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Abstract: Metadynamics is a popular enhanced sampling method based on the recurrent application
of a history-dependent adaptive bias potential that is a function of a selected number of appropriately
chosen collective variables. In this work, using metadynamics simulations, we performed a com-
putational study for the diffusion of vacancies on three different Al surfaces [reconstructed Al(100),
Al(110), and Al(111) surfaces]. We explored the free energy landscape of diffusion and estimated the
barriers associated with this process on each surface. It is found that the surfaces are unique regarding
vacancy diffusion. More specically, the reconstructed Al(110) surface presents four metastable states
on the free energy surface having sizable and connected passage-ways with an energy barrier of
height 0.55 eV. On the other hand, the reconstructed Al(100)/Al(111) surfaces exhibit two/three
metastable states, respectively, with an energy barrier of height 0.33 eV. The findings in this study can
help to understand surface vacancy diffusion in technologically relevant Al surfaces.

Keywords: metadynamics; diffusion

1. Introduction

Molecular dynamics (MD) simulations have been shown to be an indispensable toolkit
for efficient exploration of the configurational space of complex systems, since they ren-
der dynamical evolution with in-depth atomistic level details. Notwithstanding recent
advancements in purpose-built computational resources and software tools, the timescales
of milliseconds and beyond remains a longstanding (inherent) problem for MD simula-
tions [1,2]. Consequentially, the possibility of understanding longtime scale phenomena
like “rare events” (more specifically, an event happening at low frequency such as protein
folding and nucleation) is still beyond the reach of MD simulations. To overcome this
limitation, significant effort has been devoted to developing a great variety of enhanced
sampling methods [3–17]. Metadynamics (MetaD) [18–28] is one such well-established
enhanced sampling method which has been successfully applied to a variety of areas
in biophysics and material science, to list a few. The power of MetaD simulation is its
simplicity: it captures rare events and maps out the underlying free energy surface. MetaD
utilizes the recurrent application of a history dependent adaptive bias potential (that helps
to locate regions in the configurational space separated by high energy barriers and en-
hance minima-to-minima transitions) to a limited number of degrees of freedom called
collective variables (CVs) [29–33]. Over the last few years, a multitude of CVs have been
employed including coordination numbers, lattice parameters, interatomic angles, and
potential energy, to mention a few. More specifically, CVs provide a low-dimensional
projection of the configurational space and are selected to describe modes of the system
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that are more difficult to explore. Also, note that the different metastable states of a system
should correspond to different values of the CVs.

In this work, we employ MetaD simulations to study the free energy surfaces and free
energy barriers of low-index Al(100), Al(110), and Al(111) systems having a surface vacancy.
Al is of particular interest recently due to its exceptional properties [34–39]. On the other
hand, defects like vacancy are omnipresent on crystals and play an important role in their
properties [40–44]. Substantial experimental and theoretical efforts have been employed
over many years to elucidate the free energy surfaces and free energy barriers of diffusion
on crystal surfaces [45–48]. How diffusion happens on the atomic scale on a crystal surface
is a fundamental problem, and a detailed knowledge of the diffusion process is crucial
for applications that demand high technological precision [49–51]. Importantly, vacancy
diffusion is a thermally activated process demanding the system to overcome free energy
barriers. Generally, free energy barriers are higher than thermal energy, and therefore, the
diffusion process is regarded as a rare event.

A detailed understanding of free energy surfaces and free energy barriers are essential
cornerstones for the design and fabrication of nanodevices with enhanced performance.
While experiments face challenges in identifying and characterizing diffusion processes,
simulation approaches can predict them accurately. To our knowledge, vacancy diffusion
on reconstructed Al surfaces has not been investigated yet by MetaD simulations. Our
paper aims at filling this gap. The remainder of this paper is organized as follows. In
the following section, we provide the details of the computational methodology we used.
Next, we discuss the important results from our simulations, such as the radial distribution
functions, mass density profiles, two-dimensional free energy surfaces, and free energy
barriers on the reconstructed Al(100), Al(110), and Al(111) surfaces. As a key result in
this study, the highest barrier for vacancy diffusion is found in the case of Al(110) surface
due to its more open nature. The results obtained in this work would help in a better
understanding of the modulations in the vacancy diffusion process on different low-index
Al surfaces, beneficial for Al based technology.

2. System and Computational Aspects

MetaD simulations were carried out using a standard protocol by the PLUMED
software version 2.1 [52] interfaced to the QuantumWise Atomistix ToolKit (QuantumATK)
software package [53]. This plugin provides customized software libraries for a variety of
CVs and also renders several post-processing tools. Our MetaD simulations involve several
steps: (a) modeling of Al(100), Al(110), Al(111) surfaces and definition of Al-Al atomic
interaction; (b) governing equations for the system, conditions of simulation and energy
minimization; and (c) integration scheme and calculation of concerned properties. Now,
regarding the systems under investigation, we created low-index Al(100), Al(110), Al(111)
slabs with 4× 4 surface lattice from the bulk Al. Each of these slabs is composed of six layers
with a total number of 96 atoms. Nevertheless, the slab thickness is different from each other.
The Al-Al atomic interactions were described using the EAM (embedded atom method)
potential [54]. Briefly, the EAM potential can be written as: Etot =

1
2 ∑i 6=j V

(
rij
)
+ ∑i F(ρi)

with ρi = ∑j φ
(
rij
)

where Etot is the total energy, V
(
rij
)

the pair potential, F(ρi) the
embedding function, and φ

(
rij
)

the electron density contribution from atom j to atom i.
The total electron density ρi at an atom position i is calculated via the linear superposition
of electron density contributions from neighboring atoms. For each MetaD simulation run,
a single Al surface vacancy was generated by removing the atom of the topmost layer with
position x = 0 and y = 0. In the next step, we performed structure optimization. In all slabs,
we allowed the atoms occupying two top most layers to relax, while the atomic positions of
those atoms occupying the four bottom layers were kept fixed to mimic bulk constraints;
see Figure 1. To avoid the spurious interaction between the slab and its periodic images, a
vacuum distance of 15 Å used along the perpendicular direction to the slab.
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Figure 1. Reconstructed Al(100), Al(110), Al(111) slabs having a surface vacancy. Note that the atoms
in the two top most layers were allowed to relax while the atoms occupying the four bottom layers
were fixed.

Each simulation run was force-minimized and then equilibrated for 10,000,000 timesteps
using Langevin method [55,56]. Since the starting Al(100), Al(110), and Al(111) slab struc-
tures will relax because of the vacancy creation, MetaD was started only after 10,000 time
steps, which was sufficient for relaxation. We have chosen two CVs defined by distance
traveled by the atom p (an atom on the surface just next to the vacancy) along the Cartesian
axes, x and y (with no bias in the direction or pathway of migration). Minima-to-minima
transitions were made possible within the simulation timescale via a history-dependent
bias potential [52] (applied to all atoms in the two top most layers) constructed by summing
Gaussian contributions of height h and width w in the space defined by the CV as follows:

∆V(η) = ∑
k<nG

wk exp
[
(η − η(kτG))

2δ2

]
(1)

where ∆V(η) is the history-dependent bias potential, η is the CV used, τ is the Gaussian
deposition stride, w and δ are the Gaussian height and width, respectively. The ∆V(η) is
updated, and while the simulation runs, it fills the underlying free energy surface helping
the crossing of the energy barriers. We remark that several test runs were first performed to
optimize the various simulation parameters such as the height and width of the Gaussians.
We choose w = 0.05 eV and δ = 0.025 eV considering the accuracy and CPU time. Gaussians
were deposited every 1000 time-steps. It should be stressed that ∆V(η) bias encourages the
sampling of the unfavorable states by kicking the system out of the most favorable ones.
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3. Results and Discussion

Before we begin our analysis and discussion on the free energy surfaces and free
energy barriers of low-index Al(100), Al(110), Al(111) surfaces, it is informative to provide
first the results of the structure optimizations, see Figure 1. In this context, we provide the
radial distribution functions (RDFs) and mass density profiles of the reconstructed Al(100),
Al(110), Al(111) surfaces, see Figure 2. We have calculated the RDFs (see the left panel of
Figure 2) using the equation g(r) = 1

4πr2
1

Nρ ∑N
i=1 ∑N

j 6=i
〈
δ
(
r−

∣∣ri − rj
∣∣)〉. As common to all

the investigated systems, the RDFs show a pronounced peak at around 2.875 Å, indicating
that this is the dominant nearest-neighbor distance between Al atoms. This value is very
close to the nearest-neighbor distance between Al atoms in crystalline Al (2.856 Å) at
room temperature [57]. Next, we analyse the mass density profiles, see the right panel of
Figure 2. It shows how mass is distributed along the perpendicular direction to the slab.
One easily concludes that mass density profiles are markedly different from each other due
to the unique distributions of Al atoms in the Al(100), Al(110), and Al(111) configurations.
Additionally, small modulations to the mass density profiles are also contributed by atom
displacements during structure optimization. It is noteworthy that Al(100), Al(110), and
Al(111) mass density profiles plummeted to zero at around 15.10 Å, 11.50 Å, and 17.20 Å,
respectively. This result is in agreement with the fact that Al(110) slab is more compact
and open in comparison to the Al(100) and Al(111) slabs, see Figure 1. It is also important
to emphasize that an inward relaxation of the top layer is observed in all reconstructed
structures, see Figure 1. This arises due to the surface asymmetry, where the force of
attraction will be greater for bulk atoms causing a significant inward relaxation of the top
surface layer [58].

After having analysed and discussed the structural features of the reconstructed
Al(100), Al(110), Al(111) slabs having a surface vacancy, next we investigate the free energy
surfaces [F(s)] as a function of the CV1 and CV2, see the left panel in Figure 3. The
plots show a heat map of F(s) as a function of the chosen CVs. It is noteworthy that F(s)
corresponding to Al(100), Al(110) and Al(111) structures yield unique and interesting
features as being composed of different metastable states. More specifically, in the case of
Al(100) slab, one finds four basins or metastable states on the free energy surface (see the
top left panel in Figure 3), corresponding to the diffusion of the vacancy from one site to
the neighboring one. Interestingly, one observes that the three metastable states are well
connected by sizable passageways. It is important to mention that metastable states that
are connected by passageways allow rare but crucial transitions from one state to another.
Additionally, it is noteworthy that with chosen CV1 and CV2, the F(s) clearly separate
the metastable states. In the case of Al(100) structure, one finds that CV1 can distinguish
the four different metastable states, while CV2 is not. Technically speaking, metastability
originates when the probability distribution as a function of the atomic coordinates has at
least two peaks separated by a region in which the probability is many orders of magnitude
lower. The metastable states displayed in Figure 3 are akin to an archetypal example in
which a molecule that can undergo a chemical reaction [59]. In the case of A(110) and Al(111)
slabs, one finds two and three metastable states on the free energy surface, respectively.
More specifically, in the case of Al(110) slab, the two metastable states are connected by
a narrow passageway and CV1 is crucial than CV2 since the former clearly separates the
two available metastable states. The free energy surface of Al(111) is more interesting. One
finds that metastable states are positioned more or less on the corners of a triangle with no
passageway on one side. On the other hand, CV1 again appears to be the best performing
CV, nonetheless, CV2 can also be helpful in identifying at least two metastable states on the
free energy surface.
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Figure 2. RDFs (left panel) and mass density profiles (right panel) of the reconstructed Al(100),
Al(110), Al(111) slabs having a surface vacancy.
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Figure 3. Plots showing the free energy surfaces as a function of the chosen CVs (left panel) and
evolution of the CVs over the simulation time in nanoseconds (right panel) of the reconstructed
Al(100), Al(110), and Al(111) slabs having a surface atomic vacancy. All energy values are in eV and
all distance values are in Å.

It is also interesting to analyse how the collective variables, CV1 and CV2 evolve
over simulation time, see the right panel of Figure 3. More specifically, in the case of
Al(100) slab, one finds that CV2, which corresponds to the y Cartesian coordinate, oscillates
around a constant value of 0 Å. This is because all the three (connected) metastable states
appear at the same y value. The first, second, and third metastable states are filled until
at approximately 5.20 ns, 9.50 ns, and 10.10 ns, respectively. In contrast, the evolution of
CV1, which corresponds to the x Cartesian coordinate, suggests that it is filled until at
approximately 5.20 ns. Now let us move onto Al(110) slab. One finds that CV2, which
corresponds to the y Cartesian coordinate, oscillates around a constant value of 0 Å, because
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both the metastable states occur at the same y position. One finds that both CV1 and CV2 are
filled at approximately 3.20 ns. Finally, in the case of Al(111), CV2 is filled at approximately
2.30 ns and 6.80 ns. However, in the case of CV1, it is filled at approximately 2.30 ns. Then it
goes to the second metastable state oscillating around 0 Å and jump to the third metastable
state oscillating around 1.50 Å.

Having analysed and discussed the free energy surfaces and evolution of CVs over
simulation time in detail, it is worthwhile to estimate the free energy barrier for surface
vacancy diffusion at low-index Al(100), Al(110), Al(111) surfaces, see Figure 4. One finds
that the free energy barrier of Al(100) and Al(111) slabs amount to 0.33 eV (thus energetically
very similar), while the free energy barrier of Al(110) amounts to a higher value of 0.55 eV.
These results are in relatively good agreement with the previous work reporting vacancy
diffusion on the different Al surfaces [28]. Vacancy diffusion at the Al(110) surface has twice
the barrier as Al(100) and Al(111) surfaces is highly likely due to the open nature of the
Al(110) surface. As expected, on an open surface, vacancy diffusion finds it more difficult
since it has to overcome large energy barriers. These results are in tune with the previous
MetaD study (Cu surfaces) finding that there are strong differences in the mobilities of the
vacancies depending on the specific surface [60]. Finally, it is worthwhile to mention that
ref. [28] reported two energy barriers for adatom diffusion on Al(110) surface; one parallel
to the surface and other perpendicular to the surface. Nevertheless, in the present study,
we found a single energy barrier for vacancy diffusion on Al(110) surface. This is due to
differences in the diffusion process.

Al(100)

Al(110)

Al(111)

0
.3

3
 e

V

0
.5

5
 e

V

0
.3

3
 e

V

Figure 4. The free energy barriers on the reconstructed Al(100), Al(110), and Al(111) slabs having a
surface vacancy. All energy values are in eV and all distance values are in Å.
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4. Summary and Outlook

Exploring and quantifying free energy surfaces (FESs) is the key to the comprehension
of a plethora of phenomena in chemistry, materials science, and biophysics. Generally,
FESs are characterized by several metastable states separated by large free energy barriers.
To overcome these barriers and efficiently sample configurational space, it is worthwhile
to employ enhanced sampling techniques such as MetaD simulations. Here, we have
presented a detailed study elucidating the free energy surfaces and free energy barriers
for surface vacancy diffusion on low-index Al surfaces using MetaD simulations. With
the use of these exemplary reconstructed surfaces, we reveal the unique vacancy diffusion
process. The reconstructed Al(110) surface presents four metastable states on the FES.
Among them, three metastable states are well connected by sizable passageways leading to
rare but crucial transitions. On the other hand, the reconstructed Al(110) structure presents
two metastable states that are connected by a narrow passageway and the reconstructed
Al(111) surface presents three metastable states that are positioned on the three corners
of a triangle. The results in this study will help to understand Al surfaces with vacancy
defects which are necessary to design highly efficient Al based devices. While here we have
restricted our work to Al vacancy diffusion, this work can be considered as a step toward
the general structural and dynamical characterization of other types of defects.
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Nomenclature

Å Angstrom
CV Collective variable
EAM Embedded atom method
F(s) Free energy surface
MetaD Metadynamic
ns Nanosecond
RDF Radial distribution function
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