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Abstract: We consider a hybrid nanostructure composed by semiconductor quantum dot coupled to
a metallic nanoparticle and investigate the efficient creation of biexciton state in the quantum dot,
when starting from the ground state and using linearly polarized laser pulses with on-off modulation.
With numerical simulations of the coupled system density matrix equations, we show that a simple
on-off-on pulse-sequence, previously derived for the case of an isolated quantum dot, can efficiently
prepare the biexciton state even in the presence of the nanoparticle, for various interparticle distances
and biexciton energy shifts. The pulse durations in the sequence are obtained from the solution of a
transcendental equation.

Keywords: semiconductor quantum dots; biexciton; plasmonics; quantum control

1. Introduction

An active research topic within the field of quantum plasmonics [1,2] is the efficient
population control of the exciton and biexciton states in semiconductor quantum dots (SQD)
closely placed to metallic nanoparticles (MNP) [3–16]. For these hybrid nanostructures the
population dynamics is rather different compared to the case of a single SQD, since the
presence of the MNP amplifies the external electric field and induces interaction between
SQD excitons and localized surface plasmons [17–28]. A great portion of studies in this area
is devoted to population transfer between the ground and single exciton states of the SQD,
using external fields and with the MNP present [3–10,12–14,16]. In many of these works it
is reported that the MNP substantially modifies the period of Rabi oscillations between
these states [3–9], which can even be destroyed for specific SQD-MNP distances [4,5,8,9].
High levels of population transfer to the exciton state can be achieved by applying carefully
designed short [12,14,16] and ultra-short [13,14,16] pulses, while in another work the
presence of MNP has been used to accomplish electromagnetically induced selective
excitonic population transfer [10]. Additionally, optimal control has been exploited to
improve population transfer between the lower energy levels of a Λ-type SQD coupled
to a MNP [15], while a mixed scheme of pulsed and continuous wave fields has been
recommended to efficiently prepare a single hole spin state in a SQD-MNP system [11].

The problem of population transfer from the ground to the biexciton state in a single
SQD (without a MNP) has also become the center of immense research activity [29–43],
with potential applications the efficient generation of single photons [44] and polarization-
entangled photons [45–49], processes which can be exploited for various quantum infor-
mation processing tasks [50]. A linearly polarized laser pulse is often used to implement
the two-photon ground to biexciton transition. On the other hand and despite that the
placement of a MNP next to the SQD has been suggested in order to enhance biexciton
emission [51,52] and improve the production of polarization-entangled photons [53], there
are not many works studying controlled biexciton dynamics in the SQD-MNP system.
In Ref. [54] the two-photon Rabi oscillations in this system have been explored, while in
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our recent work [55] we showed how population transfer to the biecxiton state can be
efficiently achieved by applying linearly polarized pulses with hyperbolic secant profile.

In this article, we also examine the problem of coherently preparing the biexciton state
in a coupled SQD-MNP nanosystem, using on-off pulse-sequences that we have previously
derived for an isolated SQD [43]. We use the three-level quantum cascade model for the
SQD and the corresponding modified nonlinear density matrix equations, which also take
into account the applied electromagnetic field as well as the interaction between MNP
surface plasmons and SQD excitons [12,17,18,20,54,56]. The externally applied field has
linear polarization and is at two-photon resonance with the ground to biexciton transition,
while the pulses have a simple on-off-on modulation [43], where the durations of the on-off
segments can be found by solving a transcendental equation. These control pulses are
derived to quickly accomplish perfect biexciton state preparation in an isolated SQD and
in the idealized case where relaxation processes are ignored. Here, we apply them in the
coupled SQD-MNP nanostructure and show with numerical simulations of the complete
system equations (including relaxation and interparticle interactions) that high-levels of
fidelity can still be obtained for a wide range of biexciton energy shifts and a variety of
SQD-MNP interparticle distances.

The structure of the paper is as follows. In Section 2 we provide the equations which
describe the SQD-MNP system under the influence of the external electromagnetic field.
In Section 3 we derive the on-off pulses used to populate the biexciton state, while in
Section 4 we apply them in the equations of the coupled SQD-MNP system. In Section 5
we provide a summary of the results.

2. Coupled SQD-MNP System

In Figure 1 is shown the nanosystem that we study in this article. A spherical MNP
with radius rmnp and a spherical SQD with radius rsqd, are placed a distance R > rmnp from
each other, in a dielectric environment with constant εenv, taken to be real. A full account
of the quantum dot is accomplished using a four-level system [32,33]. The corresponding
energy levels include the ground state |0〉, the biexciton state |2〉 and, when we apply
fields with linear polarization, the linearly polarized single-exciton states |X〉 and |Y〉.
In this study we consider an x-polarized applied field which excites the path |0〉 →
|X〉 → |2〉, while state |Y〉 is not involved. In order to comply with the naming of the
other states, we denote state |X〉 with |1〉, thus the states participating in the ground
to biexciton transfer are |0〉, |1〉, and |2〉. These states form the biexciton ladder three-
level system, displayed in Figure 1. The applied field ~E(t) = x̂E0 f (t) cos(ωt) excites
in SQD the cascade transitions ground-exciton-biexciton, where x̂, E0, f (t), ω denote its
polarization, amplitude, dimensionless envelope and center frequency, respectively. The
SQD and MNP dielectric constants are denoted by εS, εm(ω), respectively. Furthermore,
the applied field stimulates surface plasmons on the MNP which come up with a powerful
continuous spectral response, interact with SQD excitons [3,17,18,56] and thus couple the
two nanoparticles, leading to Förster energy transferral [57].

Applying the dipole approximation, the biexciton cascade Hamiltonian becomes

HB(t) = E|1〉〈1|+ (2E + EB)|2〉〈2| − µESQD(t)(|0〉〈1|+ |1〉〈2|+ H.c.), (1)

where E denotes the exciton energy, with respect to zero ground state energy, EB the
biexciton energy shift, µ the dipole moment for both ground-exciton and exciton-biexciton
transitions, while ESQD is the total electric field inside the SQD, originating from the
external field as well as the induced field stemming from the MNP. In the quasistatic
approximation the corresponding expression is [17,18,20,56]:

ESQD(t) =
h̄
µ

[
Ω(t)

2
e−iωt + G[ρ10(t) + ρ21(t)] + H.c.

]
, (2)
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with ρij(t) being density matrix elements for the three-level system, the time-dependent
Rabi frequency Ω(t) is [17,18,20]

Ω(t) = Ω0 f (t) , Ω0 =
µE0

h̄εe f f S

(
1 +

saγ1r3
mnp

R3

)
, (3)

while parameter G is given by [18]

G =
N

∑
n=1

1
4πεenv

(n + 1)2γnr2n+1
mnp µ2

h̄ε2
e f f SR2n+4

. (4)

In the above expressions, εe f f S = 2εenv+εS
3εenv

, γn = εm(ω)−εenv
εm(ω)+(n+1)εenv/n with n positive

integer, while sa = 2 for an external field parallel to the interparticle SQD-MNP x-axis.

(a)

SQD

(b)

Figure 1. (a) Coupled semiconductor quantum dot (SQD)-metal nanoparticle (MNP) nanosystem. (b) Energy levels for the
biexciton system.

The two terms appearing in the Rabi frequency, Equation (3), are due to the exter-
nal field and to the electric field of the MNP, which is induced from the external field.
Furthermore, parameter G occures due to the excitons-plasmons interaction mentioned
above [3,17–19]. To become more specific, the applied electric field induces a dipole on the
SQD, inducing in turn a dipole on the MNP, wich subsequently affects the SQD via the
self-interaction parameter G [17,20]. The expression of Equation (4) takes into account mul-
tipole effects and using f.e. N = 20 terms produces more precise values of self-interaction
G [18].

The time evolution of the density matrix for the biexciton cascade can be described by
the following system
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ρ̇00(t) = Γ11ρ11(t) + i
µESQD(t)

h̄
[ρ10(t)− ρ01(t)] , (5a)

ρ̇22(t) = −Γ22ρ22(t) + i
µESQD(t)

h̄
[ρ12(t)− ρ21(t)] , (5b)

ρ̇01(t) =

(
i
E
h̄
− γ01

)
ρ01(t) + i

µESQD(t)
h̄

[ρ11(t)− ρ00(t)]− i
µESQD(t)

h̄
ρ02(t) , (5c)

ρ̇02(t) =

(
i
2E + EB

h̄
− γ02

)
ρ02(t) + i

µESQD(t)
h̄

ρ12(t)− i
µESQD(t)

h̄
ρ01(t) , (5d)

ρ̇12(t) =

(
i
E + EB

h̄
− γ12

)
ρ12(t) + i

µESQD(t)
h̄

[ρ22(t)− ρ11(t)] + i
µESQD(t)

h̄
ρ02(t) , (5e)

where ∑3
i=1 ρii(t) = 1 and ρnm(t) = ρ∗mn(t). In the above equations Γ11, Γ22 denote the

decay rates for the exciton and biexciton energy levels, respectively, and γnm, with n 6= m,
the dephasing rates of the system. We proceed with a change of variables ρnn(t) = σnn(t),
ρ01(t) = σ01(t)eiωt, ρ02(t) = σ02(t)e2iωt, and ρ12(t) = σ12(t)eiωt and make the rotating
wave approximation, in order to obtain the time evolution for the slowly varying envelopes
of the density matrix elements:

σ̇00(t) = Γ11σ11(t) + i
Ω∗(t)

2
σ10(t)− i

Ω(t)
2

σ01(t)

+ iG∗[σ01(t) + σ12(t)]σ10(t)− iG[σ10(t) + σ21(t)]σ01(t) , (6a)

σ̇22(t) = −Γ22σ22(t) + i
Ω(t)

2
σ12(t)− i

Ω∗(t)
2

σ21(t)

+ iG[σ10(t) + σ21(t)]σ12(t)− iG∗[σ01(t) + σ12(t)]σ21(t) , (6b)

σ̇01(t) =

(
i
E
h̄
− iω− γ01

)
σ01(t) + i

Ω∗(t)
2

[σ11(t)− σ00(t)]− i
Ω(t)

2
σ02(t)

+ iG∗[σ01(t) + σ12(t)][σ11(t)− σ00(t)]− iG[σ10(t) + σ21(t)]σ02(t) , (6c)

σ̇02(t) =

(
i
2E + EB

h̄
− 2iω− γ02

)
σ02(t) + i

Ω∗(t)
2

[σ12(t)− σ01(t)]

+ iG∗
[
σ2

12(t)− σ2
01(t)

]
, (6d)

σ̇12(t) =

(
i
E + EB

h̄
− iω− γ12

)
σ12(t) + i

Ω∗(t)
2

[σ22(t)− σ11(t)] + i
Ω(t)

2
σ02(t)

+ iG∗[σ01(t) + σ12(t)][σ22(t)− σ11(t)] + iG[σ10(t) + σ21(t)]σ02(t) . (6e)

3. Biexciton State Preparation Using on-off Pulses

In this section we derive on-off pulses which accomplish fast and efficient biexciton
state preparation. In the derivation we temporarily ignore the relaxation rates and the
self-interaction parameter G, but in the next section we test the obtained pulses by sim-
ulating the full density matrix Equation (6). We follow our recent work [43] where we
obtained similar pulses but for an isolated quantum dot. Using the transformed probability
amplitudes b0 = c0, b1 = c1eiωt, b2 = c2e2iωt for the ground, exciton and biexciton states,
respectively, fixing the laser frequency at the two-photon resonance value h̄ω = E + EB/2
and performing the rotating wave approximation, we find from Equations (1) and (2),
with G = 0 in the latter, the transformed Hamiltonian

H̃B(t) = h̄

 0 − Ω̃(t)e−iφ

2 0

− Ω̃(t)eiφ

2 − EB
2h̄ − Ω̃(t)e−iφ

2

0 − Ω̃(t)eiφ

2 0

, (7)
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where the real control parameter Ω̃(t) and the constant phase φ are obtained from the
complex Rabi frequency (3) as follows

Ω(t) = Ω̃(t)eiφ, Ω̃(t) = |Ω0| f (t). (8)

A further transformation

a0 =
1√
2
(b2e−iφ + b0eiφ), a1 = b1, a2 =

1√
2
(b2e−iφ − b0eiφ), (9)

leads to ȧ2 = 0, while a0, a1 satisfy the two-level system

i
(

ȧ0
ȧ1

)
=

 0 − Ω̃(t)√
2

− Ω̃(t)√
2

− EB
2h̄

( a0
a1

)
. (10)

The ground state initial conditions c0(0) = 1, c1(0) = c2(0) = 0, same for bi, give
a0(0) = eiφ/

√
2, a1(0) = 0, a2(0) = −eiφ/

√
2. However, a2(t) = a2(0) = −eiφ/

√
2 is

constant, and from Equation (9) we see that if the control Ω̃(t) is selected such that at
the final time t = T it is a0(T) = −eiφ/

√
2, then b2(T) = −e2iφ ⇒ |c2(T)| = 1 and the

biexciton state is perfectly prepared. The two-level state (a0 a1)
T is normalized with 1/

√
2

instead of the usual 1, thus a1(T) = 0. It becomes obvious that the control Ω̃(t) should be
chosen such that the initial and final states of the two-level system (10) differ by a π-phase,
and this imposes the following condition on the propagator U of the system

U =

(
−1 0
0 z

)
, (11)

where z is indifferent.
For a constant pulse Ω̃(t) = Ω̃0 with duration T, propagator U can be easily found

to be

U = eiωBT
(

cos ω̃T − inz sin ω̃T −inx sin ω̃T
−inx sin ω̃T cos ω̃T + inz sin ω̃T

)
, (12)

where
ωB =

EB
4h̄

(13)

and

ω̃ =

√
ω2

B +
Ω̃2

0
2

, nx = − 1√
2

Ω̃0

ω̃
, nz =

ωB
ω̃

. (14)

Using condition (11) we can find the duration and amplitude of the fastest constant
pulse which completely generates the biexciton state. Observe that for ω̃T = mπ, where m
positive integer, the propagator (12) becomes

U =

(
eiωBT cos mπ 0

0 eiωBT cos mπ

)
. (15)

From Equation (11), the upper diagonal element should satisfy eiωBT cos mπ = −1,
thus eiωBT = (−1)m+1 = ±1. Minimum T is obtained for even m and it is T = π/ωB.
The minimum required constant amplitude Ω̃min

0 is obtained from ω̃T = mπ for m = 2,
and we find

T =
π

ωB
, Ω̃min

0 = ωB
√

6 ≈ 2.45ωB. (16)

We next show that on-off pulse-sequences with carefully selected pulse timings can
achieve perfect biexciton state prepartion in shorter times than T = π/ωB. As we pre-
viously explained, the two-level system should comes back to its starting state having
obtained a π-phase. It turns out that a pulse-sequence of the form on-off-on is the simplest
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one to achieve this, since the first on-pulse rotates the Bloch vector away from the north
pole, the intermediate off-pulse moves it parallel to the equator, and the final on-pulse
rotates it back to the north pole. Let ti, i = 1, 2, 3 be the durations of these individual
pulses. To find the minimum possible total duration T = t1 + t2 + t3 such that the π-phase
condition is satisfied, we follow Refs. [43,58] and exploit the fact that in each time inter-
val the Hamiltonian of the two-level system is constant. The total propagator U can be
decomposed as

U = Ut3
onUt2

o f f Ut1
on, (17)

with U
tj
on, j = 1, 3, obtained from Equation (12) using the corresponding timing tj, and Ut2

o f f

obtained by propagating Equation (10) with Ω̃(t) = 0 for duration t2, thus

Ut2
o f f = eiωBt2

(
e−iωBt2 0

0 eiωBt2

)
. (18)

By multiplying the 2× 2 matrices we obtain the following expression for the total propagator

U = eiωBT
(

v0 + v3 v1 + iv2
v1 − iv2 v0 − v3

)
, (19)

with elements

v0 = cos ωBt2 cos ω̃(t1 + t3)− nz sin ωBt2 sin ω̃(t1 + t3), (20a)

v1 = −inx cos ωBt2 sin ω̃(t1 + t3) + 2inxnz sin ω̃t1 sin ωBt2 sin ω̃t3, (20b)

v2 = inx sin ωBt2 sin ω̃(t3 − t1), (20c)

v3 = −inz cos ωBt2 sin ω̃(t1 + t3)− i sin ωBt2 cos ω̃(t3 − t1) + 2in2
z sin ω̃t1 sin ωBt2 sin ω̃t3. (20d)

From the requirement (11) we obtain for the off-diagonal elements v1 = v2 = 0.
The condition v2 = 0 leads to the relation

t3 − t1 = ±π

ω̃
, (21)

since the other potential solutions, t2 = π/ωb and t1 = t3 lead to total durations T > π/ωB,
as explained in Ref. [43] and can be easily verified, thus they are rejected. Using Equation (21)
in the expression (20b), along with the identity sin (θ ± π) = − sin θ, we find

v1 = 2inx sin ω̃t1(cos ω̃t1 cos ωBt2 − nz sin ω̃t1 sin ωBt2). (22)

The requirement v1 = 0 is satisfied for

cos ω̃t1 cos ωBt2 = nz sin ω̃t1 sin ωBt2, (23)

while the other potential solution sin ω̃t1 = 0 leads to a total durations T > π/ωB, as dis-
cussed in Ref. [43]. Using Equations (21) and (23) and the relations cos (θ ± π) = − cos θ,
sin (θ ± π) = − sin θ, we end up with the following expression for the total propagator

U = eiωBT
(

eiωbτ2 0
0 e−iωbτ2

)
. (24)

The requirement for the upper diagonal element from Equation (11) becomes
eiωb(T+τ2) = −1 = eiπ , consequently

T + t2 = t1 + 2t2 + t3 =
π

ωB
, (25)
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leading to a total duration satisfying T < π/ωb, thus shorter than the minimum necessary
duration of a constant pulse for complete biexciton state preparation. Now observe that
Equations (21), (23) and (25) comprise a system with unknowns the timings ti, i = 1, 2, 3 of
the individual pulses. If we exploit Equations (21) and (25) to express t1, t3 in terms of t2,
we obtain

t1 =
π

2

(
1

ωB
∓ 1

ω̃

)
− t2, t3 =

π

2

(
1

ωB
± 1

ω̃

)
− t2. (26)

Furthermore, if we substitute in Equation (23) the expression for t1 from Equation (26)
and additionally use the identity tan (θ ± π/2) = − cot θ, then we find that the duration t2
of the middle off-pulse satisfies the transcendental equation

tan
[

ω̃(
π

2ωB
− t2)

]
= −nz tan ωBt2. (27)

The expressions with the ± signs in Equation (26) indicate that the durations of
the initial and final on-pulses can be interchanged. For the transcendental Equation (27)
to have at least one solution, the pulse-sequence amplitude should be larger than the
threshold value Ω̃min

0 = ωB
√

6, which is found by setting t2 = 0. We focus our attention
in the range Ω̃0 > Ω̃min

0 , since such values can be easily obtained in experiments and also
lead to durations T < π/ωB, the shorter duration achieved with a constant pulse. Please
note that for larger Ω̃0, Equation (27) can have more solutions, in which case we pick
the larger t2, corresponding to the shorter total duration T = π/ωB − t2. For very large
values of Ω̃0, the shortest duration tends to the limiting value π/(2ωB). In Ref. [43] we
have shown using numerical optimal control that when the control input is bounded as
0 ≤ Ω̃(t) ≤ Ω̃0 and for maximum control amplitude spanning a wide range of values,√

6ωB ≤ Ω̃0 ≤ 50ωB, the three-segment pulse-sequence derived here prepares the biexciton
state in minimum time.

4. Numerical Results for the Coupled SQD-MNP System

To solve the transcendental Equation (27), we plot the logarithm of the squared error

e =
∣∣∣∣tan

[
ω̃(

π

2ωB
− t2)

]
+ nz tan ωBt2

∣∣∣∣2 (28)

as a function of t2. The negative resonances of this plot correspond to the solutions of the
transcendental equation. For example, in Figure 2a we plot this logarithmic error for the
case where R = 14 nm and EB = 5 meV. There is only one negative resonance, marked
with a red star, giving the duration t2 of the intermediate off-pulse. The corresponding
on-off-on pulse-sequence is displayed in Figure 2c. We use this pulse-sequence to simulate
the full set of the density matrix Equation (6). For the relaxation rates encountered in
these equations we use the values Γ−1

11 = Γ−1
22 = 800 ps and γ−1

01 = γ−1
02 = γ−1

12 = 300 ps.
For the other parameters which are necessary in the simulation, we use the values εenv = ε0,
εS = 6ε0, rmnp = 7.5 nm, µ = 0.65 enm, h̄ω0 = 2.5 eV, and εS = 6ε0, which are typical for
colloidal quantum dots, such as the CdSe-based SQD. For the biexciton binding energy EB
we use values in the range of a few meV, which are typical for semiconductor quantum
dots with the optical gap considered here, see for example Ref. [59]. The same values
also appear in many other works [4–7,12,17,18,20,21,60]. For the nanoparticle dielectric
constant εm(ω), we make use of the experimental data which are available for gold [61].
The value of the applied external field is such that µE0/h̄ = 15 THz. We additionally
emphasize that a nonzero self-interaction parameter G is used in the simulations, obtained
from Equation (4). In Figure 2e we display the time evolution of the biexciton population
σ22(t) (blue solid line), for the pulse-sequence shown in Figure 2c, corresponding to the
case R = 14 nm and EB = 5 meV. From the detail shown in the inset, we observe that a
fidelity higher than 0.99 is achieved, even when relaxation and self-interaction are taken
into account. In order to identify the contribution of each mechanism to the deviation
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from perfect population transfer, we also plot σ22(t) for the case where the relaxation rates
are set to zero but G 6= 0 (red dashed line). Comparing the two plots we conclude that
the major efficiency limitation in the specific example is due to relaxation. In the second
column of Figure 2 we display the solution of the transcendental equation, the on-off pulse
sequence, and the time evolution of the biexciton population, for the same interparticle
distance R = 14 nm and a larger biexciton energy EB = 8 meV. The value of R determines
the maximum control amplitude Ω̃0 in the pulse sequence, which is thus the same for both
examples, see Figure 2c,d. From the same figures we observe that for the larger value
of EB the duration of the intermediate off pulse becomes shorter and the pulse-sequence
is approaching the constant pulse shape. The total duration is also smaller and thus the
detrimental effect of relaxation and nonlinearity G (which has the same value for both cases
since R is the same) is reduced, leading to a higher final biexciton population, as revealed
by carefully comparing the insets of Figure 2e,f.

In Figure 3 we present similar plots for two different values of the interparticle
distance, R = 13 nm (left column) and R = 30 nm (right column), and a common biexciton
energy EB = 2.5 meV. Observe from Figure 3a,b that for these examples the transcendental
equation has more solutions (three and two, respectively, corresponding to the negative
resonances). For each case we pick as t2 the largest solution, indicated by a red star, leading
to the smallest total duration T = π/ωB − t2, see Equation (25). Regarding now the
resultant pulse-sequences, we observe from Figure 3c,d that the case with smaller R has
a larger pulse amplitude, see Equation (3), and a shorter duration. Both durations are
longer than those of the pulse-sequences in Figure 2, since the biexciton energy used here
is smaller. Although for the case with smaller interparticle distance the pulse amplitude
is larger and the pulse duration is shorter, the biexciton population generated at the final
time is slightly smaller, as can be observed from the details in Figure 3e,f. The reason
is that for smaller R the self-interaction parameter G is larger, see Equation (4), and this
compensates for the previously mentioned characteristics of the pulse-sequence which
otherwise would lead to a better performance. The negative effect of smaller R is also
revealed by comparing the red dashed lines in the two insets, since recall that they are
obtained using zero relaxation rates. Similar conclusions can be drawn from Figure 4,
where we display analogous results for the cases with R = 15 nm (left column) and
R = 30 nm (right column), with a common biexciton energy EB = 1 meV, smaller than
in the previous cases. The interesting thing to observe here is that the transcendental
equation has even more solutions (Figure 4a,b), while the pulse-sequence durations are
longer (Figure 4c,d), leading to worse performance than in the previous cases (Figure 4e,f).
We point out that the negative resonances in Figures 2a,b, 3a,b and 4a,b correspond to
solutions of the transcendental Equation (27), while the variability of the negative peaks is
just due to numerical errors.

In all the presented examples we see that, for smaller values of the biexciton energy
shift EB, the pulse-sequences needed for biexciton state preparation are longer. This is
also illustrated in Figure 5a, where the pulse-sequence duration is plotted versus the
biexciton energy shift, for various values of the SQD-MNP distance R. The reason is that
EB determines the energy separation between the exciton and biexciton states, and thus
to discriminate between them for smaller EB a longer duration is required. The biexciton
energy shift essentially determines the quantum speed limit of the system under the
considered control (the amplitude of the applied field). In Figure 5b we plot the pulse-
sequence duration as a function of the interparticle distance R, for various values of the
biexciton energy shift. Please observe that, in all the cases, the duration slightly increases
with R. The reason behind this increase is that for larger R the pulse amplitude decreases,
see Equation (3), thus a longer pulse-sequence is necessary in order to accomplish the
desired transfer.
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Figure 2. Left-column top to bottom: (a) Logarithm of the squared error between the two sides of transcendental
Equation (27) as a function of the duration t2 of the intermediate (off) pulse. The negative resonance indicated with
red star corresponds to the solution. (c) Corresponding on-off pulse-sequence. (e) Time evolution of biexciton population
σ22(t) (blue solid line) obtained by simulating the full Equation (6) with input the above pulse-sequence. For comparison,
the red dashed line shows σ22(t) if relaxation is ignored from the system equations. These results are obtained for interparti-
cle distance R = 14 nm and biexciton energy shift EB = 5 meV. In the right-column (b,d,f) we display similar plots for the
case with the same R = 14 nm but larger EB = 8 meV.
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Figure 3. Left-column top to bottom: (a) Logarithmic squared error (28), (c) pulse-sequence, and (e) time evolution of σ22(t),
for R = 13 nm and EB = 2.5 meV. In the right-column (b,d,f) we display similar plots for the case with a larger interparticle
distance R = 30 nm but the same biexciton energy shift EB = 2.5 meV.
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Figure 4. Left-column top to bottom: (a) Logarithmic squared error (28), (c) pulse-sequence, and (e) time evolution of σ22(t),
for R = 15 nm and EB = 1 meV. In the right-column (b,d,f) we display similar plots for the case with a larger interparticle
distance R = 30 nm but the same biexciton energy shift EB = 1 meV.
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Figure 5. (a) Pulse-sequence duration as a function of biexciton energy shift EB, for four values of the interparticle distance,
R = 13 nm (blue solid line), R = 14 nm (red dashed line), R = 15 nm (black dashed-dotted line), R = 30 nm (green dotted
line). (b) Pulse-sequence duration as a function of interparticle distance R, for four values of the biexciton energy shift,
EB = 1 meV (blue solid line), EB = 2.5 meV (red dashed line), EB = 5 meV (black dashed-dotted line), EB = 6 meV (green
dotted line).

In Figure 6a we display the final biexciton population σ22(T) achieved for values of the
interparticle distance R and biexciton energy shift EB in the intervals shown. For each pair
(R, EB) we find the corresponding pulse-sequence and apply it to the coupled SQD-MNP
system Equation (6). Observe that high-levels of fidelity are obtained for a wide range
of these parameter values. The efficiency generally increases with increasing R since the
self-interaction parameter G decreases, see Equation (4), something that was also observed
in the examples shown in Figures 3 and 4. Nevertheless, there are some fluctuations in
the efficiency as R increases, which can be attributed to the reduction of the effective
pulse amplitude, Equation (3), and the corresponding slight increase of the pulse-sequence
duration, displayed in Figure 5b. With respect to growing EB, the efficiency also generally
increases since the pulse-sequence duration is reduced, see Figure 5a and the example
of Figure 2. In this case, the efficiency fluctuations can be explained since, for larger
EB, the resultant pulse-sequences deviate from the more robust composite pulse form,
Figure 2c, and approach the constant pulse shape, Figure 2d, which is more vulnerable
to perturbations such as the R-dependent G-term. For this reason the fluctuations with
increasing EB are more intense for smaller R.

To evaluate the robustness of the proposed method against a positioning error of the
MNP, we find the pulse timings for a fixed reference value R0 = 15 nm of the interparticle
distance and variable EB, and apply the resultant pulse-sequence in system Equation (6)
with variable R in the range R0 ± 1 nm and the corresponding EB. The final biexciton
population obtained in this case is displayed in Figure 6b, where observe that despite the
imperfections high levels of fidelity can be still achieved, especially for larger interparticle
distances and biexciton energy shifts. We investigate next the robustness with respect to
variations in EB. Analogously with the previous case, we find the pulse timings for fixed
E0

B = 4 meV and variable R, and then find numerically the final biexciton population for
EB in the range E0

B ± 0.5 meV and the corresponding R. The results are shown in Figure 6c,
where observe that large efficiency is obtained in an appreciable belt around the central
value E0

B. The robustness belt extends more in the area EB < E0
B, since the pulse-sequences

used are not tuned with respect to the biexciton energy shift, as they were in the previous
figures, thus larger values of EB cause larger deviations from perfect transfer. Finally,
in Figure 6d we consider a combined error in both R and EB, with the pulse timings
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obtained for fixed R0 = 15 nm and E0
B = 4 meV. Observe that, despite the simultaneous

presence of the errors, a noticeable robustness area still survives in parameter space.
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Figure 6. (a) Final value of the population σ22(T) from the numerical solution of Equation (6) using the pulse-sequence
obtained for each pair of values (EB, R) in the range shown. (b) σ22(T) for the pulse timings obtained with the fixed
reference value R0 = 15 nm and variable EB, when applied to system Equation (6) with variable R in the range R0 ± 1 nm
and the corresponding EB. (c) σ22(T) for the pulse timings obtained with the fixed reference value E0

B = 4 meV and variable
R, when applied to Equation (6) with variable EB in the range E0

B ± 0.5 meV and the corresponding R. (d) σ22(T) for the
pulse-sequence obtained with fixed R0 = 15 nm and E0

B = 4 meV, when applied to Equation (6) with variable R in the range
R0 ± 1 nm and EB in the range E0

B ± 0.5 meV.

5. Conclusions

We studied the problem of pulsed biexciton state preparation in a SQD-MNP system
and showed with numerical simulations that, when using a on-off-on pulse-sequence with
carefully selected pulse durations, the desired state can be efficiently prepared for a broad
range of SQD-MNP (interparticle) distances and various values of the biexciton energy shift.
We find that the transfer fidelity is in general better for larger values of the interparticle
distance, because then the influence of the nanoparticle is weaker, and larger values of the
biexciton energy shift, since the energy separation of the exciton and biexciton levels is
then larger. The obtained fidelities are robust against small variations in the values of these
parameters. Our results can find applications in the emerging area of nanomaterials and
nanosystems for quantum technologies.
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Closing, we point out that the presence of the MNP can also modify the effective
damping of SQD, giving rise to further peculiar effects, see for example [62]. Since the
applied pulses have been obtained independently of the relaxation mechanisms affecting
SQD, an interesting future work would be to investigate their performance when taking
these phenomena into account. Another possible test is to evaluate the efficiency of
obtained pulses using different relaxation rates for the excited states and different dipole
moments for the ground to exciton and exciton to biexciton transitions, as in the model
of [54]. Of course, with the accumulation of all these imperfections, it is probably better to
recourse to numerical optimization in order to find the pulses which optimize the biexciton
transfer, as we recently did for the fast spin initialization of a quantum dot coupled to a
two-dimensional nanostructure [63–65].
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