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Abstract: The multifocal metalens with an adjustable intensity has great potential in many appli-
cations such as the multi-imaging system, but it is less studied. In this paper, by combining the
electro-optic material barium titanate (BTO) with the Pancharatnam-Berry phase, an electrically
modulated bifocal metalens in a visible light band is innovatively proposed. Due to the electro-optic
effect, we can control the refractive index of the BTO nanofins to vary between 2.4 and 3.07 by
applying different voltages (0–60 V). Thus, the method of modulating the intensity ratio of the two
focal points is applying an electric field. It is different from using phase change materials or changing
the ellipticity of incident light, the strategies proposed in previous studies. Moreover, when the
applied voltage is 0 V or 60 V, the bifocal metalens becomes a single focal metalens with different
focal lengths, and the full width at half maximum of each focal point is close to the diffraction limit.
It has great potential in applications of optical storage, communication and imaging systems.

Keywords: bifocal metalens; barium titanate; electro-optic

1. Introduction

In the past decades, metalens has drawn intensive attention due to the ability to control
the wavefront to focus with a small footprint based on methods of realizing the discontinue
phase [1–10]. However, tremendous researches mainly concentrated on focusing with
one focal point; the bifocal metalens or multifocal metalens with great potential in multi-
imaging and micro-manipulating optics is less studied. With arrays of inhomogeneous
optical scatters placed on one or more thin surfaces, the bifocal metalens allows one beam
of incident light to focus at two different focal points [11–15]. As a member of metalens,
the bifocal metalens also exists with the problem of being static in nature. Therefore, the
modulation of bifocal metalens is also a significant topic, especially the tunable intensity in
focal points.

Up to now, methods to realize the adjustable intensity of the bifocal metalens have
been limited. One important method is combining thermally controlled phase change
materials with the bifocal metalens [16–18]. Among them, Ge2Sb2Te5 (GST) is the most
representative material for the application of the adjustable bifocal metalens. GST is a
kind of phase change material that has a significant refractive index shift and absorption
difference in different states [19–21]. Most of the methods based on GST rely on dividing
the metalens into different areas. The design will lead to a low signal-to-noise ratio [17,22].
Moreover, the fractional crystallization of GST is difficult to control [23] which impedes the
development of a continuous precise regulation. Additionally, GST is not applicable to a
metalens in the visible band with a large absorption in both states. Another phase change
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material used in the bifocal metalens is VO2 which works in the infrared band [24] and
terahertz [18]. Similar to GST, it is also not suitable for the realization of the metalens in the
visible band.

Except for phase change materials, a major method to modulate the bifocal metalens
is altering the polarization of the incident beam [25–28]. For instance, Shengnan Tian et al.,
proposed a dielectric longitudinal bifocal metalens with an adjustable intensity [26]. By
entering different elliptically polarized light, the method can realize adjusting the relative
intensity of the two focal points flexibly. However, the change of incident light may bring
inconvenience in some conditions and the response time is not fast enough. An adjustable
intensity, high-speed modulation and constant light source are the ideal scenarios for the
bifocal metalens in practical application.

In this paper, we propose an electrically modulated bifocal metalens whose intensity
can be adjusted based on the electro-optical material barium titanate (BTO) in the visible
region with high-speed modulation. Due to the Pockels effect, the refractive index of
BTO can be modulated by varying the applied voltage [29]. Moreover, BTO fits the
visible region that can make up for the problem of the working region of phase change
materials. As shown in Figure 1, by designing a metalens doublet to combine the multilayer
Pancharatnam-Berry phase with BTO, the relative intensity ratio of the two foci can be
adjusted. The double-layer structure can realize the unified control of the metalens. When
adjusting the intensity, the metalens just needs one applied voltage. It effectively avoids the
complexity of applying different controls simultaneously on a micro–nano structure. The
upper layer of the metalens is composed of BTO nanofins. The bottom layer is composed of
Si nanofins. Additionally, because of the thin thickness between the two layers, to simplify
the production in reality, the Si nanofins layer is filled with SiO2. In order to realize the
arbitrary intensity ratio, the intensity of each focus should be able to change between 0 and
the maximum value. The numerical simulations are completed based on the commercial
software finite-difference time-domain (FDTD) Solutions 2018a (Lumerical Inc., Vancouver,
BC, Canada). The results show that the metalens can focus on a single focal point when n = 2.4
(F1 = 9 µm) and n = 3.07 (F2 = 15 µm) to realize the varying of the focal length. The simulated
focal lengths correspond to the theoretical values well. Additionally, the full width at half
maximums (FWHMs) are close to the diffraction limited values. Then, we gradually increase
the refractive index of BTO from 2.4 to 3.07. Values of the intensity ratio between the two foci
show that the design has the ability to modulate the metalens flexibly. Additionally, simulated
focal lengths and FWHMs show that the image quality under the bifocal condition is still high.
We believe the proposed method will provide a potential platform for multi-imaging systems,
optical free-space communication and optical data storage.
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2. Materials and Methods

The metalens is composed of BTO nanofins layer, Si nanofins layer, indium tin oxide
(ITO) layer and SiO2 substrate. As a kind of electro-optic crystal, BTO has an excellent
ability to alter the refractive index. The shift of the refractive index is proportional to
applied electric field because of the electro-optic effect named Pockels effect. Meanwhile,
BTO is chemically and thermally stable and has ultrafast modulation speed (sub-ps) [29,30].
Additionally, compared with other electric-optical materials such as LiNbO3 [31], the
Pockels coefficient of BTO is much larger. Therefore, for the same refractive index shift, the
applied electric field on BTO is lower. Moreover, its working bandwidth can cover visible
and near-infrared region that solves the absorption problem of phase change materials in
visible region. The ordinary refractive index of BTO will shift with the application of the
voltage as follows [32,33]:

n = n0 +
1
2

n3
0r51V/tD (1)

where n0 is the real part of the refractive index of BTO with no application of electric field,
the electro-optic (EO) coefficient r51 is 1300 pm/V according to the past research. V is the
applied voltage to produce refractive index shift and tD is thickness of the BTO layer which
means the height of BTO nanofins. In the proposed design, the height of BTO nanofins was
set as 800 nm. Therefore, by applying a voltage that was lower than 60 V, the refractive
index can shift from 2.4 to 3.07. The function of the ITO layer was to apply voltage from
the bottom of BTO layer which makes the metalens easy to be compacted. Moreover, as
shown in Figure 1, if the thickness between the Si layer and BTO layer has a relatively large
value, it will influence the phase distribution. Therefore, the thickness was set as 0.4 µm,
a little larger than half of the wavelength to obtain a better result. In order to avoid the
manufacturing problem due to the thickness being so thin, SiO2 filled in the Si layer as
filling material [34].

As shown in Figure 2, the unit cell is a double-layer structure. According to multilayer
Pancharatnam-Berry (PB) phase method, when a circularly polarized beam incidents to the
cell, the Jones matrix can be expressed as [34]:

J(θ1, θ2) =

[
1
4 T1T′1 +

1
4 T2T′2ej2(θ1−θ2) 1

4 T2T′1ej2θ1 + 1
4 T1T′2ej2θ2

1
4 T2T′1e−j2θ1 + 1

4 T1T′2e−j2θ2 1
4 T1T′1 +

1
4 T2T′2ej2(θ2−θ1)

]
(2)

{
to + te = T1 to − te = T2

to
′ + te

′ = T1
′ to

′ − te
′ = T2

′ (3)

in each unit cell doublet, θ1 and θ2 are rotation angles of BTO nanofin and Si nanofin. to, te
(BTO nanofin) and to

′, te
′ (Si nanofin) represent the complex transmission coefficients along

ordinary (l1, l2) and extraordinary (w1, w2) axes. For the proposed metalens, the incident
beam was right-handed circularly polarized. Therefore, the output beam follows the result:

Eout =
1
4

T1T′1

(
1
i

)
+

1
4

T2T′2ej2(θ1−θ2)

(
1
i

)
+

1
4

T2T′1e−j2θ1

(
1
−i

)
+

1
4

T1T′2e−j2θ2

(
1
−i

)
(4)

In order to realize the condition that the relative intensity ratio between the two foci
can cover all values, the metalens should have the ability to focus on one point for extreme
condition. It means the ratio can be close to 1/0 or 0/1. First, the Si nanofin works as a
half-wave plate which means T′1 = 0 to decrease the resulting phase distributions:

Eout =
1
4

T2T′2ej2(θ1−θ2)

(
1
i

)
+

1
4

T1T′2e−j2θ2

(
1
−i

)
(5)
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Figure 2. (a) Diagrams of the unit cell, the upper layer is BTO nanofin and the bottom layer is Si
nanofin. (b,c) represent the schematic diagrams of the upper layer and lower layer rotation angles.
The parameters of BTO nanofin and Si nanofin are l1, w1, H1 and l2, w2, H2, respectively. θ1 and θ2

are rotation angles of BTO nanofin and Si nanofin. P is the period of the unit cell. T is the distance
between the two layers.

Based on the simplified equation, the function of the BTO nanofin has to be able to
switch between a half-wave plate (T1 = 0) and a full-wave plate (T2 = 0) when the refractive
index switches between 2.4 and 3. Therefore, when n = 2.4 and 3.07, the output light follows
the equation: 

En=2.4 = 1
4 T2T′2ej2(θ1−θ2)

(
1
i

)
En=3.07 = 1

4 T1T′2e−j2θ2

(
1
−i

) (6)

Above all, in this paper, when there was no application of voltage, the BTO nanofin
worked as a half-wave plate with the imparted phase distribution of the output light
equaling 2(θ1 − θ2). After applying voltage until the refractive index reached 3.07, the
inserted phase distribution became −2θ2. When the refractive index was between 2.4 and
3.07, the phase distribution of the outgoing light was divided into two parts. One part was
En = 2.4, the other part was En = 3.07. Additionally, as the refractive index changes, the
ratio of the two inserted phase distributions will also change.

3. Optimization of Nanofins

The desired parameters of the BTO and Si nanofins were calculated by a three-
dimensional FDTD method (Lumerical Inc., Vancouver, BC, Canada). The mesh grids
were 10 nm × 10 nm × 10 nm. For the x- and y-axis, the periodic boundary condition was
applied and the boundary condition for the z-axis was a perfectly matched layer (PML).
The working wavelength was set to 600 nm to verify the proposed method. By changing
the lengths of the ordinary axes (l1, l2) and the extraordinary axes (w1, w2) of the BTO
nanofins (n0 = 2.4) and the Si nanofins with a period of 350 nm × 350 nm, the phase shift
difference between the linearly polarized beam along the ordinary axes (x-polarized) and
the extraordinary axes (y-polarized) can be seen in Figure 3. From Figure 3, points A
and B with a phase shift difference π, which means the BTO nanofin (n0 = 2.4) and the Si
nanofin can work as a half-wave plate, were the desired parameters. Therefore, parameters
of the BTO nanofins and the Si nanofins were confirmed as l1 = 260 nm, w1 = 110 nm,
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H1 = 800 nm and l2 = 140 nm, w2 = 50 m, H2 = 600 µm, respectively. Then, the refractive
index of BTO was changed to find a value that would meet the condition T2 = 0.
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As shown in Figure 4a, for the BTO nanofins, the phase shift of the linearly polarized
beam along the ordinary axes (x-polarized) and the extraordinary axes (y-polarized) and
the phase shift difference between the output light of the two beams changed with the
refractive index as depicted. The results showed that when the refractive index of the BTO
layer was 2.4 (no applied voltage), the phase shift difference was π. During the period
of increasing the refractive index to 3.07, the phase shift difference could cover all values
from 0 − π, and become 0 when n = 3.07. In order to further show that the optimization
results met the design requirements, the polarization conversion efficiency (PCR) of the
BTO nanofins (n = 2.4 and 3.07) and the Si nanofins from 500 nm to 700 nm are depicted in
Figure 4b. The results showed that the PCR of the BTO nanofins can reach 98.4% (n = 2.4)
and 0.3% (n = 3.07) when the wavelength was 600 nm. Therefore, the resultant parameters
can fit the desired functions well.
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4. Results and Discussion

Based on all above analyses, a two-dimensional bifocal metalens was proposed. The
phase profile to focus the incident beam had to meet the equation [34]:

ϕf =
2π
λ
(f−

√
x2 + y2 + f2) (7)

where λ is the working wavelength, f is the focal length and x and y are the discretized
spatial coordinates. At last, in order to realize the proposed design, the rotation angle of
the BTO nanofins and the Si nanofins should meet the equation as follows:{

2(θ1 − θ2) = ϕf1
−2θ2 = ϕf2

(8)

In the proposed bifocal metalens, the incident beam was right-handed circularly
polarized. The wavelength was 600 nm. The radius of the metalens was set as 10 µm. To
show the proposed design, we set the two focal lengths as f1 = 9 µm and f2 = 15 µm. The
discussion of results is listed in Sections 4.1 and 4.2

4.1. Switch of Single Focal Point

Firstly, in order to verify that the relative intensity of the two focal points can cover
the extreme condition, we showed that the focal length of the metalens can switch between
f1 and f2 in Figure 5. When there was no application of voltage, the refractive index of BTO
was 2.4. The theoretical focal length was f1. After the voltage reached 60 V, the refractive
index of BTO was 3.07. The theoretical focal length became f2. According to Figure 5a,d,
the intensity profiles of the two conditions on the x–z plane were shown. The simulated
focal lengths of BTO with n = 2.4 and n = 3.07 were 9.43 µm and 15.13 µm which were
close to the design values. Figure 5b,e shows the intensity distribution of the first focal
point and the second focal point on the x–y plane. Furthermore, in Figure 5c,f, to show the
calculated spot size of the two focal points, we calculated the full width at half maximum
(FWHM) to compare with the diffraction limited value according to the formula λ/2NA,
where the equation of the numerical aperture NA was NA = sin

[
tan−1(D/2f)

]
. When the

diameter D of the metalens was 20 µm, the diffraction limited values of the two focal points
were about 404 nm and 541 nm. The simulated FWHMs were 422 nm and 568 nm which
corresponded to the theoretical diffraction limited values. For each focal point, on the focal
plane, a circular area with a radius that is three times of its FWHM was picked. Then, the
ratio of the optical power in this area to the power of the incident light was calculated
to obtain the focusing efficiency [35]. The focusing efficiencies of the two focal points
were about 46.60% and 40.15% when the refractive index was 2.4 and 3.07. The efficiency
difference of the two foci may have mainly come from different numerical apertures (NAs).
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4.2. Bifocal Metalens with Tunable Intensity Ratio

In order to demonstrate that the intensity ratio between the two focal points of the
designed metalens can be modulated, the refractive index of BTO was set as 2.6, 2.7, 2.8
and 2.9 (with applied voltages of 18 V, 27 V, 36 V and 45 V). In Figure 6, the intensity
distributions of the simulated results are shown. Combined with Figure 5a,d, the results
showed that when the refractive index of BTO gradually increased, the intensity of the
first focal point (with focal length f1 = 9 µm) would gradually decrease until the focal
point disappeared. Additionally, the intensity of the second focal point (with focal length
f2 = 15 µm) showed a trend of a gradual increase.

Figure 7 shows the simulated results of the intensity along the z-axis (x = 0, y = 0).
Additionally, Table 1 makes a summary of the focusing performance of the bifocal metalens
with a different refractive index. The results show that the FWHM of each focal point was
close to its theoretical diffraction limit. Additionally, the simulated focal lengths all met the
designed values. Because for the one focal point case the position of the other focal point
had no focal point, the FWHM and focal length were not calculated. Moreover, according
to the intensity ratio, the ratio could reach 1/0.01 and 0.08/1 in the extreme condition with
n = 2.4 and 3.07 (we chose the intensity at the theoretical focal point as the intensity of the
disappearing focal point). The difference also came from the different NAs. The values
were near the desirable values 1/0 and 0/1. When the refractive index increased from 2.4
to 3.07, the variation trend of the intensity ratio presented a process of gradual change,
which means the design can alter the ratio flexibly.
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Table 1. The focusing performance of the bifocal metalens with different refractive index.

n = 2.4 n = 2.5 n = 2.6 n = 2.7 n = 2.8 n = 2.9 n = 3.07

Simulated value (µm)
9.43 9.43 9.40 9.43 9.43 9.43 ——
—— 15.20 15.02 14.93 15.00 15.09 15.13

FWHM (nm)
422 429 432 431 437 445 ——

—— 563 564 568 563 567 568

Intensity ratio (f1: f2) 1/0.01 1/0.1 1/0.3 1/0.9 0.6/1 1/0.4 0.08/1

5. Conclusions

In summary, we proposed a high-speed electrically modulated bifocal metalens with
an adjustable intensity based on the EO material BTO in the visible region. The intensity
ratio of the two focal points could be adjusted by applying different voltages of 0 to
60 V. When there was no application of voltage, the metalens could only focus on the
first focal point (focal length is f1). As the applied voltage increased, the intensity of the
first focal point gradually decreased. Meanwhile, the intensity of the second focal point
(focal length is f2) increased with the voltage. Until the voltage reached 60 V, the design
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worked as a single-focusing metalens again with a focal length f2. Different from previous
methods, the metalens realized through the intensity ratio between two different focal
points can be adjusted arbitrarily with a constant optical source in the visible light band. In
addition, when the voltage switched between 0 V and 60 V, the metalens could work as a
varifocal metalens with two different focal lengths. The proposed electrically modulated
metalens has great potential in the application of detectors, optical storage, laser printing
and multi-functional devices.
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