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Abstract: Polycyclic aromatic hydrocarbons (PAHs) in tobacco tar are regarded as a significant threat
to human health. PAHs are formed due to the incomplete combustion of organics in tobacco and
cigarette paper. Herein, for the first time, we extended the application of CsPbBr3 quantum dots
(CsPbBr3) to the photocatalytic degradation of tobacco tar, which was collected from used cigarette
filters. To optimize the photoactivity, CsPbBr3 was coupled with Bi2WO6 for the construction of
a type-II photocatalyst. The photocatalytic performance of the CsPbBr3/Bi2WO6 composite was
evaluated by the degradation rate of PAHs from tobacco tar under simulated solar irradiation. The
results revealed that CsPbBr3/Bi2WO6 possesses a large specific surface area, outstanding absorption
ability, good light absorption and rapid charge separation. As a result, in addition to good stability,
the composite photocatalyst performed remarkably well in degrading PAHs (over 96% were removed
in 50 mins of irradiation by AM 1.5 G). This study sheds light on promising novel applications of
halide perovskite.

Keywords: nanocomposites; photocatalytic degradation; perovskite; tobacco tar

1. Introduction

The development of economies can create problems such as energy shortages and
environmental pollution, which are regarded as critical challenges to global sustainable
development. In recent years, industrial and environmental pollution caused by organic
pollutants has attracted considerable public attention [1,2]. In terms of human health, the
main concerns include benzene compounds [3], formaldehyde [4], bacterial infections [5],
and tobacco tar [6]. In particular, it is well known that tobacco tar is formed due to
the incomplete combustion of organics in tobacco and cigarette paper. The substrates of
tobacco are very complicated, and among these organic substrates, polycyclic aromatic
hydrocarbons (PAHs) are considered as the major pollutants. This can be attributed to
their bio-accumulative, toxic, carcinogenic, and recalcitrant features [7]. Thus, minimizing
the toxicity of tobacco tar is desirable for human health and the environment. However,
until now, not much research has been carried out on the degradation of tobacco tar
via photocatalysis.

Among the techniques used for organic pollutant degradation, photocatalytic oxidation
uses low-cost semiconductive materials and is considered as an environmentally-friendly
path for the purification or transformation of organic pollutants [8–11]. Semiconductor-
based photocatalytic reactions have already attracted extensive attention because they are
a simple and environmentally friendly way to utilize solar energy. Therefore, numerous
types of photocatalysts have been extensively investigated, such as TiO2, ZnO, SnO2, SrTiO3,
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LaFeO3, BaTiO3, and so on [12–17]. However, these semiconductors still have some common
shortcomings, such as a narrow light absorption range and a high recombination ratio of
photogenerated charges [18]. In this case, there is an urgent need to develop visible-light
driven and highly active photocatalysts.

Bi2WO6 is currently regarded as a promising photocatalyst for its outstanding photo-
redox ability, nontoxicity, and thermal and chemical stability [19]. Its potential applications
include solar cells, photoelectrodes and photocatalysis [20–22]. However, the rapid recom-
bination of exitonic pairs, ineffective charge separation and unsatisfactory visible-light
absorption have limited the photocatalytic performance of pure Bi2WO6 [23]. Hence, dif-
ferent strategies have been applied to improve the photocatalytic properties of Bi2WO6,
such as coupling with other semiconductors, morphological control, ion doping and sur-
face modification [24–28]. One of the most accessible approaches is the deposition of
quantum dots (QDs) onto the semiconductor surface, which is beneficial due to their note-
worthy properties, including high charge separation efficiency and quantum confinement
effects [29,30]. Thus, modification with QDs is regarded as an effective method to improve
the photocatalytic performance of semiconductor materials.

Among the various QDs materials, CsPbBr3 QDs have received increasing inter-
est due to their high luminescent quantum yields [31] in solid states in the green range
(band gap energy = 2.4 eV) and superior environmental stability in comparison to other
perovskites with organic cations [32]. Perovskite materials possess unique advantages
in regard to effective charge separation and electron hole diffusion, which makes them
suitable not only for the photovoltaic field, but also for several photocatalytic reaction
types [33,34]. In addition, CsPbBr3 is very attractive due to its high thermal-stability and
photo-resistance [35]. Considering these advantages, CsPbBr3 was used to decorate Bi2WO6
via a hydrothermal method in this work and the photoactivity was evaluated through
the photocatalytic degradation of PAHs in tobacco tar under simulated solar light. Addi-
tionally, the CsPbBr3/Bi2WO6 heterogeneous photocatalyst exhibited increased specific
surface area and improved light absorption in the visible range, which effectively pro-
moted the photocatalytic activity [36]. Compared with pure Bi2WO6, the CsPbBr3/Bi2WO6
composites exhibit superior photocatalytic activity and stability. This work presents a
promising strategy for designing a more efficient composite photocatalyst-based semicon-
ductor photocatalyst for application to pollutant purification. In addition, to the best of our
knowledge, this work is the first to utilize perovskite for the degradation of PAHs.

2. Experimental Section
2.1. Reagents and Materials

Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O, 99%), ethanol (CH3CH2OH, 99.7%),
nitric acid (HNO3, 68%), sodium tungstate dehydrates (Na2WO4·2H2O, 99.5%) were
purchased from Aladdin Industrial Co, Ltd. (Shanghai, China) and CsPbBr3 perovskite QDs
was purchased from Nanjing MKNANO, China and used as received. The used cigarette
filters were collected randomly. The deionized water used throughout all experiments was
purified through a Millipore system (Millipore, Billerica, MA, USA).

2.2. Synthesis of CsPbBr3/Bi2WO6

Pure Bi2WO6 was synthesized via a hydrothermal method. First, Bi(NO3)3·5H2O
(1 mmol) was dissolved in an aqueous solvent mixture of 30 mL HNO3 (pH = 3) and 20 mL
Na2WO4·2H2O (0.5 mmol). The mixed solution was then vigorously stirred until clear,
under room temperature. The solution was subsequently heat-treated in a muffle furnace
at 120 ◦C for 2 h. The resultant precipitate was dried to obtain the pure Bi2WO6 photo-
catalyst (light-yellow powder). Subsequently, 1 mL of CsPbBr3 suspension (10 mg/mL,
purchased from Nanjing MKNANO, Nanjing, China) was ultrasonicated for 30 min to
generate CsPbBr3 QDs dispersion. Then, a certain amount of Bi2WO6 was added into
the above CsPbBr3 suspension and stirred for 20 h. For example, to prepared 10 wt%
CsPbBr3/Bi2WO6, 90 mg of Bi2WO6 was added to the 1 mL suspension. Subsequently, the
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mixture was evaporated at 40 ◦C for 10 h and the composite photocatalyst was obtained
after drying.

2.3. Photocatalytic Experiments

The tobacco tar was obtained by immersing 10 randomly collected used cigarette
filters in 50 mL trifluorotoluene, followed by 10 min ultra-sonification to give a brown-
yellow tobacco tar solution. The cigarette filters were then removed from the solution.
The concentrations of the substrates in the tobacco tar solution were confirmed using gas
chromatography (GC). The as-prepared photocatalyst was uniformly dispersed in 2 mL of
tobacco tar solution with 20 min ultrasonic treatment. Then, the samples were illuminated
by Xe lamp with an AM 1.5 G filter as the simulated solar source. The photoactivity was
confirmed by monitoring the concentrations of PAHs under different illumination time.

2.4. Characterization

The crystal structure of the samples was studied by X-ray diffractometry (XRD;
Bruker-AXS D8 Advance, Karlsruhe, Germany). Field emission scanning electron mi-
croscopy (SEM) (Hitachi S-4800, Tokyo, Japan) and transmission electron microscopy
(TEM) (JEOL JEM-2100, Tokyo, Japan) were performed for the morphological and mi-
crostructural analyses, respectively, of the samples. The UV-vis absorption spectroscopy of
the samples was performed by a UV-vis near-infrared spectrophotometer (Agilent Cary
5000, Palo Alto, CA, USA). The XPS energy spectrum was determined by an X-ray pho-
toelectron spectrometer (Thermo Fisher/Escalab 250Xi, Waltham, MA, USA). Measuring
the surface area and pore size distribution of samples was performed using a specific
surface and porosity analyzer (Micromeritics ASAP2460, Atlanta, GA, USA). TGA analysis
was done by using the Mettler Toledo TGA/DSC 3+ instrument (Zurich, Switzerland).
Total organic carbon (TOC) content in solvent was assessed by a TOC analyzer (Shi-
madzu, TOC-L-VCPN, Tokyo, Japan). The photocatalytic result was characterized by single
quadrupole gas chromatography-mass spectrometry (Thermo Fisher/Trace1300 ISQ QD,
Waltham, MA, USA).

3. Results and Discussion
3.1. Properties of the Composite Photocatalysts

Powder X-ray diffraction (PXRD) (Figure 1a) was initially exploited to evaluate the phase
and crystallinity of the as-prepared CsPbBr3 QDs-decorated Bi2WO6 (CsPbBr3/Bi2WO6). A p-
FTO glass slide was used as a substrate to support the samples for characterization. The main
peaks at 2θ of 28.3◦, 32.8◦, 47.0◦, 55.8◦ and 58.5◦ can be indexed to an orthorhombic Bi2WO6
(JCPDS#39-0256), and corresponded to the indices of (131), (200), (260), (331) and (262) planes,
respectively. On the other hand, the diffraction patterns of cubic CsPbBr3 corresponded
to JCPDS#54-0752 and a previous report [32,37]. The transmission electron microscopy
(TEM, Figure 1b) revealed that the CsPbBr3 QDs of a few nanometers were dispersed
on Bi2WO6 with a quasi-rectangle morphology. The two materials were subsequently
confirmed by high-resolution transmission electron microscopy (HR-TEM), which showed
the lattice spacing of CsPbBr3 ([220] = 0.20 nm) and Bi2WO6 ([200] = 0.28) (Figure 1d),
which can be compared to the diffraction results from PXRD. In addition, as illustrated
in Figure 1c, the connected boundary presented as a semi-coherent interface involving
several unit cells. The lattice mismatch between the crystal planes of these two components
can be defined as ∆d/dBi2WO6 = 28%. Furthermore, as shown in Figure 1c,d, CsPbBr3 and
Bi2WO6 exhibited periodically coincided lattice (7d (CsPbBr3) = 5d (Bi2WO6)), suggesting
that intimate energetic and chemical interactions were formed at the semi-coherent interface
of the two components [38].
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photocatalyst; (c) schematic diagram of semi-coherent interface of the two components; (d) HR-TEM
image of the as-prepared 15 wt% CsPbBr3/Bi2WO6 photocatalyst.

The elemental composition of the as-prepared pure Bi2WO6 and CsPbBr3/Bi2WO6
were confirmed by X-ray photoelectron spectroscopy (XPS), which demonstrated that
the CsPbBr3/Bi2WO6 sample contained no other elements apart from O, Bi, Cs, Pb, Br,
C 1 and W (Figure 2a). The surface atomic content was calculated by the fitting peak
area and sensitivity factor, as shown in Table 1 (the carbon atomic content comes from
the XPS instrument). Besides, the altered chemical state of the coupled materials was
recorded by XPS as well; as shown in Figure 2b–d, the characteristic peaks of W4f5/2
and W4f7/2 in pristine CsPbBr3/Bi2WO6 were located at 37.8 and 35.7 eV (Figure 2b), the
characteristic peaks of Bi4f5/2 and Bi4f7/2 were located at 164.8 and 159.3 eV (Figure 2c),
and the characteristic peaks of O1s were located at 533.3, 532.0 and 530.4 eV (Figure 2d).
In the Bi2WO6 sample, the characteristic peaks of W4f5/2 and W4f7/2 were located at
37.4 and 35.3 eV (Figure 2b), the characteristic peaks of Bi4f5/2 and Bi4f7/2 were located
at 164.4 and 158.9 eV (Figure 2c), and the characteristic peak of O1s was 533.4, 532.1 and
530.2 eV (Figure 2d). This showed that the valence state of Bi, W and O in the composite
sample was +3, +6 and −2, respectively. In comparison to pristine Bi2WO6, the binding
energy of Bi4f, W4f in the CsPbBr3/Bi2WO6 samples shifted ca. 0.7 and 0.4 towards
the higher energy, respectively. This could be attributed to the regional environment
and electron density change of Bi2WO6 and CsPbBr3 in the composites due to strong
heterojunction formation [39]. In detail, the Bi2WO6 displayed increased electron accepting
capacity and decreased electron density. On the other hand, this is accompanied by an
increase in the electron density and an improvement in the electron-donating capacity on
the CsPbBr3 side. Consequently, the internal electric field was established, leading to a
tendency for electron transfer from CsPbBr3 to Bi2WO6, and as a result, a typical type-II
band structure was formed.
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Table 1. Relative atomic content of pure Bi2WO6 and 15 wt% CsPbBr3/Bi2WO6 samples.

Sample Bi4f/% W4f/% O1s/% C1s/% Br3d/% Pb4f/% Cs4d/%

Bi2WO6 1.62 2.53 24.04 71.8 0 0 0
CsPbBr3/Bi2WO6 2.21 2.15 21.7 72.74 0.96 0.09 0.16

In order to explore the electronic features of CsPbBr3/Bi2WO6, Hall effect measure-
ment was employed to monitor the charge carrier density and the Hall mobility. Hall effect
measurement is an important approach for investigating the charge transport mechanisms
in Bi2WO6 with or without the coupling of CsPbBr3 QDs. Here, as shown in Table 2, the
Bi2WO6 sample exhibited lower charge carrier density (2.738 × 1011 cm−3) than that of
CsPbBr3/Bi2WO6 (5.154 × 1014 cm−3). In contrast to the reduced charge density in the
Z-scheme due to the recombination of electrons and holes between the two component ma-
terials, this result was consistent with the type-II feature of the composite materials, which
possessed accumulated charges. Meanwhile, greater mobility was observed from pristine
Bi2WO6 in comparison to that of CsPbBr3/Bi2WO6; this can be attributed to the effective
mass of the carriers. According to the equation: µ = τe

m , the mobility (µ) is proportional to
the elemental charge (e) and carrier mean free time (τ). In contrast, the mobility is inversely
proportional to the effective mass of the carriers (m), and a greater m typically indicates
larger carrier density [40].

Table 2. Hall effect measurement of pure Bi2WO6 and 15 wt% CsPbBr3/Bi2WO6 samples.

Sample Carrier Density
(cm−3)

Hall Mobility
(cm2V−1s−1) p/n Type

Bi2WO6 2.738 × 1011 25.316 n
CsPbBr3/Bi2WO6 5.154 × 1014 4.672 p
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The morphologies of the as-prepared samples were confirmed by scanning electron
microscopy (SEM). The Bi2WO6 displayed particles of a few hundred nanometers with
exposed flat and smooth facets as shown in Figure 3a. In comparison to the pure Bi2WO6,
the as-prepared CsPbBr3/Bi2WO6 composite exhibited a rougher morphology due to the
decoration of CsPbBr3 dots on the facets of Bi2WO6 (Figure 3b). These SEM results were
consistent with the cubic-shaped particles on the micro-square observed by TEM under
low magnification (Figure 1b). The rough morphologies of the composite material lead
to efficient light absorption due to their light trapping effect [41]. Besides, the surface
area could be increased due to the presence of CsPbBr3 quantum dots on Bi2WO6, which
was confirmed by N2 adsorption-desorption isotherms. The samples presented typical
Type-IV adsorption isotherms with a H3 hysteresis loop (Figure S1a), illustrating the
porous nature of the catalysts [42]. Furthermore, the specific surface area of the Bi2WO6
and CsPbBr3/Bi2WO6 were compared and CsPbBr3/Bi2WO6 exhibited a more than 4-fold
larger surface area than that of Bi2WO6. The details of the isotherm studies can be found in
Table 3. The high surface area of CsPbBr3/Bi2WO6 suggested an improvement in the active
sites and adsorption capacity, which allows rapid interaction with the reactants. Next,
the pure Bi2WO6 and CsPbBr3/Bi2WO6 were subjected to thermal gravimetric analysis
(TGA) using -temperatures ranging from room temperature to 600 ◦C with a heat rate
of 5 ◦C/min in fluid He (20 mL/min). As illustrated in Figure S1b, CsPbBr3/Bi2WO6
exhibited improved thermal stability in comparison to the pure Bi2WO6, especially from
250 ◦C to 600 ◦C. This could be attributed to the strong interaction between CsPbBr3
and Bi2WO6.
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Table 3. The specific surface of Bi2WO6 and CsPbBr3/Bi2WO6.

Catalyst BET Surface Area (m2/g) t-Plot External Surface Area (m2/g)

CsPbBr3/Bi2WO6 9.88 9.70
Bi2WO6 5.04 5.34

In Figure 4a, the UV-vis absorption spectra of pure Bi2WO6 and the CsPbBr3/Bi2WO6
composite are illustrated. The pure Bi2WO6 presented an absorption edge at ca. 445 nm,
corresponding to its typical band gap energy of 2.78 eV. After loading with CsPbBr3 QDs,
a dramatically enhanced absorption below ca. 510 nm was observed, which indicated
the optimized light harvesting capacity of the composite photocatalyst [38,43–45]. In
addition, as presented in Figure 4b, a decreased intensity and slightly blue-shift in the
photoluminescence (PL) peak was observed when coupling the CsPbBr3 with Bi2WO6,
which indicated that the recombination rate of electron-hole pairs were suppressed, and
thus they promote the photocatalytic efficiency [46].
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Figure 4. (a) UV-vis absorption spectra and (b) steady-state PL spectra of CsPbBr3 and 15 wt%
CsPbBr3/Bi2WO6.

3.2. Activity for Photodegradation of PAHs from Tobacco Tar

Trifluorotoluene was employed as the solvent to dissolve the tobacco tar due to its
apolar nature, good solubility, and superior chemical stability comparing with toluene.
A list of the main substrates in the tobacco tar solution identified by gas chromatography-
mass spectrometry (GC-MS) is given in Table S1. A Xe lamp (100 mW cm−2) coupled
with AM 1.5 G filters were utilized as the simulated solar source for illumination. GC-
MS and UV-visible absorption spectra (UVAS) were exploited to evaluate the products
and degradation rate of the photocatalysts. A series of tests was carried out under room
temperature, and the photocatalytic reactor was saturated with different matter (air, H2O,
and O2) to investigate the key radicals for promoting the degradation rate. To reach
adsorption equilibrium, the as-prepared photocatalysts were initially mixed with tobacco
tar under stirring (1200 rpm) in the dark for 30 min prior to the photocatalytic reactions.

As reported previously [47,48], the highly reactive hydroxyl radicals (·OH) and su-
peroxide radicals (·O2

−) formed in the photocatalytic process are desirable for degrading
PAHs into less toxic products. Thus, the samples were saturated with air to supply the
source H2O and O2 needed to accelerate the generation of hydroxyl and superoxide radi-
cals. As shown in Figure 5, approximately 32% of the PAHs was degraded with the pure
Bi2WO6 photocatalyst in 50 min. This can be compared to the CsPbBr3/Bi2WO6 composite,
which presented a significantly improved degradation rate. This can be attributed to the
efficient charge separation of the type-II band structure and the enhanced light absorp-
tion of the CsPbBr3. In addition, the degradation rate was systematically enhanced with
the increasing weight ratio of the CsPbBr3 in the composites (Figure S2), and reached its
maximum at 96% when loaded with 15 wt% CsPbBr3 (Figure 5a,b). The total organic
carbon (TOC) content in the solvent was assessed by a TOC analyzer to further reflect the
degree of PAHs degradation. As shown in Table S2, the TOC content in the reaction system
decreased from 5.36 mg/L before the reaction to 2.3 mg/L after the reaction, indicating
that the CsPbBr3/Bi2WO6 composite photocatalyst is ideal for mineralizing PAHs. The
products mainly consisted of monocyclic aromatic hydrocarbons with low toxicity and
carbon oxide, as listed in Table S3. Although increasing the ratio of CsPbBr3 in the com-
posites enhances the light absorption due to the outstanding light harvesting capacity of
perovskite, overloading leads to aggregations resulting in a longer migration pathway
for photogenerated charges. In addition, the overloading might also reduce the exposed
surface area of Bi2WO6 to reactants. Consequently, increasing the perovskite ratio further
is not necessary to optimize the degradation rate. To the best of our knowledge, there is
no previous research on the photocatalytic degradation of PAHs in tobacco tar. Thus, we
compared our optimal sample (over 96% degradation in 50 min) with that for PAH removal
in water treatment, such as TiO2 (over 99% in 24 h) [49], ZnO/TiO2 (98% in 2 h) [50], TiO2
(over 66% in 39 min) [51], Evonik P25 (70% in 8 h) [52] and Pr/TiO2 (over 99% in 3 h) [53].
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Figure 5. (a) The absorption spectra of the samples using 15 wt% CsPbBr3/Bi2WO6 as a photocat-
alyst for different times; (b) photocatalytic degradation of tobacco tar using pure Bi2WO6, 15 wt%
CsPbBr3/Bi2WO6 and control group (without photocatalyst); (c) digital photographs of the sample
using 15 wt% CsPbBr3/Bi2WO6 as a photocatalyst for 10 to 50 min (from left to right). Reaction
condition: 50 mg photocatalyst, saturated with air, stirred in the dark for 30 min before experiments;
then, the reactions were conducted under AM 1.5 G simulated light irradiation for 50 min.

To investigate the photodegradation process, electron paramagnetic resonance (EPR)
spectra were employed to confirm the generated reactive radicals under simulated solar light.
The EPR signals of hydroxyl and superoxide radicals (Figure 6a) were recorded [38,54,55] after
illumination for 5 min as these two radicals are typically considered responsible for the high
degradation rate of PAHs. Control experiments were carried out to conf irm the respective
influence of these radicals on the photodegradation. To this end, one sample was degassed
by Ar and then saturated with O2 to eliminate the source of hydroxyl generation, another
sample was degassed with Ar and then 20 µL H2O was added to inhibit the superoxide
generation. Compared to the sample saturated with air, the degradation rate dramatically
reduced in the absence of a source for hydroxyl generation (Figure 6b). In contrast, the sample
showed a dramatically decreased degradation rate when the source of superoxide radicals
was excluded. These results suggested that the hydroxyl radicals with oxidation reactivity
were predominant in the degradation of PHAs, and degradation benefits from the presence
of water and oxygen. Aside from photocatalytic activity, the stability of a photocatalyst is
an important criterion. As shown in Figure S3, the photocatalytic activity only decreased
by 7% after six consecutive cycles, suggesting that CsPbBr3/Bi2WO6 photocatalyst has high
stability and reusability. The XRD spectra in Figure S4 shows that the diffraction peaks of
the material’s crystal structure did not change significantly after six cycles. In addition, no
trace of Pd ions was found after the reaction, which can be attributed to the stable nature of
CsPbBr3 in apolar solvent.
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Figure 6. (a) EPR spectra of CsPbBr3/Bi2WO6 sample saturated with air under illumination for 5 min
and 5,5-dimethyl-pyrroline N-oxide (DMPO) was used as trap agent; (b) photocatalytic degradation
rate of 15 wt% CsPbBr3/Bi2WO6 sample when saturated with different gases.

4. Photocatalytic Mechanism

Based on the Tauc plots shown in Figure S5a,b, the band gap energy (Eg) of the Bi2WO6
and CsPbBr3 samples were measured to be 2.71 eV, and 2.39 eV from the linear part of
(αhv)2 − (hv) curves. The VB values (EVB) and CB values (ECB) for a semiconductor can be
calculated according to the following equations:

ECB = EVB − Eg (1)

EVB = χ − Ee + 0.5Eg (2)

The electronegativity (χ) of Bi2WO6 and CsPbBr3 is 6.36 eV and 4.38 eV, respectively,
according to previous reports [56,57]. Ee was 4.5 eV, which is the energy of free electrons
on a hydrogen atom. Thus, we can conclude that the EVB of Bi2WO6 and CsPbBr3 was
3.25 and 1.075 eV while their associated ECB was 0.505 eV and −1.315 eV, respectively,
versus normal hydrogen electrode (NHE). On the basis of the above results, a possible
photocatalytic mechanism for degradation of PAHs was proposed (Figure 7). The type
II heterojunction was formed at the interfaces between CsPbBr3 and Bi2WO6. Under
illumination, both CsPbBr3 and Bi2WO6 were excited to produce photogenerated electrons
and holes. Then, to achieve Fermi level balance, the conduction electrons of CsPbBr3
were transferred to the conduction band of Bi2WO6 under the potential difference of the
band energy. At the same time, the valence holes of Bi2WO6 were transferred to the VB of
CsPbBr3. Finally, both CsPbBr3 and Bi2WO6 have improved charge separation efficiency,
and hence increased activity for oxidation and reduction, respectively. The reserved holes
can oxide water molecules or hydroxyl ions to produce hydroxyl radicals. Meanwhile, the
reserved electrons can reduce O2 to yield superoxide radicals. Finally, according to the EPR
spectra results, PAHs were degraded into octopamine, carbon dioxide, toluene and other
substances under the joint action of superoxide and hydroxyl radicals. Of the two active
radicals, hydroxyl radicals were predominant in the photocatalytic reaction.
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5. Conclusions

In this research, CsPbBr3 QDs decorated Bi2WO6 was successfully prepared by using
a hydrothermal method. The sample was used as a photocatalyst to investigate its novel ap-
plication for photodegradation of tobacco tar under visible radiation. The CsPbBr3/Bi2WO6
presented outstanding activity compared to classic metal oxides catalysts, and the degrada-
tion products were mainly low toxic compounds. The findings of this work may open a
promising avenue for producing high-efficiency photocatalysts with special heterostruc-
tures for removing organic contaminants from used tobacco tar, and could potentially be
applied to novel cigarette filters in the future.
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