
nanomaterials

Article

Analysis of Thermoelectric Energy Harvesting with Graphene
Aerogel-Supported Form-Stable Phase Change Materials

Chengbin Yu 1 and Young Seok Song 2,*

����������
�������

Citation: Yu, C.; Song, Y.S. Analysis

of Thermoelectric Energy Harvesting

with Graphene Aerogel-Supported

Form-Stable Phase Change Materials.

Nanomaterials 2021, 11, 2192. https://

doi.org/10.3390/nano11092192

Academic Editor: Seok Woo Lee

Received: 28 July 2021

Accepted: 23 August 2021

Published: 26 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM),
Seoul National University, Seoul 08826, Korea; ycb0107@snu.ac.kr

2 Department of Fiber Convergence Materials Engineering, Dankook University, Yongin-si 16890,
Gyeonggi-do, Korea

* Correspondence: ysong@dankook.ac.kr; Tel.: +82-31-8005-3567

Abstract: Graphene aerogel-supported phase change material (PCM) composites sustain the initial
solid state without any leakage problem when they are melted. The high portion of pure PCM in the
composite can absorb or release a relatively large amount of heat during heating and cooling. In this
study, these form-stable PCM composites were used to construct a thermoelectric power generator
for collecting electrical energy under the external temperature change. The Seebeck effect and the
temperature difference between the two sides of the thermal device were applied for thermoelectric
energy harvesting. Two different PCM composites were used to collect the thermoelectric energy
harvesting due to the different phase transition field in the heating and cooling processes. The
graphene nano-platelet (GNP) filler was embedded to increase the thermal conductivities of PCM
composites. Maximum output current was investigated by utilizing these two PCM composites with
different GNP filler ratios. The thermoelectric energy harvesting efficiencies during heating and
cooling were 62.26% and 39.96%, respectively. In addition, a finite element method (FEM) numerical
analysis was conducted to model the output profiles.

Keywords: phase change material; Seebeck effect; thermoelectric energy harvesting

1. Introduction

Renewable energy has been widely utilized in various areas to replace fossil fuels
due to the serious energy crisis and high environmental pollution [1,2]. The development
of renewable energy with high efficiency is important for general life [3,4]. Hence, solar
heat energy is considered as a wonderful type of clean energy, due to easy collection
and low costs [5,6]. It is necessary to collect and use external clean energy. Therefore,
thermoelectric energy conversion has attracted a lot of attention due to its appropriate
efficiency [7,8]. Carbon-based materials, such as carbon nanotubes (CNTs) and graphene,
can absorb solar energy sufficiently and it is easy to transfer their thermal energy due to the
appropriate thermal conductivities [9,10]. Some matrices with high thermal energy storage
(TES) are needed to combine the carbon-based materials for energy harvesting applications.
As a result, phase change materials (PCMs) are selected as working materials in TES
systems [11,12]. PCMs are divided into metal, inorganic and organic materials [13,14].
Depending on the type of PCM, energy storage can be described as solid–solid, solid–liquid,
solid–gas and liquid–gas upon phase transitions [15,16]. However, practical production
of energy and resources requires inorganic and organic PCMs with high heat of fusion.
In particular, organic PCMs exhibit high form stability and avoid super-cooling upon
melting and cooling. Therefore, they are regarded as the most appropriate working material
for TES applications [17,18]. Most of organic PCMs uses solid–liquid phase transitions
to store the thermal energy. In other words, PCMs are able to absorb or release a large
amount of heat during the phase transition process, which has high latent heat to transfer
thermal energy [19,20]. The thermoelectric power generator has been utilized to resolve
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energy depletion and PCMs are connected to the power generator device due to their
excellent thermal stability during the heating and cooling processes [21,22]. In this respect,
PCMs are employed as working materials to control the degree of thermoelectric energy
conversion [23,24]. The positive negative thermoelectric generator (PN TEG), which is
based on N and P type semiconductors, has been utilized in the energy harvesting field
using the Seebeck effect [25,26].

However, some problems of pure PCMs, such as leakage, shrinkage and liquid state,
restrict their general utilizations [27,28]. To prevent PCM leakage, supporting materials
are employed in the PCM composites [29,30]. The core-shell-like structure is suggested to
sustain the initial solid state without any leakage during melting [31,32]. Polystyrene (PS),
polyaniline (PANI) and melamine-formaldehyde (MF) have been selected as supporting
shell materials to encapsulate the PCM microcapsule [33,34]. Although the microencapsu-
lated PCM composites exhibit form stability during the phase transition process, a large
portion of the working material is replaced with the supporting material. That is why the
total latent heat of PCM composites decreases significantly [35,36]. Thus, three-dimensional
porous aerogel is regarded as an advanced supporting material which can hold plenty of
pure PCMs in the internal space [37,38]. The aerogel-supported PCM composite is fabri-
cated by the vacuum impregnation method and the molten pure PCM is fully infiltrated
into the aerogel internal space. Graphene and silica aerogels are selected as the supporting
materials to manufacture the form-stable PCM composites [39].

The thermoelectric energy harvesting efficiency depends on the thermal conductivity
of the PCM composite and graphene aerogel is a suitable candidate to fabricate form-stable
PCM composites [40]. To enhance both the thermal conductivity and mechanical property
of the graphene aerogel, graphene nano-platelet (GNP) is selected as a filler to construct a
three-dimensional hybrid porous skeleton. Graphene aerogel is obtained by the reduction
of graphene oxide (GO) aerogel and GO aerogel is produced by the freeze-drying method,
which evaporates the whole solvent of the GO aqueous solution [41,42]. According to the
mass ratio between GO and GNP, reduced-graphene oxide aerogels (rGO/GNP structures)-
supported PCM composites exhibit higher thermal conductivities. PN TEGs are utilized as
thermoelectric devices and two different PCM composites are connected to each side of PN
TEGs [43]. PN TEGs possess a hot side and a cold side due to the internal structure of the
N and P type semiconductors [44,45]. The electrons doped in the N type semiconductor
start the excitation while absorbing the external thermal energy and move to the P type
semiconductor [46,47]. The major carrier of P type semiconductor is a hole due to the
lack of electrons and the electrons can combine with the holes. As a result, the electrons
aggregate on the hot side of the PN TEG and generate a potential to promote electron
movement in the circuit. Different PCM composites give rise to the temperature difference
around PN TEGs during the phase transition process and the induced electrical current is
generated during the change of external temperature [48,49].

In this work, polyethylene glycol (PEG) and 1-tetradecanol (1-TD) phase change ma-
terials (PCMs) were utilized to fabricate PCM composites. These two pure PCMs were
infiltrated into the internal space of rGO/GNP aerogels to obtain form-stable PCM compos-
ites. rGO/GNP aerogels with different GNP ratios can influence the thermal conductivities
of PCM composites and thermoelectric energy harvesting efficiencies during the phase
transition process. To validate the collected electrical energy, a LED bulb was used during
the heating and cooling cycles. To obtain the maximum efficiency of thermoelectric energy
conversion, the PCM composites with various GNP mass ratios were investigated and
some of the candidates were tested for optimization.

2. Experimental Sections
2.1. Materials

For phase change materials (PCMs), polyethylene glycol (PEG Mn = 6000) and 1-
tetradecanol (1-TD) were provided by the Avention® corporation and Sigma-Aldrich,
respectively. Graphene nano-platelet (GNP, C grade) was selected in this study, which
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was purchased from XG Science Michigan, USA. In addition, Graphite powder, sulfuric
acid (H2SO4), potassium permanganate (KMnO4), hydrochloric acid (HCl), hydrogen
peroxide (H2O2) and hydrazine were utilized to synthesize graphene oxide (GO) and were
purchased from Sigma-Aldrich.

2.2. Fabrication of PCM Composites

Graphene oxide (GO) was synthesized by using a modified Hummers’ method [50,51].
A graphite of 3 g was poured into 12 mL of sulfuric acid (H2SO4) and fully oxidized
by adding 15 g of potassium permanganate (KMnO4). After several hours, the oxidized
graphite mixture was diluted by using 700 mL of distilled water (DI) and 20 mL of hydrogen
peroxide (H2O2) was added to remove the excess KMnO4. The purified solution was
washed with 10% hydrochloric acid (HCl) and the solution was removed by using a
filtering process. The oxidized graphite was diluted with DI water and neutralized by
the centrifugation method at 10,000 rpm. The graphene oxide (GO) powder was obtained
after applying a freeze-drying procedure. The GO powder and GNP filler were dispersed
in DI water under 30 min ultra-sonication. The mass ratios between GO and GNP were
2:1, 1:1 and 1:2 to fabricate GO/GNP aerogels. These GO/GNP aqueous solutions were
poured into the molds with 4 cm × 4 cm × 0.5 cm and the 3D porous aerogels were
obtained by the freeze-drying method. Finally, the reduced graphene aerogels (rGO/GNP)
were fabricated by using a hydrazine vapor method. The PEG and 1-TD composites were
fabricated by utilizing the vacuum impregnation method, which infiltrated the liquid pure
PCM into the graphene aerogel internal space. The pure PEG and 1-TD were melted at
80 ◦C under vacuum to remove moisture. The graphene aerogels were immersed into the
liquid PCMs for several hours. Both of the PEG and 1-TD composites were obtained by
using a solidification method and labelled 2:1 PEG composite, 1:1 PEG composite and 1:2
PEG composite, in accordance with the GO/GNP mass ratio. In addition, the 2:1 1-TD
composite, 1:1 1-TD composite and 1:2 1-TD composite were considered.

2.3. Design of the Energy Harvesting System

The PEG and 1-TD composites were connected to the PN TEGs to construct the
thermoelectric energy harvesting system. When the temperature was increased, the 1-TD
composite started the solid–liquid phase transition due to the lower melting temperature
than that of the PEG composite. Thus, the PEG composite was placed at the hot side of
the PN TEG and the temperature difference was generated due to the nearly isothermal
field of the 1-TD composite. However, the PEG composite was under the phase transition
process, while the 1-TD composite completed the solid–liquid process, and the temperature
increased rapidly at the hot atmosphere. To collect the additional electrical energy, we
designed a second energy harvesting system by connecting the 1-TD composite to the hot
side of the PN TEG. When the surface temperature of the 1-TD composite exceeded that
of the PEG composite, the Seebeck effect acted and the induced current was harvested in
the circuit. The thermoelectric energy harvesting system provided electrical energy to turn
on an LED bulb. The light intensity of the LED bulb was measured and was used for the
optimization of the energy harvesting system [52].

2.4. Characterizations

The dispersion ability of GO was analyzed by measuring the zeta potential (Zeta-
sizer, Malvern, UK) in the aqueous solution and GO and GNP were mixed. The reduced
graphene oxide (rGO) was confirmed by Fourier transform infrared spectroscopy (FT-IR,
Varian660, UT, USA). The graphene aerogel porous structure was observed with the use
of a Brunauer–Emmett–Teller Analyzer (BET, ASAP2010, Atlanta, USA). A field-emission
scanning electron microscope (FE-SEM, Merlin compact, ZEISS, Jena, Germany) was em-
ployed to measure the surface morphologies of graphene aerogel and PCM composite
under a 5 kV accelerating voltage; all of samples were coated with a Au-coater. To confirm
the typical peaks of PCM composites, X-ray diffraction (XRD New D8, Bruker, Billerica,
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MA, USA) was utilized and 2θ from 10◦ to 70◦ was observed with a rate of 3◦/min. A
thermal analyzer (C-Therm TCi, C-Therm Technologies Ltd., Fredericton, NB, Canada) was
utilized to measure the thermal conductivities of PCM composites. The phase transition
temperature and latent heat were evaluated by using a differential scanning calorimeter
(DSC4000, PerkinElmer, Waltham, MA, USA) with a nitrogen gas atmosphere. The PCM
samples were heated from 15 ◦C to 90 ◦C at a speed of 10 ◦C/min and back to initial 15 ◦C
upon cooling process. A potentiostat (VersaSTAT 3, AMETEK® PA, USA) was utilized to
measure the induced current during the change of temperature from 25 ◦C to 80 ◦C. To
observe the LED light during the heating and cooling processes, a light intensity meter
(LI-1400, Nebraska, USA) was used.

3. Numerical Analysis

To calculate the temperature profiles between the PEG and 1-TD composites, each of
temperature changes was simulated by using a finite element method (FEM). The energy
harvesting system consisted of the PEG composite, PN TEG and 1-TD composite. The
parameters considered in this study were the density, latent heat (∆H), heat capacity,
thermal conductivities of PCM composites and phase transition temperature. A copper
film was utilized to combine the PN TEGs in the thermoelectric power generator [53]. The
PN TEGs were doped by Bi2Te3 and Bi0.3Sb1.7Te3 and the Seebeck coefficient was a function
of the temperature difference during the phase transition process. The total mesh for the
numerical analysis was 10,178.

The governing equation of heat transfer is as below:

ρCp
∂T
∂t

+ ρCpu·∇T +∇·q = Q (1)

where ρ is the mass density and Cp is the heat capacity. q is the heat transfer rate which is
described as a function of thermal conductivity:

q = −k∇T (2)

The specific density equation of PCMs is related to the ratio of phase 1 to phase 2. In
addition, the fill-factor θ and relevant parameters (Cp, k, and αm) are defined as below:

ρ = θρphase1 + (1− θ)ρphase2 (3)

Cp =
1
ρ

(
θρphase1Cp.phase1 + (1− θ)ρphase2Cp.phase2

)
+ L

∂αm

∂T
(4)

k = θkphase1 + (1− θ)kphase2 (5)

αm =
1
2
(1− θ)ρphase2 − θρphase1

θρphase1 + (1− θ)ρphase2
(6)

where αm is the mass coefficient during the phase transitions. The normal vector n and
heat flux q0 are functions of the heat transfer coefficient (hair) and external temperature, as
presented below:

− n·q = q0 (7)

q0 = hair·(Text − T) (8)

When the temperature gradient is created during the heating and cooling processes,
the output electrical current is calculated by using the following Seebeck coefficient, S:

S =

√
k
σT

(9)
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where the electrical conductivity, σ, is related to the Seebeck coefficient. Thus, the tem-
perature difference (∆T) and the resistance of energy harvesting device (R) are defined
as below:

I =
S∆T

R
(10)

Finally, the efficiency of thermoelectric energy conversion is the ratio of converted
energy W and the total stored energy Q is as follows:

η =
W
Q

(11)

4. Results and Discussion
4.1. Morphology of Graphene Aerogels

The fabrication of PCM composites and thermoelectric energy harvesting efficiencies
are illustrated in Figure 1. The PCM composites had high latent heat and converted their
thermal energy without any leakage. The graphene aerogel was utilized as a supporting
material to infiltrate pure PCM into the internal porous space. The surface tension of the
graphene skeleton could restrict the PCM movement during the phase transition process.
The PN TEG containing the N and P type semiconductors provided the electrical energy
using the temperature difference between the two sides of the device. The induced current
was proportional to the temperature difference, which acted as a key factor to increase
the output electrical energy. The LED bulb could be used to examine the thermoelectric
energy harvesting efficiency. The images of the graphene aerogels and zeta potentials of
GO and GNP are shown in Figure 2. The GO aerogels with different GNP mass ratios
exhibited brown colors (Figure 2a–c). After the hydrazine reduction treatment, all of the
GO aerogels turned black, which led to the rGO/GNP aerogels as shown in Figure 2d–f. To
verify the GO and GNP dispersion in the aqueous solution, the zeta potential was utilized
(Figure 2g). The GO and GNP exhibited high potential values, which indicated that they
were fully dispersed in the DI water [54]. The pH of the GO/GNP solution was 5.23. To
confirm the reduction of graphene aerogels, FT-IR was measured as shown in Figure 3a,b.
The GO typical peak was found at 3400 cm−1, which indicated an O-H peak. C=O and C-O
peaks were obtained at 1721cm−1 and 1054 cm−1, respectively. The rGO/GNP aerogels
only yielded the C=C peak around 1680 cm−1, which indicated that the GO functional
groups were fully reduced by the hydrazine treatment. In order to confirm the structural
characteristics of graphene aerogels, the Brunauer–Emmett–Teller (BET) was applied by
measuring the adsorption and desorption under the isothermal nitrogen atmosphere as
shown in Figure 3c,d. The surface areas of the graphene aerogels are listed in Table 1. The
type III isotherms were selected to obtain the multilayer adsorption in the macro-porous
structure in the high-pressure region [55,56]. All of the graphene aerogels showed high
specific surface areas and the pore diameters were about 0–10 nm. This demonstrated
that the graphene aerogels encompassed microporous structures. To further verify the
internal structure of the graphene aerogels, the rGO/GNP aerogels were investigated by
SEM analysis (Figure 3e–g). All of the graphene aerogels showed the porous structure in
the range of 1–10 µm, indicating that the graphene aerogels were able to infiltrate plenty of
pure PCMs effectively. These results revealed that the graphene aerogels could be selected
as excellent supporting materials for manufacturing form-stable PCM composites.
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Table 1. BET results of rGO/GNP aerogels with different ratios.

Samples Graphene/GNP 2:1 Graphene/GNP 1:1 Graphene/GNP 1:2

Surface Area (m2/g) 373.95 ± 0.10 372.74 ± 0.10 370.36 ± 0.10

4.2. Characterization of PCM Composites

The results of PCM composites form stability are shown in Figure 4. All the samples
were placed on a hot plate with a temperature from 25 ◦C to 80 ◦C. The pure 1-TD was
melted to the liquid state, while the pure PEG was kept at the solid state with a little
leakage. However, all of the PEG and 1-TD composites sustained the initial solid state
without any leakage, even at 80 ◦C. From the leakage test, the graphene aerogels-supported
PCM composites were found to have excellent form stability during melting. The PEG and
1-TD weight percentages in the PCM composites are shown in Figure 5a and the results
are listed in Table 2. The PEG and 1-TD composites possessed the high weight percentage
of pure PCMs. In addition, the porosities of graphene aerogels are presented in Figure 5b
and listed in Table 3. All of the graphene aerogels exhibited high porosities, thus indicating
that these graphene aerogels could hold a large amount of pure PCM in the porous space.
Figure 5c,d shows the XRD peaks of PEG and 1-TD composites, respectively. The intrinsic
peaks of pure PEG were observed at 19.10◦ and 23.21◦, which are similar to those of the
PCM composites. The PCM composites had the same internal structures without significant
changes. The pure 1-TD and 1-TD composites showed typical peaks around 21.32◦ and
24.15◦. From the XRD peaks, it was inferred that there was no chemical reaction between
graphene aerogels and pure PCMs. The thermal conductivities of PEG and 1-TD composites
are shown in Figure 5e,f. The PEG and 1-TD composites showed the increment in the
thermal conductivities from 2:1 to 1:2 GNP mass ratios [40]. The 2:1 ratio PEG composite
exhibited 0.4233 W/mK and yielded an increased thermal conductivity of 0.5828 W/mK
for the 1:2 ratio (the 1:1 ratio case showed 0.4929 W/mK). For the 1-TD composites, the
thermal conductivities were 0.3414 W/mK, 0.4135 W/mK and 0.4974 W/mK, according
to the increase in the GNP mass ratios. The 1:2 ratio PCM composites showed the best
thermoelectric energy conversion efficiencies. The surface structure of pure PCM and PCM
composites was analyzed by using the SEM images (Figure 6). The surface of pure PEG was
smooth, while PEG composites showed wrinkle structures (Figure 6a–d) [57]. It indicated
that the pure PEG was fully infiltrated into the graphene aerogels to construct form-stable
PCM composites. The pure 1-TD had a layer structure and the 1-TD composites showed a
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different structure with respect to the GNP mass ratios (Figure 6e–h). The phase transition
temperature and latent heat (∆H) were obtained by the DSC measurement, as shown in
Figure 7. The results are listed in Table 4. The pure PEG started melting at 50.75 ◦C (To)
and the endset melting temperature was 69.16 ◦C (Te). The melting of pure PEG was
observed at 66.81 ◦C and the melting enthalpy was 182.62 J/g. The PEG composites with
2:1 and 1:2 GNP mass ratios exhibited similar results in the heating and cooling cycles
and a little decrease in latent heat (∆H) was observed due to the increase in GNP fillers.
The pure 1-TD had lower phase change temperatures than the pure PEG and showed
a melting temperature of 41.63 ◦C. The pure 1-TD and 1-TD composites exhibited high
latent heat (∆H), which can absorb or release a large amount of thermal energy during the
phase transition process. Therefore, the PEG and 1-TD composites were utilized as high
latent heat thermal energy storage (LHTES) materials to construct thermoelectric energy
harvesting system.
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Table 2. Weight percentages of PCM with different GNP mass ratios.

Samples 2:1 Ratio PCM
Composite

1:1 Ratio PCM
Composite

1:2 Ratio PCM
Composite

PEG wt% 98.59 ± 0.10 98.06 ± 0.10 96.64 ± 0.10
1-TD wt% 98.75 ± 0.10 98.33 ± 0.10 97.51 ± 0.10

Table 3. Porosities of rGO/GNP aerogels with different GNP mass ratios.

Samples Graphene/GNP 2:1 Graphene/GNP 1:1 Graphene/GNP 1:2

Porosity (%) 99.03 ± 0.02 98.71 ± 0.02 98.08 ± 0.02
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Table 4. DSC results of pure PEG and 1-TD composites.

Samples
To (◦C) Te (◦C) Tp (◦C) ∆H (J/g)

Heating
Cycle

Cooling
Cycle

Heating
Cycle

Cooling
Cycle

Heating
Cycle

Cooling
Cycle

Heating
Cycle

Cooling
Cycle

Pure PEG 50.75 41.54 69.16 32.68 66.81 37.50 182.62 164.84
2:1 PEG Composite 50.42 42.38 68.55 33.05 67.43 36.83 180.72 163.22
1:1 PEG Composite 47.64 42.51 68.31 33.17 67.41 34.59 180.56 163.03
1:2 PEG Composite 47.11 42.86 67.34 33.61 66.25 34.49 180.17 162.67

Pure 1-TD 34.47 36.11 45.23 20.23 41.63 27.68 226.09 213.82
2:1 1-TD Composite 34.36 36.14 45.18 20.31 42.27 26.74 221.87 210.13
1:1 1-TD Composite 34.18 36.22 45.15 20.56 42.51 25.32 220.76 209.79
1:2 1-TD Composite 34.03 36.35 44.97 20.64 42.24 25.01 220.43 208.56

4.3. Thermoelectric Energy Harvesting

The temperature profiles of PEG and 1-TD composites were numerically calculated as
shown in Figure 8. The 1-TD composites yielded the nearly isothermal phase transition field,
while the PEG composites showed the increased surface temperature during the heating
process (Figure 8a–c). The maximum temperature difference was about 16 ◦C in the 1st
heating process and the 2nd one gave 7.5 ◦C (Figure 8d). After removing the heat source, the
temperature of the thermoelectric energy harvesting system decreased from 80 ◦C to room
temperature due to the air exposure. Figure 8e–g shows the cooling temperature profiles
of the PEG and 1-TD composites. The 1st and 2nd maximum temperature differences
calculated were 12 ◦C and 7 ◦C, respectively (Figure 8h). The comparison of experimental
results with numerical calculations is shown in Figure 9. The measured currents were in
good agreement with the simulation results. The LED bulb was successfully turned on by
using a low voltage start-up converter (LTC 3108) during the phase transition process [58].
The 2:1 ratio PCM composites exhibited the 1st maximum LED light at 1168 s and the
2nd one was at 2569 s, during heating (Figure 9d). The thermal conductivities of PCM
composites were gradually increased with an increase in the ratio.
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Figure 8. Temperature profiles during heating for (a) 2:1 ratio PEG and 1-TD composites, (b) 1:1 ratio PEG and 1-TD
composites and (c) 1:2 ratio PEG and 1-TD composites. (d) Resulting temperature differences. Cooling cycle of (e) 2:1 ratio
PEG and 1-TD composites, (f) 1:1 ratio PEG and 1-TD composites and (g) 1:2 ratio PEG and 1-TD composites. (h) Resulting
temperature differences.
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Figure 9. Experimental results and numerical calculations during heating for (a) 2:1 ratio PCM composites, (b) 1:1 ratio
PCM composites and (c) 1:2 ratio PCM composites. (d) LED bulb images upon heating. Cooling results of (e) 2:1 ratio PCM
composites, (f) 1:1 ratio PCM composites and (g) 1:2 ratio PCM composites. (h) LED bulb images upon cooling.

The rate of thermoelectric energy harvesting was promoted during the phase tran-
sition process. Figure 9h shows the maximum LED brightness after removing the heat
source. It was found that the time required for the test decreased with increasing the GNP
mass ratio. Since the GNP filler could improve the thermal conductivities of PEG and
1-TD composites, the corresponding temperature profiles during the heating and cooling
processes were analyzed (Figure 10a,b). The various combinations of PEG and 1-TD com-
posites were examined. The temperature differences are presented in Figure 10c,d. It was
found that the 2:1 ratio PCM composites might not provide the maximum thermoelectric
energy harvesting efficiency. 1:1 PEG/1:2 1-TD, 1:2 PEG/1:1 1-TD and 1:2 PEG/1:2 1-TD
were selected as the candidate groups by considering the large peak area of temperature
difference. Figure 11a,b shows the temperature difference among the three groups. The
results of currents during the heating and cooling processes are presented in Figure 11c,d.
The PCM groups generated the electrical current successfully with different peak areas. To
confirm the maximum output current among the PCM groups, the onset and endset times
for the LED were measured during the phase transition fields, as shown in Figure 12a,b.
The correlated results are listed in Tables 5 and 6. The longest time in both the heating and
cooling cycles was obtained in the 1:2 PEG/1:1 1-TD system. To further demonstrate the
energy harvesting ability, the light intensity of the LED bulb was evaluated during the
heating process, as presented in Figure 12c–e. The 1:2 PEG/1:1 1-TD exhibited an average
intensity of 0.267 µmol m−2 s−1, which was the highest among the PCM groups. The
cooling results of light intensity are shown in Figure 12f–h. The 1:1 PEG/1:2 1-TD group
had a similar result to the 1:2 PEG/1:1 1-TD group, which exhibited 0.218 µmolm−2s−1.
According to the light intensity results during the heating and cooling processes, the 1:2
PEG/1:1 1-TD was selected as an optimum group for energy harvesting. In order to
calculate the largest current among the PCM groups, the comparison of the peak ratios
was made, as shown in Figure 13a,b. The 1:2 PEG/1:1 1-TD group exhibited the highest
ratios of peak area during heating and cooling, which were 1.16 and 1.22, respectively.
The comparison of the numerical simulation with the experimental result is illustrated in
Figure 13c,d. The maximum current was 12.45 mA at the 1st phase transition and 5.80 mA
at the 2nd transition, during heating. The cooling peak showed 9.75 mA and 6.20 mA
output maximum currents at the 1st and 2nd phase transitions, respectively. In addition,
the thermoelectric energy harvesting efficiencies calculated during heating and cooling
were 62.26% and 39.96%, respectively. These results were higher than those of the 1:2
PEG/1:2 1-TD group (i.e., 55.59% and 33.33%). The optimum group of PCM composites is
expected to be applied to thermal sensing, aerospace and pyroelectric energy harvesting.
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Figure 12. LED bulb images during the (a) heating process and (b) cooling process. Light intensities during heating for
(c) 1:1 PEG and 1:2 1-TD composites, (d) 1:2 PEG and 1:1 1-TD composites and (e) 1:2 PEG and 1:2 1-TD composites. Light
intensities during cooling for (f) 1:1 PEG and 1:2 1-TD composites, (g) 1:2 PEG and 1:1 1-TD composites and (h) 1:2 PEG and
1:2 1-TD composites.

Table 5. Results of LED bulb during heating.

Time (s) Onset (1st) t1 (Max) Endset (1st) Onset (2nd) t2 (Max) Endset (2nd) Total

1:1 PEG and 1:2 1-TD 544 838 1121 1778 2343 2968 1767
1:2 PEG and 1:1 1-TD 380 919 1422 1958 2274 2647 1731
1:2 PEG and 1:2 1-TD 472 779 1149 1746 2097 2691 1622

Table 6. Results of LED bulb during cooling.

Time (s) Onset (1st) t1 (Max) Endset (1st) Onset (2nd) t2 (Max) Endset (2nd) Total

1:1 PEG and 1:2 1-TD 84 235 627 1048 1099 1141 636
1:2 PEG and 1:1 1-TD 109 282 503 767 995 1404 1031
1:2 PEG and 1:2 1-TD 98 206 466 790 928 1108 686
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5. Conclusions

In this study, an advanced energy harvesting system was constructed using PCM
composites. It was found that the embedded GNP led to an increase in the thermal
conductivity and mechanical properties of the PEG and 1-TD composites. The PCM
composites were connected with a thermoelectric power generator for energy harvesting.
The increase in GNP portion in the PCM composites could achieve a high thermoelectric
energy conversion efficiency and the 1:2 ratio PCM composites exhibited a more enhanced
energy harvesting than other PCM composites. In addition, the collected electrical energy
turned on the LED bulb successfully. The finite element method (FEM) was employed
to calculate the temperature profiles. The numerical results agree with the experimental
results. The optimal energy harvesting system was constructed by the combination of the
PEG and 1-TD composites. These PCM composites were able to store and release a large
amount of heat without any leakage to achieve renewable thermoelectric energy harvesting.
The LED results show that the 1:2 PEG and 1:1 1-TD composite-based energy harvesting
device induced the highest electrical current during heating and cooling. It is anticipated
that the optimum energy harvesting system can be employed for a thermal sensor, a heat
recovery device and a functional power generator.
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