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Abstract: Targeting high-speed, low-cost, short-reach intra-datacenter connections, we designed and
tested an integrated silicon photonic circuit as a transmitter engine. This engine can be packaged
into an optical transceiver module which meets the QSFP-DD Form Factor, together with other
electrical/optical components. We first present the design and performance of a high-speed silicon
modulator, which had a 3-dB EO bandwidth of >40 GHz and an ER of >5 dB. We then incorporated
the engine onto a test board and injected a 53.125 Gbaud PAM4 signal. Clear eye patterns were
observed at the receiver with TDECQ ~3 dB for all four lanes.

Keywords: datacom; integrated optics devices; silicon photonics; optical modulator; transmitter;
PAM-4; QSFP-DD; 400GBASE-DR4

1. Introduction

Due to its compatibility with mature CMOS manufacturing techniques, compact
size and cost effectiveness, integrated silicon photonics have been well developed as an
engine for optical transceivers [1–4] and widely deployed in datacenters for high-speed,
short-reach connections. Transceiver engines combine many elemental silicon photonics
components, such as waveguides, splitters, I/O couplers, phase shifters and multiplexers
(MUXs) and are able to process 100 Gb/s or 400 Gb/s signals, which currently dominate
500 m to 2 km intra-datacenter communications. For the transceiver architecture, according
to IEEE standards, 100 Gb/s can be realized using four lanes of 25 Gb/s on–off keying
(OOK) signal [5] or a single lane of 100 Gb/s Pulse Amplitude Modulation four-level
(PAM-4) signal over single-mode fiber (SMF). In contrast, 400 Gb/s needs four lanes of
100 Gb/s PAM-4 signals [6]. More recently, silicon photonic engines have been used for
higher data rates, such as 200 Gb/s per lane, for next generation 800 Gb/s transceivers when
heavy digital signal processing (DSP) is added [7]. Coherent modulation has also been
applied to silicon photonics engines for datacenter connections, achieving over 500 Gb/s
per lane speed [8]. Moreover, another way to boost the data capacity of a silicon photonics
engine is to integrate more lanes, if allowed by power consumption limits [9,10].

Intra-datacenter connectivity at 400 Gb/s is currently in the spotlight, and now is
the right time for 400 Gb/s links to replace <100 Gb/s or even 100 Gb/s links. To op-
timize the 400 Gb/s technology, significant research on III-V directly modulated lasers
(DMLs) [11,12], externally modulated lasers (EMLs) [13,14] and silicon photonics-based
Mach–Zehnder modulators (MZMs) has been conducted [15–20]. Generally, DML is the
most cost-effective solution, with a small footprint, but it suffers serious frequency chirp at
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high data rates [21]; therefore, a slightly more complex DSP must be used, especially for
longer-distance communication. EMLs have excellent performance in terms of bandwidth
and insertion loss (IL), but the cost of introducing EML is relatively high and it also needs
to be designed carefully for thermal stability [22]. Silicon photonics is also a low-cost,
high-performance solution. However, due to the inherent high IL, it is usually used to
cover 500 m to 2 km, the ‘mid-range’ of the intra-datacenter links, whereas DMLs/EMLs
are often seen in 2 km to 10 km or even 20 km links.

In our previous work, we experimentally demonstrated a 400 Gb/s transmitter with
a silicon photonics engine [23]. Due to insufficient modulator bandwidth, we applied
shaping, pre-compensation and a peak-to-peak differential voltage as high as 5 Vppd at
the transmitter side. When receiving the optical signal, we had to apply offline DSP
with a digital square and filtering algorithm for timing recovery and a least mean square
algorithm, with a 21-tap filter, in order to balance the complexity with system performance.
However, after we redesigned the modulator, doubled its bandwidth and optimized our
other silicon photonics components, we confirmed successful 400 Gb/s signal transmission
in our new silicon photonics engine that met the IEEE standard.

In this paper, we first illustrate a technical roadmap for building a low-cost silicon
photonic transceiver with MACOM devices. Then, we discuss the design and performance
of our modulator. After that, we present the measurements of a 400 Gb/s DR4 transmitter
when we attach the silicon photonics engine to an evaluation board. Finally, we summarize
the results of our current product and show plans for test and design in future.

2. MACOM’s Silicon Photonics Roadmap

Figure 1 schematically depicts a transceiver block diagram. In optical routing, our
high output (>20 dBm) laser chips, which are yield enhanced and cost reduced by etched
facet technology [24,25], are first packaged in Transmit Optical Sub-Assembly (TOSA) or
Transistor Outline can (TO-can) and the light is coupled into the silicon photonics engine
using optical lenses. Then, the light is split into several lanes, modulated, multiplexed
(following 100 G Lambda MSA FR4 standards) and routed out to a fiber (array) as Tx. The
laser chips can also be flip-chip bonded into the silicon photonics engines, as described
in our previous work [23,25]. For Rx, the optical signal is coupled into the engine chip
through a fiber (array), TE polarized, de-multiplexed (following 100 G Lambda MSA FR4
standards) and converted to an electrical signal by a Ge/Si photodetector [26].
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In electrical routing, the serial electrical signal is first sent into a MACOM PrismTM

chip, where the DSP chip is co-packaged with the driver IC for pre-emphasis, PAM-4
mapping and linear amplification. Then, the amplified signal is fed into a silicon photonics



Nanomaterials 2021, 11, 1941 3 of 8

engine through wire bonding as Tx. The microcontroller reads the monitor feedback from
the silicon photonics engine and generates DC controls, such as modulator bias, modulator
phase and MUX filter tuning vs. temperature. The microcontroller also manages the driver
swing tuning and the data processing complexity in the PrismTM chip. For Rx, the received
electrical signal is first amplified by a two-stage TIA (MAMF-03819) and then processed by
the PrismTM chip for Feed Forward Equalization (FFE), Decision Feedback Equalization
(DFE) and some other proprietary equalization before PAM-4 de-mapping. Finally, the
recovered electrical signal goes to the serial interface. Note that the DSP is optimized
for the 100 Gb/s per lane silicon photonics engine for both Tx and Rx, providing lower
latency data processing and low power consumption. The DSP is also able to activate real
time KP4-FEC (forward error correction) (de-)coding, which is ‘overclocking’ the silicon
photonics engine for >100 Gb/s per lane transmission.

3. Modulator Design and Characterization

Our modulator is based on the Mach–Zehnder Interferometer (MZI), which is insensi-
tive to fabrication error and temperature changes, but with a relatively large device size.
An optical cavity structure, such as microring (MR), theoretically consumes less power but
needs smart designs to withstand the resonance perturbation [27] and nonlinearity [28].

In our design, the optical waveguide of the MZI was formed on a silicon-on-insulator
(SOI) wafer and a light dose (~1017 cm−3) of boron and phosphorus was injected to create
the PN junction. The junction is reverse biased, to establish a depletion region that overlaps
with the optical TE0 mode confined in the waveguide. The effective index of the waveguide
is then modulated by the applied reversed bias that changes the depletion width. To
balance the performance among the carrier drifting speed, dopant-induced optical loss and
variation range of the effective index, we considered all factors such as: the waveguide
geometry, doping profile and junction offset from the waveguide center. Outside of the
waveguide, heavy doses (~1020 cm−3) of boron and phosphorus were injected into the slab
region to create ohmic contacts between the metals and PN junction.

As the PN junctions are always several millimeters long to achieve sufficient mod-
ulation depth, the traveling wave electrode (TWE) was carefully designed to meet both
electric-optical phase matching and impedance matching. A polysilicon-based 50 Ω ter-
mination resistor was integrated at the end of the TWE. Followed by the TWE, an NIN
junction was embedded in the waveguide of each arm to form a low-loss thermal phase
shifter, by which the MZI was tuned to quadrature. The MZM was finally buried in oxide
dielectric layers when the fabrication processing was completed. A simplified cross-section
view of the silicon MZM is shown in Figure 2.
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For the DC measurement, The MZM had an insertion loss of <5 dB and Vpi × L
of ~2.5 V.cm under −2 V bias. The small signal electro-optical (EO) response of the
MZM was characterized by a Vector Network Analyzer (VNA) with frequency sweeping
from 100 MHz to 50 GHz. Port 1 and Port 3 from the VNA were differentially paired
and connected to each arm of the MZM and thus formed a push-pull driving scheme.
The output optical signal was received by a 70 GHz commercial InGaAs photodetector
(11241-01P), which connected to Port 2 from the VNA. The optical wavelength was fixed at
1310 nm, and the modulator was reverse-biased at 2 V. The tested differential S11 response
of the MZM is shown in Figure 3a. The reflection in the frequency range of 100 MHz to
30 GHz was <−20 dB and slowly increased to ~−10 dB at higher frequencies, indicating
a good impedance matching. The tested differential S21 response of the MZM is shown
in Figure 3b. The 3-dB bandwidth of the MZM was ~43 GHz. As the S21 curve had no
sharp roll-off, the bandwidth compensation by FFE could be easily performed with fewer
taps. Both the tested S11 and S21 curve match with the simulated data from our HFSS
model, as shown in Figure 3a,b. In addition, the 6.4-dB electro-electrical (EE) bandwidth of
the TWE was ~45 GHz as calculated, which suggests that the optical signal was efficiently
modulated by the electrical signal, as a result of good phase matching.
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(b) transmission.

A performance summary of silicon modulators is listed in Table 1.

Table 1. Key parameter comparison among different modulator types.

Ref. EO Bandwidth
(GHz)

Vpi × L
(V-cm)

Loss
(dB)

Data Rate
(Gb/s) Type

[17] 26 1.4 8 64 (QPSK) MZI
[18] 20 0.8 10 256 (DP-16-QAM) MZI
[28] 50 0.52 4.2 112 (PAM-4) MR
[29] 35 1.8 5 72 (NRZ) SISCAP 1

Our design 43 2.5 5 106 (PAM-4) MZI
1 SISCAP: Silicon insulator silicon capacitor.

4. DR4 Transmitter Test

To analyze the general performance of the silicon photonics engine, we integrated it
into an evaluation board, as shown in Figure 4. The engine design followed DR4 standards
with a size of 6 mm × 4 mm. DC controls were added to the engine through top and
bottom wire bonding, and AC signals were coupled to the engine through wire bonding
on the right. The fibers were aligned to the edge couplers in the engine, and the TIA chip
was bonded to the photodiode array in the engine. The AC inputs and TIA outputs went
to GPPO connectors at the end of the evaluation board. The fiber array was inserted into
the engine and fixed into the V-grooves, forming parallel optical lanes. The other end of
the fiber array terminated in an MPO-12 connector. Note that the scale of the assembly,
regardless of the temporary evaluation board, is compliant with the size constraints of the
QSFP-DD MSA [30].
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Figure 4. Microscope view of the assembled silicon photonics engine.

The large signal experiment setup is shown in Figure 5. Here, we only tested its
performance as a transmitter. A bit error rate tester (BERT), which can work up to 64.8 GHz
clock speed, generates the PAM-4 signal and was pre-amplified by a BERT amplifier
(Amp.) to 0.57 Vpp. Then, the signal was amplified to 1.8 Vpp (3.6 Vppd) by a high-speed,
linear driver and sent to the Balun, where the differential pair was formed. The electrical
connection between Balun and device under test (DUT) was extremely short, in order
to minimize skew between the differential pair. The differential signal was fed into the
silicon photonics engine, lane by lane, through the evaluation board. After optical signal
modulation, it was sent to a Digital Communication Analyzer (DCA) for data recovery.
The System Impulse Response Correction (SIRC) was enabled to improve the response
of the reference filter inside the DCA and to de-embed its bandwidth limitation. A 5-tap
FFE was used when running the Transmitter and Dispersion Eye Closure Quaternary
(TDECQ) algorithm.
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Figure 5. Experimental setup for transmitter PAM-4 signal test. BERT: bit error rate tester; Amp.:
amplifier; DUT: device under test; DCA: Digital Communication Analyzer.

In Figure 6, clear open eyes are observed for all lanes in the silicon photonics engine at
a data rate of 53.125 Gbaud/s. To be specific, lane 1 has an Extinction Ratio (ER) of 5.4 dB
and a TDECQ of 3.04 dB; lane 2 has an ER of 5.3 dB and a TDECQ of 3.19 dB; lane 3 has
an ER of 5.3 dB and a TDECQ of 2.98 dB; lane 4 has an ER of 5.0 dB and a TDECQ of
2.87 dB. Thus, the PAM-4 eyes, in principle, would not approach the bit error rate limit on
the receiver side. Note, that the high-speed response of the transmitter drops because of
the relatively long and lossy RF routing between the driver and the modulator, including
the GPPO cable and connector, metal trace on the evaluation board, and wire bonds. In a
compact QSFP-DD package, where all the components shown in Figure 1 are attached on a
high-speed substrate, we expect still better eye performance and lower TDECQ < 2 dB.
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Finally, as a 5 dB ER was achieved with a 1.8 Vpp driving voltage and the optical loss
is within 5 dB, the MZM was functioning without consuming many resources electrically
and optically. The power consumption of each MZM was 0.032 W ((1.8 V/2)2/50 ohm × 2)
in the PN junction and 0.03 W in the thermal phase shifter. The power consumption of
each driver was 0.4 W. Therefore, 0.462 W × 4 = 1.848 W power is used for modulators and
drivers, which dominates the power consumption on the transmitter side. According to
400 G transmitter power budget estimations of 4.6~5.5 W [31], there is enough of a margin
for the micro controller and DSP.

5. Summary and Prospect

We have presented the MACOM silicon photonics transceiver architecture and tested
the modulator and the silicon photonics engine as a DR4 transmitter. With all the MACOM
components integrated in the transceiver, we were able to demonstrate a considerably
cost-effective short reach link inside the datacenter. Thanks to the >40 GHz high bandwidth
of the MZM, 4 × 100 Gb/s PAM-4 signals were transmitted and recovered with a low
TDECQ of ~3 dB.

Our future study will be focusing on characterizing the receiver part of the silicon
photonics engine, putting the transceiver on an evaluation board in a short reach link and
packaging all the components in a QSFP-DD defined module as a reference prototype
design for datacenter applications.
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