water-associated illnesses. The
occurrence of coliforms is a marker of current defecation effluence. The outbreaks of water-
related microbial infections are prime sources of death [2]. On the other hand, inorganic
materials and heavy metals, although not very detrimental in lesser quantities, operate as
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noxious waste with time in water. Similarly, organic materials enter water bodies through
leaching, desecrate dumping, human activities or industrialized catastrophes [3]. This type
of contaminated water, particularly in elevated absorption, might result in acute health
issues and even the death of human beings and other life forms. Additionally, organic
contaminants and poisonous substances from industrial wastes result in an acute logjam of
environmental and health concerns. Even a scanty amount of dyes may adversely affect
aquatic fauna and flora as they are carcinogenic in nature. In particular, cationic dyes are
found to be more toxic than anionic dyes owing to their synthetic nature and aromatic
ring configuration with delocalized electrons [4]. Moreover, the occurrence of these dyes
worsens the productivity of agricultural land [5]. Henceforth, the removal of dye molecules
from polluted water is of crucial prominence prior to its release into water bodies.

Considering projected demand for clean water worldwide and specifically in Saudi
Arabia, there is an important urge for the development of cheap and efficient methods as
well as materials for the purification of wastewater. Thus, the present study envisages the
development of cost-effective material (hydroxyapatite) from animal bones. Previously,
sheep-bone charcoal and activated carbons have been investigated for the adsorption of
mercury ions [3]. Moreover, animal-fillet charcoal has been applied as an adsorbent for the
elimination of mercury from polluted waters. Interestingly, magnetic nanocomposite from
waste animal-bone biochar has also been utilized for the exclusion of divalent metals from
wastewater [6]. Recently, various organic/inorganic hydroxyapatite composites have been
employed to take away diverse coloring effluents. For instance, Panneerselvam et al. used
iron- and cobalt-based hydroxyapatite as well as pristine hydroxyapatite (HAP) for the
removal of Congo red dye [7]. Manatunga et al. utilized HAP composites as well as pristine
HAP to adsorb Acid yellow, which indicates that the ligand attached to the HAP had an
influence on its adsorptive capacity [8]. Hou et al. developed a HAP-Chitosan composite
for Congo red removal. Guan et al. coated HAP with polyalcohol to eliminate Congo red,
methyl blue and orange [9]. Increased photocatalytic removal of NO by the TiO2-HAP
composite was reported by Yao et al. [10]. Additionally, other studies on the photocatalytic
degradation of dyes by nanotextured HAP have also been reported [11,12]. Consequently,
the literature suggests that HAP is an important material for the removal of toxic materials
from wastewater. In view of an increased aspect ratio, insignificant solubility in water,
abundant hydroxyl assemblies, accessibility, economics, and an eco-friendly and facile
preparation process, HAP has widely been exploited as a sorbent for the elimination of
noxious components from contaminated waters [13]. Additionally, HAP develops bonds
with diverse sizes of organic molecules. Customarily, HAP is delivered in powder form
or pellets, which confines its industrial uses. Therefore, HAP-containing composites are
extensively being explored. It is strongly believed that HAP-based composite materials
will be a suitable alternative [14] to the expensive materials commonly used to clean
wastewater. Furthermore, some noble procedures have been attempted to scale-up HAP
production, for instance Fluidinova in collaboration with the Instituto de Engenharia
Biomedica has established and patented a scale-up process for the fabrication of high-
quality materials comprising HAP nanoparticles [15]. Likewise, an in situ crystallization
procedure consuming a facile reaction of Ca(OH)2 and H3PO4 has been exploited for the
generation of large-scale HAP nanoparticles [16].

On the other hand, MnFe2O4 is considered one of the finest magnetic-material sub-
stitutes for Fe3O4 owing to its outstanding physicochemical assets [17,18]. Nevertheless,
bulk MnFe2O4 could not efficiently eradicate heavy metal ions and dyes. In this regard,
nano-sized magnetic particles overcome these glitches and can yield bigger specific surface
areas, which produce superior adsorption or photocatalytic capacities for the elimination
of contamination [19,20]. Nanotextured ferrite is a type of composite oxide with the key
constituents of trivalent iron oxides [21]. These benevolent materials have triggered eclectic
public concern due to superior physical and chemical features, viz. unwavering chemical
properties, reasonable saturated magnetic field and so on.



Nanomaterials 2022, 12, 1631 3 of 12

Instigated by the remarkable properties of MnFe2O4 and biogenic HAP, in the cur-
rent study, we recycled waste-bones to design an economical MnFe2O4 assimilated HAP
nanocomposite for the decontamination of water from hazardous biological and
chemical pollutants.

Wastewater treatment methods are very expensive and challenging. Nowadays,
photocatalytic degradation of dyes is an emerging technique accomplishing colossal con-
sideration in handling wastewaters. It is an innovative procedure established while bearing
in mind the failure of various earlier water-management methods. Nevertheless, many
photocatalysts can only be activated by ultraviolet light, but UV light is just around 5% of
the solar spectrum whereas visible light is ~45%. Accordingly, for effectual solar-energy
exploitation, it is important to shift the light response from UV to visible light. Additionally,
intense UV-light repeatedly generates ample amounts of reactive by-products. This chal-
lenge can also be overcome by means of visible light as an energy resource. The mechanistic
procedure of visible-light response to visible-light-active photocatalysts is almost identical
to that of UV-light-active photocatalysts. The only variance is less photon energy require-
ment to activate the photocatalytic cycle that perhaps results in superior selectivity [22]. It
has also been recognized that the material used should be both non-toxic and unaffected
by photooxidative disintegration [5,12]. Herein, HAP-MnFe2O4 nanocomposites were
efficaciously synthesized and characterized in detail. These nanocomposites were used for
the degradation of methylene blue (MB) dye by the visible-light photocatalysis method.

2. Materials and Methods
2.1. Synthesis of Hydroxyapatite (HAP)

The thrown-away carcasses were collected from a slaughterhouse in Najran, Saudi Ara-
bia. These carcasses were splashed comprehensively with water and prudently scrubbed
with acetone to eliminate fat, connective tissue and extra contaminations. Afterwards, the
sanitized bones were dehydrated at high temperature (160 ◦C) for 48 h. Additionally, the
desiccated carcasses were calcined in a furnace at elevated temperature (600 ◦C) for the
extraction of biogenic HAP [14].

2.2. Synthesis of HAP-MnFe2O4 Nanocomposite

Briefly, approximately 2 mmol of FeCl3·6H2O and 1 mmol of MnCl2·4H2O were
dispersed into 70 mL distilled water (DW) to process a homogenous metal–ion solution
while stirring. During stirring, sodium hydroxide (2 M) liquefied with 10 mL DW was
supplemented into the above metal–ion mixture drop-by-drop until pH~12. The attained
intermediate was strained and splashed with distilled water until the pH of the filtrate
turned neutral. Afterwards, an equivalent quantity of HAP was disseminated into the
solution (1:1 mass ratio) with continuous stirring to produce a consistent dispersion at
room temperature (RT). The assimilated solution was placed into a Teflon-lined stainless
autoclave. The autoclave was then retained into an oven and placed at 200 ◦C for 12 h and
was allowed to cool at RT. The ultimate product was centrifuged and splashed thrice by
DW and absolute ethanol. Finally, the products were eventually dehydrated in an oven at
60 ◦C for 12 h.

2.3. Characterization

The crystalline phases of HAP and HAP-MnFe2O4 nanocomposite were scanned by
X-ray diffraction (XRD, Rigaku D/Max-2550, λ = 0.154 18 nm). The outward arrangement
and dimensions have been described using Field emission scanning electron microscopy
(FESEM) from SHIMADZU Japan (SSX-550) furnished with Energy-dispersive X-ray (EDX).
Infrared data were revealed on a VERTEX 70 Fourier transform infrared (FTIR) spectrome-
ter (Bruker, Ettlingen, Germany) at a resolution of 4 cm−1 and a scan rate of 0.75 Hz using
ATR mode. Ultra-violet−visible diffuse-reflectance spectra (UV−vis DRS) were acquired
on an UV−vis spectrophotometer (UV-2550, Shimadzu, Kyoto, Japan). Photoluminescence
(PL) data were obtained at room temperature on an F-7000 fluorescence spectrophotometer
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(Hitachi, Tokyo, Japan) with an excitation wavelength of 325 nm. The microscopic fea-
tures and crystalline pattern of the composite were examined by Transmission electron
microscopy (TEM) (H-7650, Hitachi, Japan)

2.4. Assessment of Photocatalytic Activity

The photocatalytic performance of pure HAP and HAP/MnFe2O4 nanocomposite
photocatalysts was estimated through disintegration of the MB aqueous solution in visible
light (λ ≥ 400 nm) with a 450 W mercury lamp. Fifty milligrams of the sample were
supplemented in 200 mL of the MB aqueous solution (20 ppm). Before irradiation of the light,
the solution was magnetically stirred for 30 min in the dark to reach adsorption−desorption
equilibrium. After irradiation for a particular time, 3 mL of solution was taken out and
centrifuged. The filtrate was examined by recording variations of maximum absorption band
(668 nm) using UV-vis spectrophotometer (Thermo Fisher Scientific, Weltham, MA, USA).

2.5. Antimicrobial Potential of HAP and HAP/MnFe2O4 Nanocomposite

The standard bacteria from American Type Culture Collection (ATCC) (E. coli 25922
and S. aureus 25923) were chosen from stored (at −80 ◦C) strains. In order to make usage
of lyophilized bacteria, microorganisms were revived on an agar medium in order to
evaluate the viability and pureness of the selected strains. Furthermore, revived axenic
microorganisms were retained on a nutrient agar for use in a bacterial susceptibility test.
The antimicrobial action of virgin HAP and HAP-MnFe2O4 nanocomposites was screened
against abovementioned strains. The bacterial stock cultures were retained on Muller–
Hinton agar (MHA) plates. The loopful of absolutely grown culture from plates was
cultivated into normal saline (5 mL, 85% NaCl), and the count was 1 × 106 CFU/mL. To
establish the antimicrobial potential, pristine HAP and HAP-MnFe2O4 nanocomposite
were diluted serially to obtain four varied concentrations and were then screened. The
experimental concentrations applied herein were 0, 50, 100 and 200 µg/mL. The kinetics
were studied at 37 ◦C with an rpm of 150, maintaining a regular time interval (4 h) based
on an inspection of OD using a spectrophotometer. The alteration in absorbance was
premeditated at 600 nm by a UV-spectrophotometer. The aforementioned pathogenic strains
were grown with specific quantity (two-fold dilution) of the selected nanocomposites in
order to verify the minimum inhibitory concentration (MIC).

3. Results

The crystalline configuration of synthesized pure and nanocomposites was categorized
by XRD. The XRD spectra of pure HAP and HAP-MnFe2O4 composite are shown in
Figure 1. For the pure HAP, all diffraction peaks confirm the formation of polycrystalline
HAP (JCPDS no. 09-0432) [23]. No impurity peaks, calcium hydroxide or phosphate were
observed in the HAP spectrum (Figure 1a). For the composite sample, the diffraction
peaks of MnFe2O4 were observed along with HAP peaks. The diffraction peak can be
indexed to the cubic structure of manganese ferrite (JCPDS no. 88-1965) (Figure 1b) [24].
The results suggest the coexistence of HAP and MnFe2O4; no impurities are found in the
nanocomposite spectrum.

Figure 2 shows FESEM micrographs of HAP and the HAP-MnFe2O4 composite with
different magnifications. From Figure 2a,b, it can be perceived that HAP nanoparticles are
round shaped, having a typical diameter of around 500 nm, whereas the composite sample
shows emblematic a rice-shape nanostructure along with the round nanoparticles. The
rice-shape structure is probably MnFe2O4, having a diameter of about 200 nm (Figure 2c,d).
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The chemical configuration of the samples was further identified by EDX analysis
(Figure 3). The EDX result shown in Figure 3a clearly identifies the peaks of Ca, P and O,
which confirms the presence of hydroxyapatite, while the composite sample shows the
presence of Mn and Fe in addition to Ca, P and O (Figure 3b).
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Figure 3. EDX spectra of (a) HAP and (b) HAP-MnFe2O4 nanocomposite.

Figure 4 demonstrated the TEM and high-resolution TEM images of HAP-MnFe2O4.
It can be seen from the micrographs that the composite has spherical HAP nanoparticles
with MnFe2O4 rice-shaped nanostructures (Figure 4a). The HAP particles have diameters
of around 500 nm and ~200 nm for MnFe2O4, which are consistent with the SEM results.
Figure 4b revealed an HR-TEM image having d-spacings of 0.23 and 0.27 nm, which corre-
sponded to the (222) and (112) plane of MnFe2O4 and HAP, respectively, thus confirming
the formation of a heterostructure. The selected area electron diffraction (SAED) pattern
(inset Figure 4b) showed the multicrystalline phase of the HAP-MnFe2O4 composite.
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Figure 5 demonstrates the FTIR spectra of virgin HAP and MnFe2O4-HAP composite.
For unalloyed HAP, the main peaks at 564 show the characteristic PO4

3− vibrations due to
O–P–O winding mode, and the crowning at 1025 cm−1 could be allocated to anti-symmetric
stretching vibrations of the phosphate group [25,26]. Furthermore, the weak peaks at
about 1441 cm−1 were allotted to absorption bands of CO3

2−, representing carbonate ions’
formation due to reaction atmosphere (Figure 5a). The broad peak at 3000−3500 cm−1

in both spectra endorsed to the stretching vibration of O−H of substantially adsorbed
water [27,28]. Figure 4b shows the absorption ensembles at 548 cm−1 assigned to the
stretching vibration of manganese–oxygen (Mn-O) links, which were produced by MnFe2O4
in an octahedral shape [29] and a band at 450 cm−1 matching the vibration of metal–oxygen
(Mn-O and Fe-O) bonds at octahedral loci from MnFe2O4 [30]. The results further confirmed
the formation of MnFe2O4 along with HAP in the composite (Figure 5b).

Figure 6 shows the UV-DRS spectra of pure HAP and HAP-MnFe2O4 composites. The
reflectance edge of HAP is around 200 nm, which is in the ultraviolet range. After the
addition of MnFe2O4, the reflectance edge of the composites shifts to a higher wavelength
in the visible region (Figure 6A). The band gaps of HAP and HAP-MnFe2O4 are found to
be 2.95 eV and 6.02 eV, as shown in Figure 6B. The narrow band gap of the composites
can significantly utilize more visible light, which can be advantageous for improving the
photocatalytic activity.
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Figure 6. (A) UV–Vis diffuse reflection spectra and (B) plot of the transformed Kubelka–Munk
function versus the gap energy of sample (a) HAP and (b) HAP−MnFe2O4 nanocomposite.

Photoluminescence (PL) spectra of synthesized pure HAP and HAP−MnFe2O4 com-
posite were applied to examine the separation of charge carriers (Figure 7). Both the samples
exhibited an emission peak at around 400 nm. In comparison to HAP, the HAP-MnFe2O4
exhibits a substantial decrease in intensity of PL, which signifies an effective charge transfer
inside the HAP-MnFe2O4 composite and a decrease in electron−hole pair recombination.
In response, this will assist in the efficient transfer of electrons and holes at the surface of
the heterostructure, eventuating an increase in photo-degradation efficiency.

The photodegradation efficiency of synthesized HAP and HAP−MnFe2O4 compos-
ites were assessed by MB dye degradation using visible light. The composite sample
displayed much better photodegradation efficiency compared to pristine HAP (Figure 8A).
HAP-MnFe2O4 composites showed about 88% dye removal after 150 min of light expo-
sure. Earlier studies have also reported the photocatalytic degradation of industrial dyes
such as crystal violet (77%) and Congo red (87%) by HAP obtained from recycled fish
bones [12]. In an investigation, a nickel/hydroxyapatite/cobalt ferrite composite was used
as a heterogeneous catalyst for the degradation of MB and methyl orange. Interestingly,
the catalyst displayed a degradation of ~90% (MO) and 99.1% (MB) in the existence of
hydrogen peroxide [31]. Furthermore, in another study, HAP spheres were analyzed
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for the degradation of MB under UV irradiation and ~75% degradation efficacy on MB
was observed [4].
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(b) HAP-MnFe2O4. (B) Photodegradation efficiency of MB over HAP−MnFe2O4 in different recycles.
(C) Trapping experiments of active species in the photocatalytic reaction.

The high efficiency of the composite sample can be ascribed to the formation of the
heterostructure between HAP and MnFe2O4. The recyclability of composite was also
investigated for MB degradation (Figure 8B). After reusing it for five cycles, the composite
showed a slight decrease in the photodegradation efficiency of MB, and it remained around
83%, which suggests excellent stability of the composite material.

To understand the reaction mechanism, trapping experiments were performed in a
similar procedure except that different radical scavengers (1 mmol) were added into the
photocatalytic reaction solution under visible light irradiation for 150 min, as shown in
Figure 8C. To identify major reactive species formed in the present system, trapping experi-
ments were performed with ammonium oxalate (AO), isopropanol (IPA) and benzoquinone
(BQ) as scavengers to quench h+, •OH and •O−2 , respectively. As shown in the figure,
the removal rate of MB was 26.4% and 24.6% in the presence of IPA and OA, respectively,
whereas the removal rate was only 79% in the presence of BQ. Therefore, it was found that
h+ and •OH are the main active species for the HAP-MnFe2O4 nanocomposite. Electron
and hole pairs are produced when visible light is irradiated on MnFe2O4; the generated
electrons are then transferred to the surface of HAP nanoparticles. It reacts with adsorbed
oxygen molecules to produce active oxygen species O−2 •; it again combines with H+ ions
to produce HO2

•, which ultimately combines with trapped electrons to produce OH• [32].
An excess of holes remains in MnFe2O4 surfaces, reacting with H2O or OH− to produce
active species such as OH•. These active radicals (O−2 • and OH•) and holes can be utilized
for the decomposition process of MB dye as follows:

hν (Visible) + MnFe2O4 → h+ + e− (1)

(HAP) e− + O2 → O−2 • (2)
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h+ + H2O→ H+ + OH• (3)

h+ + O−2 •+ OH• + MB Dye → Degraded product (4)

The virgin HAP and HAP-MnFe2O4 nanocomposites were also evaluated for their
consumption of varying amounts of S. aureus and E. coli, applying our earlier established
assay [33,34]. The synthesized nanocomposites demonstrated estimable antimicrobial
activity against both Gram-negative E. coli and Gram-positive S. aureus, with MICs of
50 µg/mL. The outcomes are revealed in Figure 9. On the other hand, comparatively mild
antibacterial action was observed with HAP at the identical concentration. Evidently, an
insignificant bacteriostatic effect was observed at a low concentration with HAP against
E. coli, but better performance was observed with nanocomposites against S. aureus. The
enhanced activity of the HAP-MnFe2O4 nanocomposite was credited with morphological
features with enlarged surfaces [35] as well as a synergism [36] between HAP and MnFe2O4.
The hypothesis could be that, at first, HAP and HAP-MnFe2O4 nanocomposite probably
interacted with the bacterial wall and membrane, later on dispersing to the interior of the
cell, instigating leakage by distracting the cell’s contents.
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Figure 9. Bar graphics of (a) E. coli culture augmented with different quantities of HAP and HAP-
MnFe2O4 nanocomposite (optimal expansion signifies E. coli and S. aureus in culture broth without
HAP and HAP-MnFe2O4). Substantial difference (* p ≤ 0.05) was perceived in bacterial growth
inhibition among control group and treatments at all concentrations. Significant difference in bac-
teriostatic impact with HAP and HAP-MnFe2O4 at higher amount was visualized. * p ≤ 0.05,
*** p ≤ 0.001 significantly dissimilar from untreated control.

A number of earlier investigations have already reported that nanocomposites can
attach to the outer membrane of bacteria through electrostatic contact and cause disturbance
of membrane, suppress periplasmic enzymes, and rupture bacteria, eventually restricting
protein synthesis [37]. Generally, the antimicrobial action of HAP is interrelated with the
discharge of OH− ions in an aqueous medium. Hydroxyl ions are extremely oxidant-free
radicals that express high reactivity with a number of biomolecules. The reactivity is
extraordinary and unselective; therefore, these free radicals hardly disperse from spots
of creation. Convincingly, their deadly impact on bacterial cells is perhaps owed to these
mechanisms, for instance impairment of the bacterial cytoplasmic membrane, protein
disintegration and destruction to DNA [37], as aforementioned. Furthermore, the electron
transfer taking place on a facet of HAP-MnFe2O4 can produce free oxidative radicals, which
are lethal to bacteria [36] (Scheme 1).

The superior effectiveness of HAP-MnFe2O4 nanocomposites towards S. aureus is
accredited to the dissimilarity in the cell structures of two strains [35,38]. The conformation
and arrangement of the cell is the principally accountable factor for variances in their sensi-
tivity. Conclusively, the aforementioned mechanisms of HAP nanoparticles in influence
with MnFe2O4 nano rice displayed promising antibacterial results in this work.
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4. Conclusions

In this paper, HAP and HAP-MnFe2O4 nanocomposite photocatalysts were primed
on the basis of the hydrothermal approach. The characteristic results of XRD, FESEM,
TEM and FTIR indicated that the composite was successfully fabricated. The photodegra-
dation experiments of MB revealed high efficiency of the composite photocatalyst. In
addition, the prepared photocatalysts displayed good recyclability and stability under
visible light irradiation. The enriched photocatalytic and bactericidal activity of HAP-
MnFe2O4 nanocomposites was predominantly credited to synergetic effects between HAP
and MnFe2O4.

Conclusively, the outcomes of this study delivered herein not only suggest an ex-
tremely competent and unwavering photocatalytic material for the purification of wastew-
aters from chemical and biological pollutants but also shed light on the recycling of waste
materials (unwanted bones) in Najran city in particular and worldwide in general.

Our study specifically offers the possibility for further investigations on comparable
heterostructure materials by recycling wastes and for environmental remediation.

More to the point, the efficacy of photocatalysts can be enhanced by diverse approaches
such as modification in synthesis methods as well as mutable morphologies and by doping
of the various natural/organic compounds with suitable metals, metal oxides, etc.

In the present investigation, visible light photocatalysis was used for wastewater
treatment. This incredible approach was also found useful for the destruction of pathogenic
microorganisms such as bacteria. Therefore, this procedure may result in the mineralization
of hazardous biological and chemical pollutants. The antibacterial and photocatalytic
removal mechanism of MB over HAP-MnFe2O4 nanocomposites is exemplified in detail.

This study suggests as high as 88% visible light photocatalytic activity and thus that
this material can be reserved as a promising water purifying material. However, before
using this material (HAP-MnFe2O4 nanocomposites) commercially, the biocompatibility
with aquatic fauna and flora as well as with human cells should be tested.

Nonetheless, the application of visible light photocatalysis has good potential for
improving water quality and henceforth global water scarceness. However, to meet prac-
tical challenges for industrial applications, more studies need to be conducted on the
photoreactor’s design, capacity, competence, reliability and ease of use.
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